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Branched covers induced by semisymmetric
quasigroup homomorphisms

Kyle M. Lewis

Abstract. Finite semisymmetric quasigroups are in bijection with certain mappings be-
tween abstract polyhedra and directed graphs, termed alignments. We demonstrate the
polyhedra of any given alignment can always be realized as compact, orientable surfaces.
For any n ∈ N, the class of quasigroups having associated surfaces with sum genus 6 n

is closed under subobjects and homomorphic images. Further, we demonstrate semisym-
metric quasigroup homomorphisms may be translated into branched covers between their
respective surfaces.

1. Introduction

Semisymmetric quasigroups are among the more well-studied classes of
quasigroup, in part because of their parastrophic symmetry and significance
in regard to quasigroup homotopisms [17] [28], as well as their connection to
combinatorial design theory [7] [16] and discrete geometry [23] [29]. In the
author’s previous work [19], it was established that finite semisymmetric
quasigroups are in bijection with objects we refer to as alignments on poly-
hedra or simply alignments, which represent mappings between abstract
polytopes (a combinatorial generalization of the more familiar geometric
polytopes) and directed graphs.

The motivation for this paper stems from the observation that the ab-
stract polyhedra associated with semisymmetric quasigroups exhibit cer-
tain well-behaved properties when considered as topological surfaces. More
specifically, we demonstrate that each polyhedron of any given alignment
can, in a straightforward way, be realized as a compact, orientable 2-
manifold. The particular set of surfaces obtained via this method is shown
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to be an isomorphism invariant, and as such it is possible to classify semisym-
metric quasigroups according to total genus. This topological information,
in turn, places restrictions on the possible algebraic relations between quasi-
groups – in particular, for any n ∈ N, the class of quasigroups of genus 6 n
is closed under subobjects and homomorphic images.

One might note that the above result effectively amounts to a version
of the Riemann-Hurwitz formula as applied to semisymmetric quasigroups;
indeed, from any semisymmetric quasigroup homomorphism, one obtains a
set of continuous mappings on their respective surfaces. Furthermore, we
demonstrate these induced mappings are, in fact, branched covers.

2. Preliminaries

A partial quasigroup (Q, ·) is a set Q with a binary operation (·) such that
for some a, b ∈ Q there exist (at most) unique elements x, y ∈ Q such that
a · x = b, y · a = b; if this relation is satisfied for all a, b ∈ Q, then it is
complete or simply a quasigroup [5] [8]. For brevity, we may denote x · y by
juxtaposition xy. A partial quasigroup is semisymmetric if it satisfies the
identity x(yx) = y, or equivalently (xy)x = y [28]. A function h : Q1 → Q2

between quasigroups Q1, Q2 is a homomorphism if h(x) · h(y) = h(xy) for
all x, y ∈ Q1; if h is bijective, then it is an isomorphism.

A multiset is a generalization of a set which allows for multiple instances
of each element. We will consider a cyclic order on a multiset of 3 elements
{x, y, z} to be a ternary relation θ such that θ(x, y, z) ⇔ θ(z, x, y) and if
x 6= y 6= z then θ(x, y, z) ⇔ ¬θ(x, z, y) [12]. We call a pair of cyclic orders
of the form θ1(x, y, a), θ2(y, x, b) partial opposites; that is, to say, they share
≥ 2 common elements which are in reversed order in regards to each other.
If partial opposites share all 3 elements, then they are simply opposites –
note that any cyclic order of the form θ(x, x, y) or θ(x, x, x) is opposite to
itself.

Define a Mendelsohn triple (x, y, z) to be a 3 element multiset {x, y, z}
with a cyclic order θ(x, y, z); a triple (x, y, z) will be said to contain the
ordered pairs (x, y), (y, z), (z, x) and no others. A type n triple contains n
distinct elements. A partial extended Mendelsohn triple system is a pair
(W,B) where W is a set and B is a set of Mendelsohn triples composed
of elements of W such that for any x, y ∈ W , the ordered pair (x, y) is
contained in at most 1 triple of B [7] [16]. If every possible pair (x, y) of W
is contained in some triple of B, then the system is complete and simply an
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extended Mendelsohn system. (Partial) extended Mendelsohn triple systems
are the only kind of combinatorial block design appearing in this paper, so
we may abbreviate to (partial) Mendelsohn systems or triple systems.

There exists a well-known bijection between semisymmetric quasigroups
and extended Mendelsohn systems [8]; for some partial semisymmetric quasi-
group Q, let M : Q → M(Q) send it to the partial Mendelsohn system
M(Q) on the same underlying set such that (x, y, z) ∈M(Q) if and only if
xy = z, yz = x, zx = y in Q.

Suppose some graded partially ordered set (P,6) with strictly monotone
rank function ρ : P → {−1, 0, 1, 2, . . . , n} sending elements fi ∈ P , called
faces, to integer values. Faces of rank n are n-faces; if there is no ambiguity,
we may refer to 0-faces as vertices and 1-faces as edges. Faces f1, f2 are
incident if f1 6 f2 or f2 6 f1. Any maximal totally ordered subset of
Fi ⊂ P is called a flag, and any 2 flags are adjacent if they differ by exactly
1 face. If for any 2 flags Fx, Fy ⊂ P , there exists some sequence of flags
(F0, F1, ..., Fn) where F0 = Fx and Fn = Fy such that any 2 successive flags
Fi, Fi+1 are adjacent and Fx ∩ Fy ⊆ Fi for all i, then P is strongly flag-
connected. P is said to satisfy the diamond condition if any pair of incident
faces that differ in rank by 2 have exactly 2 incident faces strictly between
them.

A graded poset (P,6) is an abstract n-polytope if it is strongly flag-
connected, satisfies the diamond condition, contains a unique least face of
rank -1 and a unique greatest face of rank n, and all flags of P contain
exactly n + 2 faces [9] [26]. The least and greatest faces are referred to
as improper faces and all others are referred to as proper faces of P . An
abstract 3-polytope is an abstract polyhedron. We will call a polyhedron
cubic if each of its vertices is incident to exactly 3 edges. From hereon, all
polytopes are assumed to be abstract and all quasigroups are assumed to
be finite.

A CW complex is regular if the characteristic map of each closed cell
is a homeomorphism onto its image [20] [21]. We will refer to a compact
2-manifold as a closed surface. A closed surface is orientable iff its second
homology group H2 is isomorphic to Z [13] [18]. For a topological space T1

and subset S ⊆ T1, let intT1(S) be the interior of S with respect to T1. If γ
is a continuous function from T1 to space T2, let γ|S be the restriction of γ
mapping S to γ(S), with both S and γ(S) equipped with their respective
subspace topologies.

This paper heavily references the author’s previous work in [19], the
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relevant details of which will be summarized here in brief:

Given a partial semisymmetric quasigroup Q, define a function D : Q→
D(Q) sending it to the directed graph such that there exists exactly 1 vertex
in D(Q) for every type 1 and type 2 triple of M(Q), and for any vertices
v1, v2 corresponding to triples t1, t2, then v1 directly succeeds v2 if and only
if there exists some element x in both t1, t2 such that more instances of x are
contained within t1 than within t2. Define function G : Q→ G(Q) sending
Q to the undirected multigraph such that there exists a vertex in G(Q) for
every type 3 triple of M(Q), and for any triples t1, t2 mapping to vertices
v1, v2, there is exactly 1 edge linking v1 and v2 for every pair of elements t1
and t2 have in common. We refer to the partial quasigroups corresponding
to the maximally connected components of G(Q) as the components of
Q. Note that for any component q, its graph G(q) is always 3-regular,
and if q does not correspond to a commutative pair of triples of the form
{(x, y, z), (z, y, x)}, then G(q) is a simple graph. Define a free component
to be a partial semisymmetric quasigroup q such that G(q) is connected
and 3-regular – then every component of any semisymmetric quasigroup is
isomorphic to some free component. In general, if there is little chance for
confusion we will use the same terminology between Q, M(Q), and G(Q),
e.g. we may refer to a triples inM(Q) corresponding to adjacent vertices in
G(Q) as "adjacent triples," or a vertex corresponding to a triple containing
an element x as a "vertex containing x" etc.

Given a free component q and an element x ∈ q, we call a cycle in G(q)
an element-cycle for x iff for every vertex in the cycle, its corresponding
triple in M(q) contains x. Each vertex of G(q) is contained in exactly 3
element-cycles, and each edge in exactly 2 element-cycles. Let P : q → P (q)
send q to the abstract polyhedron P (q) such that for each vertex, edge, and
element-cycle of G(q) there exists a unique vertex, edge, or 2-face of P (q),
and such that the incidence structure is preserved. Explicitly: a 0-face fw is
incident to a 1-face fx of P (q) iff the vertex corresponding to fw is incident
to the edge represented by fx in G(q), and a 0- or 1-face fy is incident to a
2-face fz iff the vertex or edge corresponding to fy is contained within the
element-cycle represented by fz. Let PM : M(q) → P (q) be the function
constructed in the same manner as P , but with M(q) as its domain.

Define an oriented vertex as a pair v̂ = (v, θ) where v is a vertex of some
polyhedron and θ is a cyclic order on the 2-faces incident to v. Define an
oriented polyhedron as a pair p̂ = (p,Θ) where p is some cubic polyhedron
and Θ : V → Θ(V ) a function on the vertices V ⊂ p sending each vertex
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vi 7→ v̂i to an oriented vertex such that the orientation on any v̂1 is partial
opposite to that of any adjacent v̂2; we call Θ an orientation on p. Then
let P̂ : q → P̂ (q) send free component q to the oriented polyhedron P̂ (q) =
(P (q),Θq) such that Θq sends each vertex vi ∈ P to an oriented vertex
v̂i with a cyclic order matching that of its corresponding triple in M(q).
Likewise, let P̂M : M(q)→ P̂ (q) be constructed in the same manner, except
with M(q) as its domain.

Let an alignment be an ordered triple (d,O,Ψ) such that d is a di-
rected graph without 2-cycles where each vertex has outdegree 6 1, O =
{p̂1, p̂2, ..., p̂n} some set of oriented polyhedra, and Ψ = {ψ1, ψ2, ..., ψn} a set
of functions ψi : p̂i → d taking each 2-face of its respective p̂i ∈ O to some
vertex in d such that the following requirements are satisfied: letting U be
the set of all unordered pairs of 2-faces of any p̂i sharing some incident edge,
for each {fx, fy} ∈ U the pair {ψi(fx), ψi(fy)} is unique. Further, there is
no v1 directly succeeded by v2 such that some face f1 ∈ Ψ−1(v1) shares an
incident edge with some f2 ∈ Ψ−1(v2), where Ψ−1(vi) = {fx|ψx(fx) = vi},
that is to say Ψ−1 is the preimage of vi ∈ d across all ψx ∈ Ψ. Finally, for
each vx ∈ d, the sum of the outdegree of vx + the number of other vertices
in d it directly succeeds + the total number of edges of each 2-face mapped
to vx across all ψx ∈ Ψ + 1 is exactly equal to the order of d.

Then alignments and semisymmetric quasigroups are in bijection up to
isomorphism. Given any semisymmetric quasigroup Q, let α : Q → α(Q)
take Q to its corresponding alignment. One can construct α(Q) by taking
d = D(Q), O = {P̂ (q1), P̂ (q2), ...P̂ (qn)} for each component qi of Q, and
letting each ψi send each 2-face of P̂ (qi) representing an element cycle for
some x ∈ Q to the vertex in D(Q) corresponding to the triple (x, x, x)
or (x, x,−) in M(Q). Conversely, given an alignment one can recover the
full structure of its associated quasigroup up to isomorphism by arbitrarily
assigning a unique label to every vertex of d, then deriving the Mendelsohn
triples for the vertices of d and O accordingly.

3. Maps on polyhedra

Suppose semisymmetric quasigroups Q1, Q2 and a homomorphism h : Q1 →
Q2; this can straightforwardly be extended to a map hM : M(Q1)→M(Q2)
sending (x, y, z) 7→ (h(x), h(y), h(z)). Then for a given component q of Q1,
let hM |q : M(q)→ hM (M(q)) denote the restriction of hM to the image of
M(q).
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Lemma 3.1. Given semisymmetric quasigroups Q1, Q2, a homomorphism
h : Q1 → Q2, and a component q of Q1, if any triple t1 ∈ M(q) maps to a
type 1 or type 2 triple t2 ∈ hM (M(q)), then all triples in M(q) map to t2.

Proof. If t1 = (x, y, z) maps to a type 2 triple t2 = (a, a, b) such that
h(x) = h(y) = a and h(z) = b, then any triple t3 adjacent to t1 by definition
must have at least 2 elements in common with t1, and thus hM (t3) must be
of the form (a, b,−), (b, a,−), or (a, a,−). Since we already know (a, a, b) ∈
hM (M(q)), these can only be completed to (a, a, b) = t2. Likewise, any
triple adjacent to t3 must also map to t2; then because G(q) is connected,
all triples in M(q) must map to t2.The same logic applies if t1 maps to a
type 1 triple.

Lemma 3.2. Given semisymmetric quasigroups Q1, Q2, a homomorphism
h : Q1 → Q2, and components q1 of Q1 and q2 of Q2, if any triple t1 ∈
M(q1) maps to a triple t2 ∈ hM (M(q1)) which lies within M(q2), then all
triples in M(q1) map to triples in M(q2). Further, hM |q1 is surjective onto
M(q2).

Proof. Any triple t3 ∈M(q1) adjacent to t1 must share at least 2 elements
in common with t1, and thus hM (t3) must share at least two elements in
common with hM (t1) = t2. Then by definition, hM (t3) is adjacent to t2
and is contained in q2. Likewise, any triple t4 adjacent to t3 must map to
some hM (t4) ∈ M(q2) having at least 2 elements in common with hM (t3),
therefore hM (t3) and hM (t4) are adjacent. Then becauseG(q2) is connected,
all triples in hM (M(q1)) must be within M(q2).

Now suppose some triples tx, ty ∈M(q2) such that tx ∈ hM (M(q1)) and
tx is adjacent to ty. Then there exists some triple of the form (a, b, c) ∈
M(q1) where tx = (h(a), h(b), h(c)) and ty = (h(b), h(a), w). Because Q1

is semisymmetric and G(q1) is maximally connected, there must also be
a triple (b, a, d) ∈ M(q1). Then because h is a homomorphism, h(d) =
h(b · a) = h(b) · h(a) = w. Therefore if a triple in M(q2) has at least 1
preimage in M(q1) under h, then any adjacent triple also must have at
least 1 premimage in M(q1) under h, and so because G(q2) is connected,
hM |q1 surjects onto M(q2).

Corollary 3.3. Given semisymmetric quasigroups Q1, Q2, a homomor-
phism h : Q1 → Q2, and components q1 of Q1 and q2 of Q2 such that
hM (M(q1)) = M(q2), then the preimages of hM |q1 for any 2 triples in
M(q2) are of the same cardinality.
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Proof. Suppose triples (a, b, c) ∈M(q1) and (x, y, z), (x, z, w) ∈M(q2) such
that h(a) = x, h(b) = y, h(c) = z. By Lemma 3.2 there must be some
triple (a, c, d) ∈ M(q1) where h(d) = w. Now suppose some additional
triple t1 ∈ M(q1) such that hM (t1) = (x, y, z) and t1 6= (a, b, c). Again, by
Lemma 3.2 there must be some triple t2 ∈M(q1) where hM (t2) = (x, z, w),
however, it remains to be proven that t2 6= (a, c, d).

If t2 = (a, c, d), then because t1 is adjacent, it must be of the form
(c, a,−), (a, d,−), or (d, c,−). But it cannot be (c, a,−) because the or-
dered pair (c, a) already occurs in (a, b, c), and it cannot be (a, d,−) or
(d, c,−) because, as hM (t1) = (h(a), h(b), h(c)) = (x, y, z), either of these
possibilities would imply h(d) = y, when we already know h(d) = w. Thus
t2 6= (a, c, d), which means that every triple in M(q2) must have the same
number of preimages as any adjacent triple, and by extension any triple in
M(q2).

Lemma 3.4. Given semisymmetric quasigroups Q1, Q2, a surjective homo-
morphism h : Q1 → Q2, and a component q2 of Q2, there exists at least 1
component q1 of Q1 such that hM (M(q1)) = M(q2).

Proof. Because h is surjective, every element x2 ∈ Q2 must have at least 1
element x1 ∈ Q1 where h(x1) = x2. Suppose some triple t2 = (x2, y2, z2) ∈
M(Q2), and select elements x1, y1 ∈ Q1 such that h(x1) = x2 and h(y1) =
y2. Then there must exist some triple t1 = (x1, y1, x1 · y1) ∈ M(Q1), and
because h is a homomorphism h(x1 · y1) = h(x1) · h(y1) = x2 · y2 = z2,
and so hM (t1) = t2. Then by Lemma 3.1, t1 must be a type 3 triple, so
there is some component q1 of Q1 such that t1 ∈M(q1), and by Lemma 3.2
hM (M(q1)) = M(q2).

Given oriented polyhedra p̂1, p̂2, let a monotone surjection β : p̂1 → p̂2

be called orientation preserving iff every oriented vertex v̂i ∈ p̂1 with cyclic
order on incident 2-faces θi = (fx, fy, fz) is sent to some oriented vertex
β(v̂i) = v̂j ∈ p̂2 with cyclic order θj such that θj = (β(fx), β(fy), β(fz)).
Then given semisymmetric quasigroups Q1, Q2, a homomorphism h : Q1 →
Q2, and components q1 of Q1 and q2 of Q2 such that M(h(q1)) = M(q2),
let the induced map on polyhedra be the orientation preserving map hP̂ :

P̂ (q1)→ P̂ (q2) such that the following diagram commutes:



82 K. M. Lewis

Figure 1: Diagram for induced map hP̂

Proposition 3.5. Given semisymmetric quasigroups Q1, Q2, a homomor-
phism h : Q1 → Q2, and components q1 of Q1 and q2 of Q2 such that
hM (M(q1)) = M(q2), there exists a unique induced map hP̂ : P̂ (q1) →
P̂ (q2).

Proof. By definition, P̂M is bijective between Mendelsohn triples of M(qx)
and vertices of P̂ (qx), and by Lemma 3.2 hM is surjective from M(q1)
onto M(q2); therefore, for any vertex v̂1 ∈ P̂ (q1), there exists exactly 1
vertex hP̂ (v̂1) ∈ P̂ (q2) such that figure 1 commutes, given by hP̂ (v̂1) =

P̂M (hM (P̂−1
M (v̂1))), the image of its P̂M preimage under the composition of

hM and P̂M , and further, P̂M surjects from the vertices of P̂ (q1) onto the
vertices of P̂ (q2).

There exists an edge ex ∈ P̂M (M(qx)) linking vertices vi, vj for every
pair of elements the triples P̂−1

M (vi) and P̂−1
M (vj) have in common, so be-

cause h is a homomorphism, for any edge e1 ∈ P̂ (q1) linking vertices v1, v2,
then for their triples P̂−1

M (v1) = t1, P̂
−1
M (v2) = t2 ∈M(q1) , there is a corre-

sponding pair of elements which hM (t1) and hM (t2) have in common, and
thus there is a single corresponding edge in P̂ (q2) such that hP̂ is monotone.

By definition, P̂M is bijective between the element-cycles of G(qx) and
the 2-faces of P̂ (qx). Suppose some cycle oa of G(q1) such that oa is an
element cycle for an element a ∈ q1. Then the vertices of oa correspond to
some sequence of elements (b1, b2, ...bn) where a·b1 = b2, a·b2 = b3, ...a·bn =
b1. Therefore, because h is a homomorphism, there must be some sequence
of elements (h(b1), h(b2), ...h(bn)) in c2 where h(a) · h(b1) = h(b2), h(a) ·
h(b2) = h(b3), ...h(a) · h(bn) = h(b1). Then there are corresponding triples
(h(a), h(b1), h(b2)), (h(a), h(b2), h(b3)) etc. where each triple is adjacent to
the next, and all triples contain h(a) – thus, the associated vertices in G(c2)
constitute an element-cycle for h(a). Then hP̂ sends any given 2-face of
P̂ (q1) representing an element cycle for a to a 2-face in P̂ (q2) representing
an element-cycle for h(a), and any other function on the 2-faces of P̂ (q1)
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would fail to be monotone.
Clearly, the only 3-face and only -1-face of P̂ (q1) must be sent to the

only 3-face and -1 face of P̂ (q2), respectively.
Suppose an oriented vertex v̂1 ∈ P̂M (M(q1)) where θ1 = (fx, fy, fz) in

regard to its incident 2-faces; then there is a corresponding triple (x, y, z) ∈
M(q1). So because hM (x, y, z) = (h(x), h(y), h(z)), we have orientation
θ2 = (hP̂ (fx), hP̂ (fy), hP̂ (fz)) on hP̂ (v1). Thus, there exists a unique orien-
tation preserving map hP̂ induced on P̂ (q1) by h.

For example, consider Q4, the Mendelsohn quasigroup of order 4, and
the natural projection h : Q4×Z2 → Q4 from its direct product with Z2. Let
q1 and q2 be the components of Q4×Z2 and Q4 of greatest cardinality. P (q1)
is equivalent to the face lattice of a truncated tetrahedron, and P (q2) to that
of a tetrahedron; h induces an orientation preserving map hP̂ : P̂ (q1) →
P̂ (q2) identifying 2-faces on opposite sides of the polyhedron, and identifying
edges and vertices on opposite sides of their respective "hexagons."

Figure 2: Illustration of hP̂ with selected vertices, edges, and 2-faces
marked; vertices are labeled with their corresponding triples, curved arrows
indicate orientation

Proposition 3.6. Given semisymmetric quasigroups Q1, Q2, a homomor-
phism h : Q1 → Q2, components q1, q2 such that hP̂ (P̂ (q1)) = P̂ (q2), and a
pair of 2-faces f1, f2 ∈ P̂ (q1) where f1 6= f2 and there exists some vertex v
such that v 6 f1, f2, then hP̂ (f1) 6= hP̂ (f2).
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Proof. The vertex v represents some triple P̂M (v)−1 = (x, y, z) ∈ M(q1),
and since f1, f2 are incident to v, they must correspond to distinct element-
cycles for some x, y ∈ Q1 which contain (x, y, z). If hP̂ (f1) = hP̂ (f2), then
necessarily h(x) = h(y), meaning hM ((x, y, z)) is a type 1 or type 2 triple of
M(q2) – but q2 is a component, which by definition implies M(q2) contains
only type 3 triples. So then hP̂ (f1) 6= hP̂ (f2), that is to say, no pair of
distinct 2-faces of P̂ (q1) incident to a common vertex can map to the same
2-face of P̂ (q2).

Corollary 3.7. Given semisymmetric quasigroups Q1, Q2, a homomor-
phism h : Q1 → Q2, components q1, q2 such that hP̂ (P̂ (q1)) = P̂ (q2), and
a pair of edges e1, e2 ∈ P̂ (q1) where e1 6= e2 and there exists some vertex v
such that v 6 e1, e2, then hP̂ (e1) 6= hP̂ (e2).

Proof. As P̂ (q1) is a cubic polyhedron, there must exist distinct 2-faces
f1, f2, f3 where e1 6 f1, e2 6 f2, e1, e2 6 f3, and v 6 f1, f2, f3. Now
suppose hP̂ (e1) = hP̂ (e2); because hP̂ is monotone, we have hP̂ (e1) 6
hP̂ (f1), hP̂ (f2), hP̂ (f3). However, the diamond condition implies there must
be exactly 2 incident 2-faces for any given edge of an abstract polyhedron,
thus hP̂ must map at least 2 of f1, f2, f3 to the same 2-face of P̂ (q2) – but
this is impossible by proposition 3.6. Therefore hP̂ (e1) 6= hP̂ (e2), that is to
say, no pair of distinct edges of f P̂ (q1) incident to a common vertex can
map to the same edge of P̂ (q2).

4. Constructing surfaces from quasigroups

The Euler characteristic χ of a finite CW complex C of dimension n is a
topological invariant defined as [18] [21]:

χ(C) =
n∑

k=0

(−1)knk (1)

where nk is the number of k-cells of C.
Note that χ can be calculated via purely combinatorial means, which

allows us to extend this formula to abstract polytopes as well. Define the
Euler characteristic of a free component q to be:

χ(q) =
n−1∑
k=0

(−1)knk (2)
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where n is the dimension and nk the number of proper k-faces of P (q).
As P (q) is always a cubic polyhedron, this simplifies to χ(q) = |F | −

|V |/2 where F, V ⊂ P (q) are the sets of 2- and 0-faces. It is not difficult to
see that χ is an isomorphism invariant.

Proposition 4.1. Given semisymmetric quasigroups Q1, Q2, an isomor-
phism h : Q1 → Q2, and components q1 of Q1 and q2 of Q2 such that
hP̂ (P̂ (q1)) = P̂ (q2), then χ(q1) = χ(q2).

Proof. If h is an isomorphism, then its inverse h−1 is also an isomorphism,
so hP̂ is a monotone bijection with a monotone inverse h−1

P̂
and is thus an

order isomorphism. Clearly then, P̂ (q1) and P̂ (q2) have the same number
of vertices, edges, and 2-faces.

Of course, abstract polytopes are merely partially ordered sets, and thus
taking the Euler characteristic of an abstract polyhedron does not come
equipped with a direct topological interpretation. Ideally, we would want
there to exist some reasonably natural method of translating P̂ (q) of any
free component q into a surface C such that χ(q) = χ(C). To this end,
let the surface realization σ : q → σ(q) send q to the regular CW complex
σ(q) such that for each proper n-face of P̂ (q) there exists an n-cell of σ(q),
and such that the poset formed by the closed cells of σ(q) under inclusion
is isomorphic to the poset formed by the proper faces of P̂ (q) under its
incidence relation ≤.

Lemma 4.2. Given a free component q, up to homeomorphism there exists
a unique σ(q).

Proof. A closed 1-cell has 2 end points, which must be distinct from each
other if the boundary map for said 1-cell is to be injective onto its image.
Hence, there exists a 1 dimensional regular CW complex having the same
order with respect to inclusion as that of the 0- and 1-faces of P̂ (q) with
respect to incidence if and only if for each 1-face, there exist exactly 2
incident 0-faces v1, v2 where v1 6= v2 - this is given by the diamond condition,
as there must be a pair of 0-faces between any 1-face and the unique -1-face
of the polyhedron. Likewise, the boundary of a closed 2-cell is a circle, so
there exists a regular CW complex σ(q) with the proper incidence structure
iff for every 2-face of P̂ (q), its incident 1-faces correspond to cycles in the
1-skeleton of σ(q), which holds true as the 2-faces of P̂ (q) correspond to
element-cycles by definition. Then because σ(q) is regular and its incidence
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structure has been specified, there exists only 1 choice of boundary map for
any cell and therefore any 2 CW complexes satisfying the conditions of σ(q)
are homeomorphic, thus σ(q) is unique up to homeomorphism [4] [14].

Lemma 4.3. Given any free component q, σ(q) is a closed surface.

Proof. σ(q) is a finite CW complex, and therefore a compact, second-
countable Hausdorff space [18]. Any point z ∈ σ(q) is within some 0-cell, or
the interior of some 1- or 2-cell. If z is in the interior of a 2-cell, then clearly
it has an open neighborhood homeomorphic to Euclidean space R2. Sup-
pose z is on the interior of a 1-cell; because P̂ (q) is a cubic polyhedron, each
1-cell of σ(q) is is within the boundary of exactly 2 closed 2-cells. Then,
where H2 = {(x, y) ∈ R2|y ≥ 0} is the closed upper half-plane, z must
have an open neighborhood homeomorphic to H2

1

∐
H2

2/ ∼2, the disjoint
union of 2 copies of H2 under the equivalence relation identifying points
(x, 0) ∈ H2

1 ∼2 (x, 0) ∈ H2
2; that is to say, 2 half-planes with their bound-

aries identified, which is homeomorphic to R2. Similarly, supposing instead
z is on a 0-cell, then because P̂ (q) is cubic, z must have an open neighbor-
hood homeomorphic to (H2

1

∐
H2

2

∐
H2

3)/ ∼3, the disjoint union of 3 copies
of H2 under the relation identifying (x ≥ 0, 0) ∈ H2

1 ∼3 (x 6 0, 0) ∈ H2
2 and

(x ≥ 0, 0) ∈ H2
2 ∼3 (x 6 0, 0) ∈ H2

3 and (x ≥ 0, 0) ∈ H2
3 ∼3 (x 6 0, 0) ∈ H2

1;
that is, 3 half-planes with their adjacent boundaries identified, which is
likewise homeomorphic to R2.

Proposition 4.4. Given any free component q, σ(q) is orientable.

Proof. By Lemma 4.3, σ(q) is a closed surface. An orientation on the 2-
cells of σ(q) can be constructed from the orientations on the vertices of
P̂ (q) in the following manner: given a closed 2-cell ax ⊂ σ(q), for any 2
closed 1-cells e1, e2 ⊂ ax, let e1 directly precede e2 with respect to ax if and
only if both are incident to some point corresponding to an oriented vertex
v̂x ∈ P̂ (q) with orientation θx = (f1, f2, f3) on its incident 2-faces such that
f1 corresponds to a 2-cell in σ(q) containing e1, f2 corresponds to a 2-cell
containing e2, and f3 corresponds to ax. Then because adjacent vertices
in P̂ (q) must be partial opposites, adjacent 2-cells in σ(q) will always have
opposite orientations in regard to their shared edge.

Now consider the cellular chain complex generated by the n-cells of σ(q)
with coefficients in Z:
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Figure 3: Cellular chain complex of σ(q)

There are no 3-cells, so the image of the boundary operator d3 must be
0. Then consider the element c of the 2nd chain group Zf representing 1
copy of each 2-cell. Every 1-cell ex ⊂ σ(q) has exactly 2 incident 2-cells,
which must have opposite orientations in regard to ex, and the attaching
maps of σ(q) are by definition injective hence degree 1, therefore [10] [21]:

d2(c) =

f∑
x=1

ex − ex = 0 (3)

and thus the kernel of d2 is nontrivial. Then H2 = ker(d2)/ im(d3) must
be nontrivial, and H2 of a closed surface is nontrivial if and only if H2 =
Z[13][18].

In light of this, one can obtain a version of the Riemann-Hurwitz formula
as applied to the surfaces associated with semisymmetric quasigroups:

Corollary 4.5. Given semisymmetric quasigroups Q1, Q2, a homomor-
phism h : Q1 → Q2, and components q1, q2 such that hP̂ (P̂ (q1)) = P̂ (q2),
then χ(q1) 6 χ(q2).

Proof. Let V and F be the numbers of vertices and 2-faces of P̂ (q1); by
Corollary 3.3 and Proposition 3.5, P̂ (q2) must have V/d vertices for some
positive integer d. Because hP̂ surjects onto P̂ (q2), the number of 2-faces
of P̂ (q2) must be 6 F . Further, the 2-faces of P̂ (q2) must be ≥ F/d, else
there would necessarily be some 2-face fi ∈ P̂ (q1) and vertex vi 6 fi such
that hP̂ (vi) � hP̂ (fi), which would violate the monotonicity of hP̂ . Then
there exists some real number 1 6 r 6 d such that there are F/r 2-faces
of P̂ (q2), and so χ(q1) = F − V/2 and χ(q2) = F/r − V/(2d). Clearly, if
all other variables remain fixed, increasing the value of r will decrease the
value of χ(q2).

Let us assume that r = d, the maximum possible value: then χ(q2) =
F/d−V/(2d) = (F−V/2)/d = χ(q1)/d. Suppose χ(q1) > χ(q2); this implies
χ(q1) > χ(q1)/d, which can only be true if χ(q1) is positive. Now, given
any free component qx, by Lemma 4.3 and Proposition 4.4 σ(qx) is a closed,
orientable surface, and by definition χ(σ(qx)) = χ(qx), therefore χ(qx) is an
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even integer 6 2 [18] [25]. Thus, in this case, the only possible value for
χ(q1) would be 2 – but then χ(q2) = χ(q1)/d = 2/d, and so 0 < χ(q2) < 2,
which is impossible. So even supposing the minimum possible value for
χ(q2), still necessarily χ(q1) 6 χ(q2).

Given semisymmetric quasigroup Q with a set of components {q1, q2, ..., qn},
define the genus of Q to be:

g(Q) =
n∑

x=1

1− χ(qn)/2 (4)

g(Q) represents the total number of tori under connected sums and dis-
joint unions which would be required to construct a set of surfaces homeo-
morphic to {σ(q1), σ(q2), ..., σ(qn)}, with the sphere considered to require 0
tori [18] [25].

Theorem 4.6. For any n ∈ N, the class of quasigroups of genus 6 n is
closed under subquasigroups and homomorphic images.

Proof. Given a semisymmetric quasigroup Q1 and component qi of Q, then
χ(qi) 6 2, therefore 1 − χ(qi)/2 ≥ 0. Semisymmetric quasigroups form
a variety in the sense of universal algebra [28], and are thus closed under
subobjects and homomorphic images [3]; therefore, any subquasigroupQ2 ⊆
Q1 is likewise semisymmetric, and so the set of polyhedra of its alignment
α(Q2) must form a subset of the polyhedra of α(Q1) [19]. Clearly then, if
S1 is a set of natural numbers and S2 ⊆ S1, the sum of all elements of S2

cannot be greater than the sum of all elements of S1, hence g(Q1) ≥ g(Q2).
Now suppose quasigroup Q3 and homomorphism h : Q1 → Q3, and let

Q4 ⊆ Q3 be the image of Q1 in Q3. Because Q1 surjects onto Q4, by Lemma
3.2, Corollary 3.3, and Proposition 3.5, every polyhedron of α(Q4) has at
least 1 hP̂ preimage in the polyhedra of α(Q1). So any component q4 of
Q4 must have be at least 1 preimage q1 of Q1, and moreover by Corollary
4.5, we have 1− χ(q1)/2 ≥ 1− χ(q2)/2. Therefore, the sum g(Q1) must be
greater than or equal to the sum g(Q4).

However, semisymmetric quasigroups of genus 6 n do not form an equa-
tional variety, as they do not appear to be particularly well-behaved under
direct products, the minimal example of this being Q3 ×Q4, letting Q3 be
the Steiner quasigroup of order 3 and Q4 be the Mendelsohn quasigroup of
order 4: then g(Q3) = 0 and g(Q4) = 0 but g(Q3 ×Q4) = 1.
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5. Maps on surfaces

In the context of topology, the Riemann-Hurwitz formula describes relations
between piecewise linear manifolds under branched covers, a specific kind
of continuous mapping [2] [27]. Given that we have established that the
surfaces associated with semisymmetric quasigroups obey similar relations
under quasigroup homomorphisms, it seems reasonable to ask if said homo-
morphisms can be somehow translated into continuous mappings between
those surfaces.

For the next few proofs, it will be convenient to use a slightly finer
subdivision of σ(q). Each open 2-cell f ⊂ σ(q) is bounded by a cycle
composed of k 0-cells and k 1-cells of f̄ for some integer k > 1, where f̄
denotes the closure of f . One may obtain a further cellular decomposition of
f by including an additional 0-cell v0 at the origin, and k additional 1-cells
ex ⊂ f such that for every vx ∈ f̄ there is some ex where vx ∈ ēx, and for
any ex, ey then ēx ∩ ēy = v0. Then the remainder of f has been partitioned
into k open 2-cells, each bounded by cycles of length 3 consisting of a 1-cell
in the boundary of f and the pair of 1-cells linking its end points to v0 [6].
Define ∆ : q → ∆(q) to be the function sending a given free component q
to the CW complex ∆(q) consisting of the 1-skeleton of σ(q) along with the
subdivision of each 2-cell of σ(q) constructed via the above method.

Likewise, let ∆P̂ : P̂ (q)→ ∆(q) be the same function, except with P̂ (q)
as its domain. We will refer to the 0- and 1- cells inherited from σ(q) as
polyhedral and the 0- and 1-cells present in ∆(q) but not σ(q) as central.

Remark 5.1. ∆(q) is combinatorially similar to a triangulation of σ(q),
although ∆(q) does not necessarily have a geometric realization as a simpli-
cial complex with the same incidence structure – take, for instance, when q
is a commutative pair.

Suppose semisymmetric quasigroups Q1, Q2, a homomorphism h : Q1 →
Q2, and components q1, q2 such that hP̂ (P̂ (q1)) = P̂ (q2). Then define the
induced map on surfaces h∆ : ∆(q1) → ∆(q2) to be the function such that
for any closed 2-cell ci of ∆(q1), the restriction h∆|ci is a homeomorphism
onto its image in ∆(q2), and such that the following diagram commutes:
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Figure 4: Diagram for induced map h∆

Proposition 5.2. Given semisymmetric quasigroups Q1, Q2, a homomor-
phism h : Q1 → Q2, and components q1, q2 such that hP̂ (P̂ (q1)) = P̂ (q2),
there exists some induced map h∆ : ∆(q1) → ∆(q2); further, h∆ is contin-
uous and unique up to homotopy class.

Proof. By definition, ∆P̂ is bijective between the 0-, 1-, and 2-faces of P̂ (qx)
and the polyhedral 0-cells, polyhedral 1-cells, and central 0-cells of ∆(qx),
respectively. Further, any central 1-cell must be bounded by a unique pair
of 0-cells (∆P̂ (fa),∆P̂ (fb)), where fa is 0-face and fb a 2-face of P̂ (qx)

such that fa 6 fb. Similarly, because each 1-face of P̂ (qx) is incident to a
unique pair of 2-faces, and given every 2-cell of ∆(qx) must contain exactly
1 polyhedral 1-cell in its boundary, it follows that each closed 2-cell contains
a unique polyhedral 1-cell and central 0-cell pair (∆P̂ (fc),∆p̂(fd)), where
fc is a 1-face and fd a 2-face of P̂ (qx) such that fc 6 fd. So if figure 4 is
to commute, then the cell of ∆(q2) which any cell of ∆(q1) is sent to under
h∆ is fully determined by the face of P̂ (q2) which its ∆P̂ preimage in P̂ (q1)
is sent to under hP̂ .

For any closed 2-cell ci ⊂ ∆(q1), denote h∆|ci by φi. The domains of
any set of φi are disjoint on the interiors of each closed 2-cell, overlapping
only on the intersections between cells of ∆(q1). Then there exists some h∆

satisfying the above definition if and only if for any 2-cells ca, cb ⊂ ∆(q1)
with restriction maps φa, φb, then φa(ca ∩ cb) = φb(ca ∩ cb); that is to say,
if each φx agrees on the overlaps between their domains. This condition
is trivially met if ca ∩ cb = ∅. If ca ∩ cb 6= ∅, then ca ∩ cb must be equal
to some 0- or 1-cell of ∆(q1), so φa, φb agree iff φa(ca ∩ cb) ⊂ φb(cb) and
φb(ca∩cb) ⊂ φa(ca). By definition ∆−1

P̂
(ca∩cb) 6 ∆−1

P̂
(ca),∆−1

P̂
(cb), thus the

monotonicity of hP̂ implies hP̂ (∆−1

P̂
(ca ∩ cb)) 6 hP̂ (∆−1

P̂
(ca)), hP̂ (∆−1

P̂
(cb)).

Therefore, ∆P̂ (hP̂ (∆−1

P̂
(ca ∩ cb))) ⊂ ∆P̂ (hP̂ (∆−1

P̂
(ca))),∆P̂ (hP̂ (∆−1

P̂
(cb))),

meaning h∆ always sends intersecting 2-cells of ∆(q1) to intersecting 2-cells
of ∆(q2), hence there always exists some h∆. Because each φi is continuous,
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then h∆ = ∪φi, the union of said mappings across all 2-cells of ∆(q1), must
likewise be continuous [22].

Now suppose δ1, δ2 are both maps from ∆(q1) to ∆(q2) induced by h. If
ci is some closed 2-cell of ∆(q1), the restriction δx|ci is a homeomorphism
onto its image in ∆(q2), and furthermore must be orientation preserving i.e.
of positive degree, else the 0- and 1-cells in the boundary of ci would fail
to commute with figure 4. There exists only 1 isotopy class of orientation
preserving homeomorphism D2 → D2 [1] [11], therefore δ1|ci is isotopic to
δ2|ci . Then we can construct a homotopy between δ1 and δ2 by selecting an
appropriate isotopy for each 2-cell, and thus h∆ is unique up to homotopy
class.

Lemma 5.3. Given semisymmetric quasigroups Q1, Q2, a homomorphism
h : Q1 → Q2, and components q1, q2 such that h∆(∆(q1)) = ∆(q2), there
exists some positive integer d such that for any point x ∈ ∆(q2) not on a
central 0-cell, |h−1

∆ (x)| = d.

Proof. Each n-cell of ∆(q1) is mapped homeomorphically by h∆ onto its
image in ∆(q2), therefore for any point x ∈ ∆(q2), the cardinality of its
preimage |h−1

∆ (x)| is equal to the number of open n-cells mapped onto the
open n-cell containing x. The polyhedral 0-cells of ∆(qx) are in bijection
with the 0-faces of P̂ (qx) and thus the triples of M(qx), so by Corollary
3.3, h−1

∆ has equal cardinality d on all polyhedral 0-cells. Likewise, the
polyhedral 1-cells are in bijection with the 1-faces of ∆(qx), and there must
be a single 1-face between each pair of adjacent 0-faces. If h−1

∆ does not also
have cardinality d on all polyhedral 1-cells, then there must exist some 1-
face fa and 0-faces fb, fc ∈ P̂ (q1) such that fb, fc 6 fa but hP̂ (fb), hP̂ (fc) �
hP̂ (fa), which is impossible because hP̂ is monotone.

Central 0-cells of ∆(qx) are in bijection with 2-faces of P̂ (qx), and each
central 1-cell ec is bounded by a polyhedral 0-cell vp and a central 0-cell
vc such that ∆−1

P̂
(vp) 6 ∆−1

P̂
(vc). So if ec, vp, vc are within ∆(q2), then for

every vi ∈ h−1
∆ (vp), we have a unique central 1-cell ei ∈ h−1

∆ (ec) linking vi
to h−1

∆ (vc). In a similar manner, each 2-cell fa of ∆(qx) contains exactly
1 polyhedral 1-cell ep and 1 central 0-cell vc within its boundary such that
∆−1

P̂
(ep) 6 ∆−1

P̂
(vc). If fa, ep, vc are in ∆(q2), then for every ei ∈ h−1

∆ (ep) we
obtain a unique 2-cell fi ∈ h−1

∆ (fa) with ei and h−1
∆ (vc) within its boundary.

Therefore, |h−1
∆ (x)| = d for any x ∈ ∆(q2) not on a central 0-cell.

Lemma 5.4. Given semisymmetric quasigroups Q1, Q2, a homomorphism
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h : Q1 → Q2, components q1, q2 such that h∆(∆(q1)) = ∆(q2), and open
cells ci, cj of ∆(q1) such that ci 6= cj and c̄i ∩ c̄j \ C1 6= ∅, where C1 is the
set of central 0-cells of ∆(q1), then h∆(ci) ∩ h∆(cj) = ∅.
Proof. As demonstrated in Proposition 5.2, h∆ maps n-cells to n-cells,
therefore h∆(ci) ∩ h∆(cj) = ∅ ⇔ h∆(ci) 6= h∆(cj); furthermore, h∆ maps
central cells to central cells and likewise for polyhedral cells.

The statement holds vacuously true if n = 0, as there would be no case
where c̄i ∩ c̄j 6= ∅. If n = 1, then c̄i ∩ c̄j is some polyhedral 0-cell ck. If ci, cj
are both polyhedral, then h∆(ci) 6= h∆(cj) follows straightforwardly from
Crollary 3.7. Now suppose ci, cj are central; then they correspond to pairs
(∆−1

P̂
(ck), fi), (∆

−1

P̂
(ck), fj) where fi, fj are 2-faces of P̂ (q1) sharing some

incident 0-face ∆−1

P̂
(ck). Thus, h∆(ci) = h∆(cj) would imply hP̂ (fi) =

hP̂ (fj), which is impossible by Proposition 3.6.
In the final case n = 2, if c̄i ∩ c̄j \ C1 6= ∅ then there exists some

polyhedral 0-cell cx ∈ c̄i ∩ c̄j \ C1. Given any pair of central 1-cells ca, cb
within the boundary of any 2-cell, c̄a∩ c̄b must be a central (not polyhedral)
0-cell; therefore, there must exist polyhedral 1-cells cc ⊂ c̄i, cd ⊂ c̄j where
cx ∈ c̄c ∩ c̄d. As the boundary of any 2-cell contains exactly 1 polyhedral
1-cell, then if h∆(ci) = h∆(cj), necessarily h∆(cc) = h∆(cd), which we just
established cannot be the case as cx ∈ c̄c ∩ c̄d \ C1.

Suppose topological spaces T1, T2, a nowhere dense subset t1 ⊂ T1, and
a continuous surjection B : T1 → T2. Then B is a branched cover if for
every point x ∈ T2 where x /∈ B(t1), there is some open set X ⊆ T2

containing x such that B−1(X) is the union of disjoint open sets, each
mapped homeomorphically onto X by B [24] [30]. The subset t1 is referred
to as the singular set of B, and its image B(t1) is called the branch set.
Essentially, a branched cover is simply a covering map which fails to be a
local homeomorphism on its singular set. For components of semisymmetric
quasigroups, the reason we have defined the induced map on surfaces in
relation to the function ∆ rather than the ostensibly simpler σ is because
this allows us to place all points in the singular and branch sets on central
vertices.

Theorem 5.5. Given semisymmetric quasigroups Q1, Q2, a homomorphism
h : Q1 → Q2, and components q1, q2 such that hP̂ (P̂ (q1)) = P̂ (q2), the
induced map h∆ is a branched cover.

Proof. Every open cell ca ⊂ ∆(q1) is contained within the closure of some 2-
cell cb, and by definition h∆|c̄b is a homeomorphism onto its image in ∆(q2),
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thus the further restriction h∆|ca is also a homeomorphism onto its image,
which as shown in Proposition 5.2, is an open cell of ∆(q2). So letting
C1, C2 denote the set of central 0-cells of ∆(q1),∆(q2), by Lemma 5.3 the
h∆ preimage of any cell cc of ∆(q2) where cc /∈ C2 is a set of k disjoint cells of
∆(q1) for some positive integer k, each mapped homeomorphically onto cc.
Then consider some point x ∈ ∆(q2) such that x /∈ C2. If x is within some
open 2-cell, then we already have disjoint open sets and homeomorphisms
given by the 2-cells of ∆(q1) containing each point of h−1

∆ (x) and the 2-cell
of ∆(q2) containing x. However, if x is within a 0- or 1-cell, the proof will
be somewhat more involved.

By Lemma 5.3, the preimage h−1
∆ (x) is a set of k points pi ∈ ∆(q1).

Because by Lemma 4.3 ∆(q1) is a compact 2-manifold and thus an Urysohn
space [15] [22], it is always possible to select a closed 2-disk di ⊂ ∆(q1) for
each pi where pi ∈ int∆(q1)(di) such that di∩C1 = ∅ and for any di 6= dj then
di∩dj = ∅. Then as ∆(q1) has a finite number of cells, one can always select
a set E of k closed 2-disks ei ⊆ di such that for every pi ∈ h−1

∆ there is an
ei where pi ∈ int∆(q1)(ei), and such for any given ei, the number of cells cx
where cx ∩ ei 6= ∅ is minimal. So any ei ∈ E is a closed subset of a compact
space and therefore compact when granted the subspace topology[22], and
by Proposition 5.2 the restriction h∆|ei is a continuous surjection onto its
image, which is a subset of the surface ∆(q2) and thus Hausdorff. As h∆

maps n-cells homeomorphically to n-cells, then h∆|ei is also injective and
hence a homemorphism if and only if for any open cells ci, cj ⊂ ∆(q2) such
that ci ∩ h∆|ei(ei) 6= ∅, cj ∩ h∆|ei(ei) 6= ∅ we have h∆|ei(ci) ∩ h∆|ei(cj) = ∅
[22].

Because the number of cells intersecting any ei must be minimal, if
x is on a 1-cell then ei will have nonempty intersection with the 1-cell
containing h−1

∆ (x) and both its adjacent 2-cells. If x is on a (necessar-
ily polyhedral) 0-cell, then given P̂ (q1) is cubic, ei will have nonempty
intersection with the 0-cell containing h−1

∆ (x) and its 3 adjacent polyhe-
dral 1-cells, 3 adjacent central 1-cells, and 6 adjacent 2-cells. In either
case, it is obvious that any pair of closed n-cells ci, cj chosen from ei will
have at minimum 1 point of intersection outside C1, thus by Lemma 5.4,
h∆|ei(ci) ∩ h∆|ei(cj) = ∅. Therefore, h∆|ei is a homeomorphism for any
given ei, and an embedding when considered as a map into ∆(q2), implying
interiors are preserved and so x ∈ int∆(q2)(h∆|ei(ei)). Define ox to be the
intersection ∩ni=1 int∆(q2)(h∆|ei(ei)) across all e1, e2, ..., en ∈ E; then ox is
the intersection of finitely many open sets containing x and hence itself an
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open set containing x.
For any h∆|ei , let µi : h∆|ei(ei)→ ei be its inverse function – then µi|ox

is likewise a homeomorphism onto its image, and because h∆ is continuous,
the h−1

∆ image of ox must be open. Thus, for any point x ∈ ∆(q2) \ C2,
we have an open set ox containing x, and k disjoint open sets µi|ox(ox) ⊂
∆(q1) \ C1 mapped homeomorphically onto ox by h∆. The set of central
0-cells C1 ⊂ ∆(q1) is a finite set of points within a 2-manifold, therefore the
singular set is nowhere dense in ∆(q1), and h∆ is a branched cover.
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