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The Ramsey number R4(3) is not solvable
by group partition means

Chimere Stanley Anabanti

Abstract. The Ramsey number Rn(3) is the smallest positive integer such that colouring
the edges of a complete graph on Rn(3) vertices in n colours forces the appearance of a
monochromatic triangle. A lower bound on Rn(3) is obtainable by partitioning the non-
identity elements of a finite group into disjoint union of n symmetric product-free sets.
Exact values of Rn(3) are known for n 6 3. The best known lower bound that R4(3) > 51

was given by Chung. In 2006, Kramer gave a proof of over 100 pages that R4(3) 6 62.
He then conjectured that R4(3) = 62. We say that the Ramsey number Rn(3) is solvable
by group partition means if there is a finite group G such that |G|+1 = Rn(3) and G\{1}
can be partitioned as a union of n symmetric product-free sets. For n 6 3, the Ramsey
number Rn(3) is solvable by group partition means. Some authors believe that R4(3) not
be solvable by a group partition approach. We prove this here. We also show that any
finite group G whose size is divisible by 3 cannot enjoy G\{1} written as a disjoint union
of its symmetric product-free sets. We conclude with a conjecture that R5(3) > 257.

1. Introduction

Let G be a finite group, and S a non-empty subset of G. Then S is said to
be product-free if S∩SS = ∅. A maximal product-free set in G is a maximal
by cardinality product-free set in G. Let λ(G) denote the cardinality of a
maximal product-free set in G. Suppose T is any product-free set in a finite
group G. For x1 ∈ T , define x1T := {x1x2|x2 ∈ T}. As |x1T | = |T | and
T ∪ x1T ⊆ G, we have that 2|T | 6 |G|; so |T | 6 |G|

2 . This shows that
λ(G) 6 |G|

2 ; i.e., the size of a product-free set in a finite group G is at most
half the size of G.

The value of λ(G) is well-known when G is a finite abelian group, follow-
ing the works of Diananda and Yap [9], as well as Green and Ruzsa [14]. On
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the other hand, the problem of determination of structures and sizes of max-
imal product-free sets in non-abelian groups is still open, although there has
been great progress by many authors, including Kedlaya [17, 18] and Gow-
ers [13]. An interested reader may also see [22, 23, 24, 12, 7, 6, 5, 1, 2, 4, 3]
for works on maximal by inclusion product-free sets.

The Ramsey number Rn(3) is the smallest positive integer such that
colouring the edges of a complete graph on Rn(3) vertices in n colours
forces the appearance of a monochromatic triangle. Exact values of Rn(3)
are known for n 6 3; for instance see [16]. The best known lower bound
that R4(3) > 51 was given by Chung [8] in 1973. Kramer [20], in 2006,
after giving a proof of over 100 pages that R4(3) 6 62, conjectured that
R4(3) = 62. See also [10, 19].

A symmetric product-free set is a product-free set S such that S = S−1.
For a finite group G, it is known that if G∗ (where G∗ = G \ {1}) can be
partitioned into disjoint union of m symmetric product-free sets (SPFS for
short), then Rm(3) > |G|+ 1. Examples by various authors show that the
group partition approach gives a sharp lower bound that coincides with the
exact value of Rm(3) for m 6 3. The main result of this paper is essentially
folklore. Here, we show that the group partition approach cannot be used to
improve the known lower bound of R4(3) to r for 52 6 r 6 62; in particular,
we demonstrate that R4(3) is not solvable by a group partition means. For
the rest of this section, we give the following result.

Theorem 1.1. (Idea from [16, Theorem 1.1] and [24, pp. 247–248]) If G
is a finite group such that G∗ can be partitioned into disjoint union of m
symmetric product-free sets (where m > 2), then Rm(3) > |G|+ 1.

Proof. Suppose G∗ = S1 t · · · t Sm is a disjoint union of m symmetric
product-free sets. We assign to the set Si colour Ci for each i ∈ {1, . . . ,m}.
Let K|G| be the complete graph on |G| vertices: v1, v2, . . . , v|G|. [Note that
the vertices of K|G| are the elements of G.] We m-colour K|G| as follows:
colour the edge vivj (from vi to vj) with colour Ck if viv−1j ∈ Sk. Since Sk
is symmetric (i.e., Sk = S−1k ), this induces a well-defined edge-colouring of
the graph. Let va, vb and vc be any three vertices of K|G| and consider the
triangle on these vertices. Suppose two of its edges say vavb and vbvc are
coloured Ck. This means that vav−1b , vbv

−1
c ∈ Sk. Since Sk is product-free,

we have that (vav
−1
b )(vbv

−1
c ) = vav

−1
c 6∈ Sk. So vavc must be coloured Cl

for l 6= k, and no monochromatic triangle is formed. Therefore Rm(3) >
|G|.
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2. Main results

2.1 A group theoretic motivation

In 1955, Greenwood and Gleason [15] proved that

Rn+1(3) 6 (n+ 1)(Rn(3)− 1) + 2

for n > 1. This result of Greenwood and Gleason tells us that R2(3) 6 6
and R3(3) 6 17. Note that if Rm(3) 6 k, then Theorem 1.1 implies that
for any group G with |G| > k, it is impossible to partition G∗ into m
symmetric product-free sets. Hence, if G∗ is symmetric and product-free,
then |G| 6 2 (and clearly the only example is C2), if G∗ has a partition into
two symmetric product-free sets, then |G| 6 5, and if G∗ has a partition into
three symmetric product-free sets, then |G| 6 16. It is then quick to check
by hand that the only examples of groups G for which G∗ has a partition
into two symmetric product-free sets are C4, C2 × C2 and C5.

We used GAP [11] to observe that there are only four groups G of order
16 such that G∗ has a partition into three symmetric product-free sets. The
groups are C4

2 , C4×C4, (C4×C2)oC2 and C2×D8, with GAP IDs as [16, 14],
[16, 2], [16, 3] and [16, 11] respectively. Each of them when combined with
the result of Greenwood and Gleason tells us that R3(3) = 17. The results
for the two abelian cases (C4

2 and C4 ×C4) are known in the literature; for
instance, see [24].

G An example of a partition of G∗ into dis-
joint union of 3 symmetric product-free
sets

C4
2 = 〈x1, x2, x3, x4| xixj =

xjxi, x
2
i = 1 for 1 6 i, j 6

4〉

{x1, x2, x3, x4, x1x2x3x4} ∪
{x1x2, x1x3, x2x4, x1x2x3, x1x2x4} ∪
{x1x4, x2x3, x3x4, x1x3x4, x2x3x4}

C4 × C4 = 〈x, y| x4 = 1 =
y4, xy = yx〉

{x, x3, y, y3, x2y2} ∪
{x2, xy, x3y3, x2y, x2y3} ∪
{xy3, x3y, y2, xy2, x3y2}

(C4×C2)oC2 = 〈x, y| x4 =
1 = y2, (xyx)2 = 1 =
(yx−1)4, (yxyx−1)2 = 1〉

{y, x, x3, (xy)2, x3yx} ∪
{yx, x2, x2y, x3y, xyx} ∪
{x2yx, xy, yxy, x(xy)2, x2(xy)2}

C2 × D8 = 〈x, y, z| x2 =
1, y2 = 1, z2 = 1, (zx)2 =
1, (zy)2 = 1, (yx)4 = 1〉

{x, y, xz, (xy)2, xyxz} ∪
{xy, z, yx, xyx, yz} ∪
{xyz, yxy, yxz, yxyz, (xy)2z}
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We now end this section with some GAP [11] programs that can be used
to get the table above and investigate more groups.

Program A. This checks whether a set T is product-free

PFTest:=function(T) local x,y; for x in T do for y in T do
if x*y in T then return 1; fi; od; od; return 0; end;

Program B. This gives a partition of G∗ into k product-free sets if such
partition exists

PGk:=function(G,k) local LL, AA, g, P, p, PPk, PPkA, PPP;
LL:=List(G);; AA:=[];; for g in LL do if Order(g)>1 then Add(AA,g);
fi; od; AA:=Set(AA);; PPk:=PartitionsSet(AA,k);; PPkA:=[];;
for P in PPk do for p in P do if PFTest(p)=1 then Add(PPkA,P); fi;
od; od; PPkA:=Set(PPkA);; PPP:=Difference(PPk,PPkA);;
if Size(PPP)>0 then return PPP[1]; else return []; fi; end;

Program C. All groups G of order n such that G∗ has a partition into k
product-free sets

GGnk:=function(n,k) local M, MM, G, GG;
MM:=[];; GG:=AllSmallGroups(n);
for G in GG do M:=PGk(G,k); if Size(M)>0 then Add(MM,[IdGroup(G),M]);
fi; od; return MM; end;

2.2 R4(3) is not solvable by a group partition means

Recall that 51 6 R4(3) 6 62. We say a finite group G is m-partitioned if the
non-identity elements of G can be partitioned into disjoint union of m symmetric
product-free sets. A natural question is whether Chung’s lower bound for R4(3)
can be improved to r for 52 6 r 6 62. We shall use an algorithmic approach to
show that the group partition approach cannot be used to improve Chung’s lower
bound to r for 52 6 r 6 62. We begin with Lemma 2.1 below.

Lemma 2.1. If G is a finite group such that G∗ has a partition into m symmetric
product-free sets (where m > 2), then |G| is not divisible by 3.

Proof. Let G be a finite group such that G∗ =
m⋃
i=1

Si, where m > 2 and each Si is

a symmetric product-free set in G. Suppose for contradiction that |G| is divisible
by 3. Then G has an element of order 3; say x. Without loss of generality, let
x ∈ S1. As S1 is symmetric, x−1 ∈ S1. But x−1 = x2, a contradiction; as S1 is
product-free. Therefore |G| is not divisible by 3.



The Ramsey number R4(3) is not solvable by group partition means 169

We used GAP [11] to observe that there are 56 groups whose sizes are from
51 up to 61; in particular, there are 1, 5, 1, 15, 2, 13, 2, 2, 1, 13 and 1 group(s)
of orders 51, 52, 53, 54, 55, 56, 57, 58, 59, 60 and 61 respectively. In the light
of Lemma 2.1, we discard 31 groups from the list, and only work with 25 groups;
those whose order is one of 52, 53, 55, 56, 58, 59 and 61.

Lemma 2.1 tells us that the group partition approach into symmetric product-
free sets cannot be used to check whether R4(3) is 52. The next result (Theorem
2.2) shows that the group partition approach into SPFS cannot be used to prove
the conjecture of Kramer that R4(3) = 62.

Theorem 2.2. The group of order 61 cannot be 4-partitioned.

Proof. Suppose we 4-colour the edges of K61. Choose any vertex v0 of K61. Sup-
pose we edge join v0 with each of the vertices v1, v2, . . . , vm respectively. Consider
the complete graph Km on those m vertices. If we colour any edge in Km with the
first colour, then we force the appearance of a triangle in the first colour. So we
only colour edges of Km with any of the remaining three colours. As R3(3) = 17,
in order not to have a monochromatic triangle in Km, we have that m 6 16. This
argument shows that the largest size of any symmetric product-free set involved
in any 4-partition of C61 is 16.

The only possibilities of such partition is using SPFS of sizes 16, 16, 16 and
12 or SPFS of sizes 16, 16, 14 and 14. Hence, we only need to work with SPFS of
sizes 12, 14 and 16 in our programs for such partition. Using Program E below, we
see that there are 27060, 13680 and 3975 symmetric product-free sets of sizes 12,
14 and 16 respectively in C61. We then use Program F below to check for either
four SPFS of sizes 16, 16, 16 and 12 whose size of their union is 60 or those of
sizes 16, 16, 14 and 14 whose size of their union is 60, and found none. Therefore
C61 cannot be 4-partitioned.

Remark 2.3. The same reasoning used for the group of order 61 in the proof of
Theorem 2.2 above shows that the maximum size of any of the symmetric product-
free sets in a 4-partition of any of the groups we consider here is 16. We shall use
this repeatedly in our computations.

Algorithm D. This gives all SPFS of respective sizes (up to 16) in a
finite group G

1. For x ∈ G, if o(x) > 2, then select only one element from the pair {x, x−1}. Let
A be a collection of all the selected elements. (In this case, |A| = |G|−1−|InvG|

2 ,
where InvG is the set of all involutions in G.)
2. Form all subsets of A whose sizes are from 1 up to 8. Test for product-freeness
of each subset of A of respective sizes, and make sets Ti consisting of product-free
sets of size i for each i ∈ {1, . . . , 8}.
3. Create a non-empty set Ui for each i ∈ {1, . . . , 8}. For each set M in each Ti,
if the union of M and M−1 is product-free, then add the union to Ui. Repeat
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this for each i ∈ {1, . . . , 8}. Let spf be the collection of all the Ui’s; i.e., spf :=
[U1, U2, . . . , U8], where each Ui consists of all symmetric product-free sets of size
2i; not containing an involution.
4. Let InvG be the set of all involutions in G. Take subsets of sizes 1 up to 16 of
InvG. Test for product-freeness. Let Ispf be the set of all such product-free sets
of respective sizes. Let sprf be an empty set. Check whether the union of any set
in spf and Ispf is product-free. Add all such union which are product-free of size
less than 17 to sprf . Also, add all members of spf and Ispf to sprf . Then sprf
is the set of all SPFS of respective sizes up to 16 in G when |G| is even.

Remark 2.4.
1. We apply only steps 1, 2 and 3 if |G| is odd, and all the steps 1, 2, 3 and 4 if
|G| is even.
2. The motivation for treating the sets of involutions separately is to reduce
computational time; since we know that

(|G|−1
16

)
>
( |G|

2 +3
16

)
, where |G|2 + 3 is the

maximum number of involutions in the groups involved.
3. We used Algorithm above (instead of program) because the actual program
spreads up to 3 pages of the manuscript. An interested reader can request a copy
of the GAP program used. We call the function in Algorithm D, SPFS. It takes
only one input which is a finite group of our choice.

Program E. This gives the number of SPFS of various sizes (up to 16)
in G

SizeSPFS:=function(G) local S,A,i,a; S:=SPFS(G); A:=[];
for i in S do a:=Size(i); if a>0 then Add(A,[Size(i[1]),a]);
fi; od; return A; end;

An example of Program E above is given below.

gap> SizeSPFS(CyclicGroup(61));
[ [ 2, 30 ], [ 4, 405 ], [ 6, 3000 ], [ 8, 12285 ], [ 10, 26166 ],
[ 12, 27060 ], [ 14, 13680 ], [ 16, 3975 ]]

Program F. It decides if G∗ can be partitioned into SPFS of sizes a, b,
c and d

IsPartG:=function(G,a,b,c,d)
local S,Sa,Sb,Sc,Sd,i,j,k,l;
S:=SPFS(G); Sa:=S[a]; Sb:=S[b]; Sc:=S[c]; Sd:=S[d];
for i in Sa do for j in Sb do for k in Sc do for l in Sd do
if Size(Set(Union(i,j,k,l)))=Size(G)-1 then Print([i,j,k,l]); fi;
od; od; od; od; end;
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The next in the sequel is to have an understanding of the number of iterations
we will perform to check all the groups of orders among 52, 53, 55, 56, 58 and 59.

Program G1. This tells us the iterations to perform for each group G
of even order n

ExpMathEven:=function(n)
local A, i,j,k,l,B;
A:=[2..16];; B:=[];;
for i in A do for j in A do for k in A do for l in A do
if i<=j and j<=k and k<=l and i+j+k+l=n-1 then Add(B,[i,j,k,l]); fi;
od; od; od; od; return B; end;

Program G2. This tells us the iterations to perform for each group G
of odd order n

ExpMathOdd:=function(n)
local A, i,j,k,l,B,C;
A:=[2..16];; C:=[];; B:=[];;
for i in A do if IsEvenInt(i) then Add(C,i); fi; od;
for i in C do for j in C do for k in C do for l in C do
if i<=j and j<=k and k<=l and i+j+k+l=n-1 then Add(B,[i,j,k,l]); fi;
od; od; od; od; return B; end;

We now give some examples of Programs G1 and G2. |small

gap> [Size(ExpMathOdd(53)), ExpMathOdd(53)];
[ 9, [ [ 4, 16, 16, 16 ], [ 6, 14, 16, 16 ], [ 8, 12, 16, 16 ],
[ 8, 14, 14, 16 ], [ 10, 10, 16, 16 ], [ 10, 12, 14, 16 ],
[ 10, 14, 14, 14 ], [ 12, 12, 12, 16 ], [ 12, 12, 14, 14 ] ] ]
gap> [Size(ExpMathEven(58)), ExpMathEven(58)];
[ 11, [ [ 9, 16, 16, 16 ], [ 10, 15, 16, 16 ], [ 11, 14, 16, 16 ],
[ 11, 15, 15, 16 ], [ 12, 13, 16, 16 ], [ 12, 14, 15, 16 ],
[ 12, 15, 15, 15 ], [ 13, 13, 15, 16 ], [ 13, 14, 14, 16 ],
[ 13, 14, 15, 15 ], [ 14, 14, 14, 15 ] ] ]

The example above tells us that there are 9 (respectively 11) ways of choos-
ing [a, b, c, d] to be used in Program F, as well as what the possibilities are when
|G| = 53 (respectively |G| = 58).

We now check the total possibilities across all groups of order n, where n ∈
{52, 53, 55, 56, 58, 59}.

A:=[52, 53, 55, 56, 58, 59];; B:=[];; for n in A do
if IsEvenInt(n) then Add(B,NrSmallGroups(n)*Size(ExpMathEven(n)));
else Add(B,NrSmallGroups(n)*Size(ExpMathOdd(n))); fi; od;
gap> B;
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[ 195, 9, 12, 234, 22, 3 ]
gap> Sum(B);
475

We have checked all the 475 trials, and did not find such partition of any of
the groups. By Lemma 2.1 and Theorem 2.2 therefore, no group of order from 51
up to 61 can be 4-partitioned.

2.3 Concluding remarks

In this paper, we have shown that, while R1(3), R2(3) and R3(3) are solvable by
group partition means, the folklore that R4(3) is not solvable by group partition
means is indeed true. It will be interesting to know which Ramsey numbers Rk(3)
are solvable by group partition means for k > 5. An interested reader may see [21,
pp. 42–43] for bounds on Rk(3) for some k > 5. It is known that 162 6 R5(3) 6
307, 538 6 R6(3) 6 1838 and 1682 6 R7(3) 6 12861. We anticipate that R5(3)
is solvable by group partition means. We are motivated by our computer searches
to conjecture that R5(3) > 257, and that the lower bound can be obtained by
partitioning the non-identity elements of a non-cyclic group of order 256 into a
disjoint union of five SPFS.

Acknowledgment. The author is grateful to the anonymous reviewers for their
useful comments.

References

[1] C.S. Anabanti, On filled soluble groups, Commun. Algebra, 46 (2018),
4914− 4917.

[2] C.S. Anabanti, Three questions of Bertram on locally maximal sum-free
sets, Applicable Algebra in Engineering, Communication and Computing, 30
(2019), 127–134.

[3] C.S. Anabanti, On the three questions of Bertram on locally maximal sum-
free sets, Quaestiones Math., 44 (2021), 301− 305.

[4] C.S. Anabanti, Groups containing locally maximal product-free sets of size
4, Algebra Discrete Math., 31 (2021), no.2, 167− 194.

[5] C.S. Anabanti, G. Erskine and S.B. Hart, Groups whose locally maximal
product-free sets are complete, Australasian J. Combin., 71(2018), 544− 563.

[6] C.S. Anabanti and S.B. Hart, Groups containing small locally maximal
product-free sets, Intern. J. Combinatorics„ vol. 2016, Article ID 8939182
(2016), 5pp.



The Ramsey number R4(3) is not solvable by group partition means 173

[7] C.S. Anabanti and S.B. Hart, On a conjecture of Street and Whitehead
on locally maximal product-free sets, Australasian J. Combin., 63 (2015),
385− 398.

[8] F.R.K. Chung, On the Ramsey numbers N(3, 3, . . . , 3), Disc. Math., 5
(1973), 317− 321.

[9] P.H. Diananda and H.P. Yap, Maximal sum-free sets of elements of finite
groups, Proc. Japan Acad., 1 (1969), 1− 5.

[10] S. Fettes, R. Kramer and S. Radziszowski, An upper bound of 62 on
the classical Ramsey number R(3, 3, 3, 3), Ars Combin., 72 (2004), 41− 63.

[11] The GAP Group, GAP – Groups, Algorithms, and Programming, Version
4.12.1, 2022. (http://www.gap-system.org)

[12] M. Giudici and S. Hart, Small maximal sum-free sets, The Electronic J.
Combin., 16 (2009), 17 pp.

[13] W.T. Gowers, Quasirandom groups, Combinatorics, Probability and Com-
puting, 17 (2008), 363− 387.

[14] B. Green and I.Z. Ruzsa, Sum-free sets in abelian groups, Israel J. Math.,
147 (2005), 157− 188.

[15] R.E. Greenwood and A.M. Gleason, Combinatorial relations and chro-
matic graphs, Canadian J. Math., 7 (1955), 1− 7.

[16] R. Hill and R.W. Irving, On group paritions associated with lower bounds
for symmetric Ramsey numbers, European J. Combin., 3 (1982), 35− 50.

[17] K.S. Kedlaya, Large product-free subsets of finite groups, J. Combin. Theory,
Series A, 77 (1997), 339− 343.

[18] K.S. Kedlaya, Product-free subsets of groups, Amer. Math. Monthly, 105
(1998), 900− 906.

[19] R.L. Kramer, The classical Ramsey number R(3, 3, 3, 3; 2) is no greater than
62, manuscript, Iowa State University (1994).

[20] R.L. Kramer, The classical Ramsey number R(3, 3, 3, 3) is no greater than
62, https://www.researchgate.net/publication/270703142, preprint (2006),
1− 108.

[21] S.P. Radziszowski, Small Ramsey numbers, The Electronic J. Combin.,
(2021), DS1.16, 116 pages.

[22] A.P. Street and E.G. Whitehead Jr., Group Ramsey Theory, J. Combin.
Theory, Series A 17 (1974), 219− 226.

[23] A.P. Street and E.G. Whitehead Jr., Sum-free sets, difference sets and
cyclotomy, Combinatorial Math., Lecture Notes in Math., 403(1974), 109–
124.



174 C. S. Anabanti

[24] W.D. Wallis, A.P. Street and J. Seberry Wallis, Combinatorics: Room
squares, sum-free sets, Hadamard matrices, Lecture Notes in Math. 292
(1972).

Received February 23, 2023
E-mails: chimere.anabanti@up.ac.za, chimere.anabanti@unn.edu.ng


