https://doi.org/10.56415/qrs.v31.05

Semigroups in which the radical of every interior ideal is a subsemigroup

Wichayaporn Jantanan, Chinnawat Jumnongphan, Natthawut Jaichot and Ronnason Chinram

Abstract. In this paper, we characterize when the radical \sqrt{I} of every interior ideal I of a semigroup S is a subsemigroup of S. Also, the radical of every interior ideal (or right ideal or left ideal or quasi-ideal or ideal or bi-ideal or subsemigroup) of S is an interior ideal (or a right ideal or a left ideal or a quasi-ideal or an ideal or a bi-ideal) of S.

1. Introduction and Preliminaries

The theory of different types of ideals in semigroups was studied by several researchers such as: in 1952, Good and Hughes [2] introduced the notion of bi-ideals of semigroups. In 1956, Steinfeld [7] introduced the notion of quasi-ideals in semigroups. In 1976, Lajos [4] gave the concept of interior ideals of semigroups.

Let S be a semigroup and A, B be non-empty subsets of S. The radical \sqrt{A} of A is defined by

 $\sqrt{A} = \{a \in S \mid a^n \in A \text{ for some positive integer } n\}.$

For $a, b \in S$, the subsemigroup of S generated by $\{a, b\}$ is denoted by $\langle a, b \rangle$. A non-empty subset A of S is called a *left* (*right*) *ideal* of S if $SA \subseteq A(AS \subseteq A)$. If A is both a left and right ideal of S, then A is called an *ideal* of S. A non-empty subset Q of S is called a *quasi-ideal* of S if $QS \cap SQ \subseteq Q$. A subsemigroup B of S is called a *bi-ideal* of S if $BSB \subseteq B$. A subsemigroup I of S is called an *interior ideal* of S if $SIS \subseteq I$. In 1992, Bogdanovic and Ciric [1] characterized semigroups in which the radical of every ideal (right ideal, bi-ideal, subsemigroup) is a subsemigroup (or ideal)

²⁰¹⁰ Mathematics Subject Classification: 20M11, 20M12.

Keywords: radical; subsemigroups; interior ideals.

or bi-ideal or right ideal). Later, the case of quasi-ideals was considered in semigroups and ordered semigroups by Sanborisoot and Changphas in [5] and [6], respectively.

In this paper, we characterize when the radical \sqrt{I} of every interior ideal I of a semigroup S is a subsemigroup of S. Also, the radical of every interior ideal (or right ideal or left ideal or quasi-ideal or ideal or bi-ideal or subsemigroup) of S is an interior ideal (or a right ideal or a left ideal or a quasi-ideal or an ideal or a bi-ideal) of S.

Let $\mathbb{N} = \{1, 2, 3, ...\}$ denote the set of all positive integers. Let S be a semigroup with identity and let $a, b \in S$, define

 $\begin{array}{l} a \mid b \Longleftrightarrow b = xay \text{ for some } x, y \in S; \\ a \mid_r b \Longleftrightarrow b = ax \text{ for some } x \in S; \\ a \mid_l b \Longleftrightarrow b = ya \text{ for some } y \in S; \\ a \mid_l b \Longleftrightarrow a \mid_r b \wedge a \mid_l b; \\ a \rightarrow b \Longleftrightarrow a \mid b^n \text{ for some } n \in \mathbb{N}; \text{ and} \\ a \xrightarrow{h} b \Longleftrightarrow a \mid_h b^n \text{ for some } n \in \mathbb{N} \text{ where } h \text{ is } r, l \text{ or } t. \end{array}$

2. Main Results

In general, the radical of a interior ideal of a semigroup with identity need not be a subsemigroup. The following theorem characterizes when the radical of every interior ideal of a semigroup with identity is a subsemigroup.

Theorem 2.1. Let S be a semigroup with identity. Then the radical of every interior ideal of S is a subsemigroup of S if and only if

$$\forall a, b \in S \quad \forall i, j \in \mathbb{N} \quad \exists n \in \mathbb{N} \quad [(ab)^n \in S\{a^i, b^j\}S].$$

Proof. Assume that the radical of every interior ideal of S is a subsemigroup of S. Let $a, b \in S$ and let $i, j \in \mathbb{N}$. Put $I = S\{a^i, b^j\}S$. Since

$$II = (S\{a^i, b^j\}S)(S\{a^i, b^j\}S) \subseteq S\{a^i, b^j\}S = I$$

and

$$SIS = S(S\{a^i, b^j\}S)S \subseteq S\{a^i, b^j\}S = I,$$

I is an interior ideal of *S*. Observe that $a, b \in \sqrt{I}$ because $a^i, b^j \in I$. By assumption, \sqrt{I} is a subsemigroup of *S*. Thus, $ab \in \sqrt{I}$. Hence, $(ab)^n \in I = S\{a^i, b^j\}S$ for some $n \in \mathbb{N}$.

Conversely, assume that for all a, b in S and i, j in \mathbb{N} , there exists $n \in \mathbb{N}$ such that $(ab)^n \in S\{a^i, b^j\}S$. Let I be an interior ideal of S, and let $a, b \in \sqrt{I}$. Then $a^i \in I$ and $b^j \in I$ for some $i, j \in \mathbb{N}$. By assumption, there exists $n \in \mathbb{N}$ such that $(ab)^n \in S\{a^i, b^j\}S$. Thus, $ab \in \sqrt{I}$, because $(ab)^n \in S\{a^i, b^j\}S \subseteq SIS \subseteq I$. Hence, \sqrt{I} is a subsemigroup of S. \Box

Example 2.2. Let $S = \{a, b, c, d, e\}$ be a semigroup ([3]) with the multiplication:

•	a	b	c	d	e
a	e	b	a	d	e
b	b	b	b	b	b
c	a	b	c	d	e
d	d	b	d	d	d
e	e	b	e	d	e

The interior ideals of S are $\{b\}, \{b, d\}, \{b, d, e\}, \{a, b, d, e\}$ and S. We have $\sqrt{\{b\}} = \{b\}, \sqrt{\{b, d\}} = \{b, d\}, \sqrt{\{b, d, e\}} = \{a, b, d, e\}, \sqrt{\{a, b, d, e\}} = \{a, b, d, e\}$ and $\sqrt{S} = S$. Then the radical of every interior ideal of S is a subsemigroup of S.

Theorem 2.3. Let S be a semigroup with identity. The radical of every interior ideal of S is a right ideal of S if and only if

$$a^k \to ab$$
 for all $a, b \in S$ and $k \in \mathbb{N}$.

Proof. Assume that the radical of every interior ideal of S is a right ideal of S. Let $a, b \in S$ and $k \in \mathbb{N}$. Put $I = Sa^k S$. Next, we claim that I is an interior ideal of S. Consider

$$II = (Sa^k S)(Sa^k S) \subseteq Sa^k S = I$$
 and $SIS = S(Sa^k S)S \subseteq Sa^k S = I$.

Then I is an interior ideal of S and $a \in \sqrt{I}$. By assumption, \sqrt{I} is a right ideal of S. Thus, $ab \in \sqrt{I}S \subseteq \sqrt{I}$. Hence, $(ab)^n \in I$ for some $n \in \mathbb{N}$. Therefore, $a^k \to ab$.

Conversely, assume that $a^k \to ab$ for all $a, b \in S$ and $k \in \mathbb{N}$. Let I be an interior ideal of S. Let $a \in \sqrt{I}$ and $b \in S$. Then $a^k \in I$ for some $k \in \mathbb{N}$. Since $a^k \to ab$, we obtain that $(ab)^n \in Sa^kS \subseteq SIS \subseteq I$ for some $n \in \mathbb{N}$. Hence, $ab \in \sqrt{I}$. Therefore, \sqrt{I} is a right ideal of S.

Similar to Theorem 2.3, we have the following theorem.

Theorem 2.4. Let S be a semigroup with identity. The radical of every interior ideal of S is a left ideal of S if and only if

$$a^k \to ba \quad for \ all \ a, b \in S \ and \ k \in \mathbb{N}.$$

Theorem 2.5. Let S be a semigroup with identity. Then the radical of every interior ideal of S is a quasi-ideal of S if and only if

$$\forall a, b, c \in S \ [a \mid_r c \land b \mid_l c \Rightarrow \forall i, j \in \mathbb{N} \ [a^i \to c \lor b^j \to c]].$$

Proof. Assume that the radical of every interior ideal of S is a quasi-ideal of S. Let $a, b, c \in S$ such that $a \mid_r c$ and $b \mid_l c$. Then c = au and c = vb for some $u, v \in S$. Let $i, j \in \mathbb{N}$. Put $I = S\{a^i, b^j\}S$. Thus I is an interior ideal of S and $a, b \in \sqrt{I}$. By assumption, \sqrt{I} is a quasi-ideal of S. Since c = au and $c = vb, c \in \sqrt{I}S \cap S\sqrt{I} \subseteq \sqrt{I}$. Thus, $c^n \in S\{a^i, b^j\}S$ for some $n \in \mathbb{N}$. Hence, $a^i \to c$ or $b^j \to c$.

Conversely, assume that for all $a, b, c \in S$ such that

$$a \mid_{r} c \wedge b \mid_{l} c \Rightarrow \forall i, j \in \mathbb{N} \ [a^{i} \to c \lor b^{j} \to c].$$

Let I be an interior ideal of S. To show that $\sqrt{I}S \cap S\sqrt{I} \subseteq \sqrt{I}$, we let $x \in \sqrt{I}S \cap S\sqrt{I}$. Then x = au and x = vb for some $u, v \in S$ and $a, b \in \sqrt{I}$. Since $a, b \in \sqrt{I}$, $a^i, b^j \in I$ for some $i, j \in \mathbb{N}$. By assumption, there exists $n \in \mathbb{N}$ such that $x^n \in S\{a^i, b^j\}S \subseteq SIS \subseteq I$. Thus, $x \in \sqrt{I}$. Hence, \sqrt{I} is a quasi-ideal of S.

The next theorem follows from Theorem 2.3 and 2.4.

Theorem 2.6. Let S be a semigroup with identity. The radical of every interior ideal of S is an ideal of S if and only if

 $a^k \to ab$ and $a^k \to ba$ for all $a, b \in S$ and $k \in \mathbb{N}$.

Theorem 2.7. Let S be a semigroup with identity. The radical of every interior ideal of S is a bi-ideal of S if and only if

- (1) $\forall a, b \in S \ \forall i, j \in \mathbb{N} \ [a^i \to ab \lor b^j \to ab],$
- (2) $\forall a, b, c \in S \ \forall i, j \in \mathbb{N} \ [a^i \to abc \lor c^j \to abc].$

Proof. Assume that the radical of every interior ideal of S is a bi-ideal of S. To show that (1) holds, we let $a, b \in S$, and let $i, j \in \mathbb{N}$. Put $I = S\{a^i, b^j\}S$. Then I is an interior ideal of S and $a, b \in \sqrt{I}$. By assumption, \sqrt{I} is a bi-ideal of S. Thus, $ab \in \sqrt{I}\sqrt{I} \subseteq \sqrt{I}$. Hence, $(ab)^n \in I = S\{a^i, b^j\}S$ for some $n \in \mathbb{N}$, and so $a^i \to ab$ or $b^j \to ab$. Next, to show that (2) holds, we let $a, b, c \in S$, and $i, j \in \mathbb{N}$. Put $I = S\{a^i, c^j\}S$. Then I is an interior ideal of S and $a, c \in \sqrt{I}$. By assumption, \sqrt{I} is a bi-ideal of S. Thus, $abc \in \sqrt{I}S\sqrt{I} \subseteq \sqrt{I}$. Hence, $(abc)^n \in I = S\{a^i, b^j\}S$ for some $n \in \mathbb{N}$, and so $a^i \to abc$ or $c^j \to abc$.

Conversely, assume that (1) and (2) hold. Let I be an interior ideal of S. We will show that \sqrt{I} is a bi-ideal of S. First, let $a, b \in \sqrt{I}$. Then $a^i \in I$ and $b^j \in I$ for some $i, j \in \mathbb{N}$. By (1), $(ab)^n \in S\{a^i, b^j\}S$ for some $n \in \mathbb{N}$. Thus, $(ab)^n \in S\{a^i, b^j\}S \subseteq SIS \subseteq I$. Hence, $ab \in \sqrt{I}$ and so \sqrt{I} is a subsemigroup of S. Next, let $a, c \in \sqrt{I}$ and $b \in S$. Since $a, c \in \sqrt{I}$, $a^i \in I$ and $c^j \in I$ for some $i, j \in \mathbb{N}$. By (2), $(abc)^n \in S\{a^i, c^j\}S \subseteq SIS \subseteq I$. Hence, $abc \in \sqrt{I}$. Therefore, \sqrt{I} is a bi-ideal of S.

Theorem 2.8. Let S be a semigroup with identity. The radical of every right ideal of S is an interior ideal of S if and only if

- (1) $\forall a, b \in S \ \forall i, j \in \mathbb{N} \ [a^i \xrightarrow{r} ab \lor b^j \xrightarrow{r} ab],$
- (2) $\forall a, b, \in S \ [a \mid b \Rightarrow \forall k \in \mathbb{N} \ [a^k \xrightarrow{r} b]].$

Proof. Assume that the radical of every right ideal of S is an interior ideal of S. To show that (1) holds, let $a, b \in S$ and $i, j \in \mathbb{N}$. Put $I = \{a^i, b^j\}S$. Then I is a right ideal of S and $a, b \in \sqrt{I}$. By assumption, \sqrt{I} is an interior ideal of S. Thus, $ab \in \sqrt{I}\sqrt{I} \subseteq \sqrt{I}$ Hence, $(ab)^n \in I = \{a^i, b^j\}S$ for some $n \in \mathbb{N}$ and so $a^i \xrightarrow{r} ab$ or $b^j \xrightarrow{r} ab$. Next, to show that (2) holds, we let $a, b \in S$ such that $a \mid b$. Then b = xay for some $x, y \in S$. Let $k \in \mathbb{N}$. Put $I = a^k S$. Then I is a right ideal of S and $a \in \sqrt{I}$. By assumption, \sqrt{I} is an interior ideal of S. Since $b = xay \in S\sqrt{I}S \subseteq \sqrt{I}$, $b^n \in I = a^k S$ for some $n \in \mathbb{N}$. Hence, $a^k \xrightarrow{r} b$.

Conversely, assume that (1) and (2) hold. Let I be a right ideal of S. We will show that \sqrt{I} is an interior ideal of S. First, let $a, b \in \sqrt{I}$. Then $a^i, b^j \in I$ for some $i, j \in \mathbb{N}$. By (1), there exists $n \in \mathbb{N}$ such that $(ab)^n \in \{a^i, b^j\}S \subseteq IS \subseteq I$. Thus, $ab \in \sqrt{I}$. Hence, \sqrt{I} is a subsemigoup of S. Next, let $x \in S\sqrt{I}S$. Then x = yaz for some $y, z \in S$ and $a \in \sqrt{I}$. Since $a \in \sqrt{I}$, then there exists $k \in \mathbb{N}$ such that $a^k \in I$. By (2), there exists $n \in \mathbb{N}$ such that $x^n \in a^k S \subseteq IS \subseteq I$. Thus, $x \in \sqrt{I}$. Hence, \sqrt{I} is an interior ideal of S.

By Theorem 2.8, we have the following theorem.

Theorem 2.9. Let S be a semigroup with identity. The radical of every left ideal of S is an interior ideal of S if and only if

- (1) $\forall a, b \in S \ \forall i, j \in \mathbb{N} \ [a^i \xrightarrow{l} ab \lor b^j \xrightarrow{l} ab],$
- (2) $\forall a, b \in S \ [a \mid b \Rightarrow \forall k \in \mathbb{N} \ [a^k \xrightarrow{l} b]].$

Theorem 2.10. Let S be a semigroup with identity. The radical of every quasi-ideal of S is an interior ideal of S if and only if

- (1) $\forall a, b \in S \ \forall i, j \in \mathbb{N} \ \exists n \in \mathbb{N} \ [(ab)^n \in \{a^i, b^j\}S \cap S\{a^i, b^j\}],$
- (2) $\forall a, b, c \in S \ [a \mid b \Rightarrow \forall k \in \mathbb{N} \ \exists n \in \mathbb{N} \ [b^n \in a^k S \cap Sa^k]].$

Proof. Assume that the radical of every quasi-ideal of S is an interior ideal of S. To show that (1) holds, we let $a, b \in S$ and $i, j \in \mathbb{N}$. Put $I = \{a^i, b^j\}S \cap S\{a^i, b^j\}$. Then I is a quasi-ideal of S and $a, b \in \sqrt{I}$. By assumption, \sqrt{I} is an interior ideal of S. Thus, $ab \in \sqrt{I}\sqrt{I} \subseteq \sqrt{I}$. Hence, $(ab)^n \in I = \{a^i, b^j\}S \cap S\{a^i, b^j\}$ for some $n \in \mathbb{N}$. Next, to show that (2) holds, we let $a, b, c \in S$ such that $a \mid b$. Then b = xay for some $x, y \in S$. Let $k \in \mathbb{N}$. Put $I = a^kS \cap Sa^k$. Then I is a quasi-ideal of S and $a \in \sqrt{I}S \subseteq \sqrt{I}$. By assumption, \sqrt{I} is an interior ideal of S. Thus, $b = xay \in S\sqrt{I}S \subseteq \sqrt{I}$. Hence, $b^n \in I = a^kS \cap Sa^k$ for some $n \in \mathbb{N}$.

Conversely, assume that (1) and (2) hold. Let I be a quasi-ideal of S. We will show that \sqrt{I} is an interior ideal of S. First, let $a, b \in \sqrt{I}$. Then $a^i, b^j \in I$ for some $a^i, b^j \in \mathbb{N}$. By (1), $(ab)^n \in \{a^i, b^j\}S \cap S\{a^i, b^j\} \subseteq IS \cap SI \subseteq I$ for some $n \in \mathbb{N}$. Thus, $ab \in \sqrt{I}$. Hence, \sqrt{I} is a subsemigroup of S. Next, let $x \in S\sqrt{IS}$. Then x = yaz for some $x, y \in S$ and $a \in \sqrt{I}$. Since $a \in \sqrt{I}$, then there exists $k \in \mathbb{N}$ such that $a^k \in I$. By (2), there exists $n \in \mathbb{N}$ such that $x^n \in a^kS \cap Sa^k \subseteq IS \cap SI \subseteq I$. Thus, $x \in \sqrt{I}$. Hence, \sqrt{I} is an interior ideal of S.

Theorem 2.11. Let S be a semigroup with identity. The radical of every ideal of S is an interior ideal of S if and only if

- (1) $\forall a, b \in S \ \forall i, j \in \mathbb{N} \ [a^i \to ab \lor b^j \to ab],$
- (2)] $\forall a, b \in S \ [a \mid b \Rightarrow \forall k \in \mathbb{N} \ [a^k \to b]].$

Proof. Assume that the radical of every ideal of S is an interior ideal of S. To show that (1) holds, we let $a, b \in S$ and $i, j \in \mathbb{N}$. Put $I = S\{a^i, b^j\}S$. Then I is an ideal of S and $a, b \in \sqrt{I}$. By assumption, \sqrt{I} is an interior ideal of S. Thus, $ab \in \sqrt{I}\sqrt{I} \subseteq \sqrt{I}$. Hence, $(ab)^n \in I = S\{a^i, b^j\}S$ for some $n \in \mathbb{N}$, and so $a^i \to ab$ or $b^j \to ab$. Next, to show that (2) holds, we let $a, b \in S$ such that $a \mid b$. Then b = xay for some $x, y \in S$. Let $k \in \mathbb{N}$. Put $I = Sa^kS$. Then I is an ideal of S and $a \in \sqrt{I}$. By assumption, \sqrt{I} is an interior ideal of S. Since $b = xay \in S\sqrt{I}S \subseteq \sqrt{I}$, thus $b^n \in I = Sa^kS$ for some $n \in \mathbb{N}$. Hence, $a^k \to b$.

Conversely, assume that (1) and (2) hold. Let I be an ideal of S. We will show that \sqrt{I} is an interior ideal of S. First, let $a, b \in \sqrt{I}$. Then

 $a^i, b^j \in I$ for some $i, j \in \mathbb{N}$. By (1), $(ab)^n \in S\{a^i, b^j\}S \subseteq SIS \subseteq IS \subseteq I$ for some $n \in \mathbb{N}$. Thus, $ab \in \sqrt{I}$. Hence, \sqrt{I} is a subsemigroup of S. Next, let $x \in S\sqrt{IS}$. Then x = yaz for some $y, z \in S$ and $a \in \sqrt{I}$. Since $a \in \sqrt{I}$, then there exists $k \in \mathbb{N}$ such that $a^k \in I$. By (2), there exists $n \in \mathbb{N}$ such that $x^n \in Sa^kS \subseteq SIS \subseteq IS \subseteq I$. Thus, $x \in \sqrt{I}$. Hence, \sqrt{I} is an interior ideal of S.

Theorem 2.12. Let S be a semigroup with identity. The radical of every bi-ideal of S is an interior ideal of S if and only if

- (1) $\forall a, b \in S \ \forall i, j \in \mathbb{N} \ \exists n \in \mathbb{N} \ [(ab)^n \in \{a^i, b^j\}S\{a^i, b^j\}],$
- (2) $\forall a, b, c \in S \ [a \mid b \Rightarrow \forall k \in \mathbb{N} \ \exists n \in \mathbb{N} \ [b^n \in a^k S a^k]].$

Proof. Assume that the radical of every bi-ideal of S is an interior ideal of S. To show that (1) holds, we let $a, b \in S$ and $i, j \in \mathbb{N}$. Put $I = \{a^i, b^j\}S\{a^i, b^j\}$. Then I is a bi-ideal of S and $a, b \in \sqrt{I}$. By assumption, \sqrt{I} is an interior ideal of S. Thus, $ab \in \sqrt{I}\sqrt{I} \subseteq \sqrt{I}$. Hence, $(ab)^n \in I = \{a^i, b^j\}S\{a^i, b^j\}$ for some $n \in \mathbb{N}$. Next, to show that (2) holds, we let $a, b, c \in S$ such that $a \mid b$. Then b = xay for some $x, y \in S$. Let $k \in \mathbb{N}$. Put $I = a^k Sa^k$. Then I is a bi-ideal of S and $a \in \sqrt{I}$. By assumption, \sqrt{I} is an interior ideal of S. So, we obtain that $b = xay \in \sqrt{I}S\sqrt{I} \subseteq \sqrt{I}$. Hence, $b^n \in I = a^k Sa^k$ for some $n \in \mathbb{N}$.

Conversely, assume that (1) and (2) hold. Let I be a bi-ideal of S. We will show that \sqrt{I} is an interior ideal of S. First, let $a, b \in \sqrt{I}$. Then $a^i, b^j \in I$ for some $i, j \in \mathbb{N}$. By (1), $(ab)^n \in \{a^i, b^j\}S\{a^i, b^j\} \subseteq ISI \subseteq I$ for some $n \in \mathbb{N}$. Thus, $(ab) \in \sqrt{I}$. Hence, \sqrt{I} is a subsemigroup of S. Next, let $x \in S\sqrt{I}S$. Then x = yaz for some $y, z \in S$ and $a \in \sqrt{I}$. Since $a \in \sqrt{I}$, then there exists $k \in \mathbb{N}$ such that $a^k \in I$. By (2), there exists $n \in \mathbb{N}$ such that $x^n \in a^k Sa^k \subseteq ISI \subseteq I$. Thus, $x \in \sqrt{I}$. Hence, \sqrt{I} is an interior ideal of S.

Theorem 2.13. Let S be a semigroup with identity. The radical of every subsemigroup of S is an interior ideal of S if and only if

- (1) $\forall a, b \in S \ \forall i, j \in \mathbb{N} \ \exists n \in \mathbb{N} \ [(ab)^n \in \langle a^i, b^j \rangle],$
- (2) $\forall a, b \in S \ [a \mid b \Rightarrow \forall k \in \mathbb{N} \ \exists n \in \mathbb{N} \ [b^n \in \langle a^k \rangle]].$

Proof. Assume that the radical of every subsemigroup of S is an interior ideal of S. To show that (1) holds, let $a, b \in S$ and $i, j \in \mathbb{N}$. Put $I = \langle a^i, b^j \rangle$. By assumption, \sqrt{I} is an interior ideal of S and $a, b \in \sqrt{I}$. Thus, $ab \in \sqrt{I}\sqrt{I} \subseteq \sqrt{I}$. Hence, $(ab)^n \in I = \langle a^i, b^j \rangle$ for some $n \in \mathbb{N}$. This

shows that (1) holds. Next, to show that (2) holds, let $a, b \in S$ such that $a \mid b$. Then b = xay for some $x, y \in S$. Let $k \in \mathbb{N}$. Put $I = \langle a^k \rangle$. By assumption, \sqrt{I} is an interior ideal of S and $a \in \sqrt{I}$. Since b = xay, then $b = xay \in S\sqrt{I}S \subseteq \sqrt{I}$. Thus, $b^n \in I = \langle a^k \rangle$ for some $n \in \mathbb{N}$.

Conversely, assume that (1) and (2) hold. Let I be a subsemigroup of S. We will show that \sqrt{I} is an interior ideal of S. First, let $a, b \in \sqrt{I}$. Then $a^i, b^j \in I$ for some $i, j \in \mathbb{N}$. By (1), $(ab)^n \in \langle a^i, b^j \rangle$ for some $n \in \mathbb{N}$. Since $\langle a^i, b^j \rangle \subseteq I$, then $(ab)^n \in I$ for some $n \in \mathbb{N}$. Thus, $ab \in \sqrt{I}$. Hence, \sqrt{I} is a subsemigroup of S. Next, let $x \in S\sqrt{I}S$. Then x = yaz for some $y, z \in S$ and $a \in \sqrt{I}$. Since $a \in \sqrt{I}$, $a^k \in I$ for some $k \in \mathbb{N}$. By (2), $x^n \in \langle a^k \rangle \subseteq I$ for some $n \in \mathbb{N}$. Thus, $x \in \sqrt{I}$. Hence, \sqrt{I} is an interior ideal of S.

Finally, we obtain the following theorem.

Theorem 2.14. Let S be a semigroup with identity. Then the following conditions are equivalent:

- (1) the radical of every interior ideal of S is an interior ideal of S,
- (2) for any $a, b \in S$,

 $(2.1) \ \forall i, j \in \mathbb{N} \ \exists n \in \mathbb{N} \ [(ab)^n \in S\{a^i, b^j\}S],$

 $(2.2) \ a \mid b \Rightarrow \forall k \in \mathbb{N} \ \exists n \in \mathbb{N} \ [b^n \in Sa^kS],$

- (3) for any $a, b \in S$, \sqrt{SaS} and $\sqrt{S\{a, b\}S}$ are interior ideals of S,
- (4) for any $a, b \in S$,

(4.1) there exists $n \in \mathbb{N}$ such that $(ab)^n \in S\{a^2, b^2\}S$,

- (4.2) if $a \mid b$, then there exists $n \in \mathbb{N}$ such that $b^n \in Sa^2S$,
- (5) for any $a, b \in S$ and $k \in \mathbb{N}$,

(5.1) there exists $n \in \mathbb{N}$ such that $(ab)^n \in S\{a^k, b^k\}S$,

(5.2) if $a \mid b$, then there exists $n \in \mathbb{N}$ such that $b^n \in Sa^k S$.

Proof. First, we will show that $(1) \Leftrightarrow (2)$. Assume that the radical of every interior ideal of S is an interior ideal of S. To show that (2.1) holds, we let $a, b \in S$ and $i, j \in \mathbb{N}$. Put $I = S\{a^i, b^j\}S$. Then I is an interior ideal of S and $a, b \in \sqrt{I}$. By assumption, \sqrt{I} is an interior ideal of S. Thus, $ab \in \sqrt{I}\sqrt{I} \subseteq \sqrt{I}$. Hence, $(ab)^n \in I = S\{a^i, b^j\}S$ for some $n \in \mathbb{N}$. Next, to show that (2.2) holds, we let $a, b \in S$ such that $a \mid b$. Then b = xay for some $x, y \in S$. Let $k \in \mathbb{N}$. Put $I = Sa^kS$. Then I is an interior ideal of S and $a \in \sqrt{I}$. By assumption, \sqrt{I} is an interior ideal of S. So, we obtain that $b = xay \in S\sqrt{I}S \subseteq \sqrt{I}$. Hence, $b^n \in I = Sa^kS$ for some $n \in \mathbb{N}$.

Conversely, assume that (2.1) and (2.2) hold. Let I be an interior ideal of S. To show that \sqrt{I} is an interior ideal of S, let $a, b \in \sqrt{I}$. Then $a^i, b^j \in I$ for some $i, j \in \mathbb{N}$. By (2.1), $(ab)^n \in S\{a^i, b^j\}S \subseteq SIS \subseteq I$ for some $n \in \mathbb{N}$. Thus, $ab \in \sqrt{I}$. This shows that \sqrt{I} is a subsemigroup of S. Next, to show that $S\sqrt{I}S \subseteq \sqrt{I}$, let $x \in S\sqrt{I}S$. We have x = yaz for some $y, z \in S$ and $a \in \sqrt{I}$. Since $a \in \sqrt{I}$, there exists $k \in \mathbb{N}$ such that $a^k \in I$. By (2.2), there exists $n \in \mathbb{N}$ such that $x^n \in Sa^kS \subseteq SIS \subseteq I$. Thus, $x \in \sqrt{I}$. Therefore, \sqrt{I} is an interior ideal of S.

 $(1) \Rightarrow (3)$. Assume (1) holds, and let $a, b \in S$. Since SaS and $S\{a, b\}S$ are interior ideals of S and (1), thus \sqrt{SaS} and $\sqrt{S\{a, b\}S}$ are interior ideals of S.

 $(3) \Rightarrow (4)$. Assume (3) holds, and let $a, b \in S$. Then obviously, $a, b \in \sqrt{S\{a^2, b^2\}S}$. By (3), $\sqrt{S\{a^2, b^2\}S}$ is an interior ideal of S. Thus,

$$ab \in (\sqrt{S\{a^2, b^2\}S})(\sqrt{S\{a^2, b^2\}S}) \subseteq \sqrt{S\{a^2, b^2\}S}.$$

Hence, $(ab)^n \in S\{a^2, b^2\}S$ for some $n \in \mathbb{N}$. This shows that (4.1) holds. Next, let $a, b \in S$ such that $a \mid b$. Then b = xay for some $x, y \in S$. Obviously, $a \in \sqrt{Sa^2S}$. By (3), $\sqrt{Sa^2S}$ is an interior ideal of S. Since b = xay, thus $b = xay \in S(\sqrt{Sa^2S})S \subseteq \sqrt{Sa^2S}$. Hence, $b^n \in Sa^2S$ for some $n \in \mathbb{N}$. Therefore, (4.2) holds.

 $(4) \Rightarrow (5)$. Assume (4) holds, and let $a, b \in S$. By (4.1), $(ab)^n \in S\{a^2, b^2\}S$ for some $n \in \mathbb{N}$. Since $S\{a^2, b^2\}S \subseteq S\{a, b\}S$, then $(ab)^n \in S\{a, b\}S$ for some $n \in \mathbb{N}$. Suppose that there exists $m \in \mathbb{N}$ where $k \in \mathbb{N}$ such that $(ab)^m \in S\{a^k, b^k\}S$. By (4.1), there exists $p \in \mathbb{N}$ such that $((ab)^m)^p \in S\{a^{2k}, b^{2k}\}S$. Thus,

$$((ab)^m)^p \in S\{a^{2k}, b^{2k}\}S = S\{a^{k+1}a^{k-1}, b^{k+1}b^{k-1}\}S \subseteq S\{a^{k+1}, b^{k+1}\}S$$

Hence, $(ab)^{mp} = ((ab)^m)^p \in S\{a^{k+1}, b^{k+1}\}S$. This shows that (5.1) holds. Next, let $a, b \in S$ such that $a \mid b$. Then b = xay for some $x, y \in S$. By (4.2), $b^n \in Sa^2S$ for some $n \in \mathbb{N}$. Thus, $b^n \in Sa^2S \subseteq SaS$. Hence, $b^n \in SaS$ for some $n \in \mathbb{N}$. Suppose that there exists $m \in \mathbb{N}$ where $k \in \mathbb{N}$ such that $b^m \in Sa^kS$. By (4.2), there exists $p \in \mathbb{N}$ such that $(b^m)^p \in Sa^{2k}S$. Thus, $(b^m)^p \in Sa^{2k}S = Sa^{k+1}a^{k-1}S \subseteq Sa^{k+1}S$. Hence, $b^{mp} = (b^m)^p \in Sa^{k+1}S$. This shows that (5.2) holds.

 $(5) \Rightarrow (1)$. Assume (5) holds. Let *I* be an interior ideal of *S*. First, let $a, b \in \sqrt{I}$. Then there exist $i, j \in \mathbb{N}$ such that $a^i, b^j \in I$. By (5.1), there exists $n \in \mathbb{N}$ such that

$$(ab)^n \in S\{a^{i+j}, b^{i+j}\}S = S\{a^ia^j, b^ib^j\}S \subseteq S\{a^i, b^j\}S \subseteq SIS \subseteq I.$$

Thus, $ab \in \sqrt{I}$, and so \sqrt{I} is a subsemigroup of S. Next, let $x \in S\sqrt{IS}$. Then x = yaz for some $y, z \in S$ and $a \in \sqrt{I}$. Since $a \in \sqrt{I}$, then there exists $k \in \mathbb{N}$ such that $a^k \in I$. By (5.2), there exists $n \in \mathbb{N}$ such that $x^n \in Sa^kS$. Thus, $x^n \in Sa^kS \subseteq SIS \subseteq I$. Hence, $x \in \sqrt{I}$. Therefore, \sqrt{I} is an interior ideal of S.

Acknowledgment. The authors would like to thank the referees for their valuable suggestions which lead to an improvement of this paper.

References

74

- S. Bogdanović and M. Ciric, Semigroups in which the radical of every ideal is a subsemigroup, Zbornik rad. Fil. Nis. Ser. Mat., 6 (1992), 129-135.
- R.A. Good and D.R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc., 58 (1952), 624 - 625.
- [3] N. Kehayopulu and M. Tsingelis, On left regular and intra-regular ordered semigroup, Math. Slovaca, 64 (2014), 1123 – 1134.
- [4] S. Lajos, (m, k, n)-ideals in semigroups. Notes on semigroups II, Karl Marx Univ. Econ., Dept. Math. Budapest, 1 (1976), 12 – 19.
- [5] J. Sanborisoot and T. Changphas, Semigroups in which the radical of every quasi-ideal is a subsemigroup, Quasigroups Related Syst., 28 (2020), 301-308.
- [6] J. Sanborisoot and T. Changphas, Ordered semigroups in which the radical of every quasi-ideal is a subsemigroup, Int. J. Math. Comput. Sci., 16 (2021), 1385 - 1396.
- [7] O. Steinfeld, Über die Quasiideals von Halbgruppen, (German). Publ. Math. Debrecen, 4 (1956), 262 – 275.

Received June 16, 2022

W. Jantanan, C. Jumnongphan and N. Jaichot
Department of Mathematics, Faculty of Science, Buriram Rajabhat University, Muang, Buriram, 31000 Thailand
E-mails: wichayaporn.jan@bru.ac.th (W. Jantanan)
620112210003@bru.ac.th (C. Jumnonphan)
620112210004@bru.ac.th (N. Jaichot)

R. Chinram Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand E-mail: ronnason.c@psu.ac.th