A note on comaximal graph and maximal topology on multiplication le-modules

Sachin Ballal, Sadashiv Puranik and Vilas Kharat

Abstract

In this article, the co-maximal graph $\Gamma(M)$ on le-modules M has been introduced and studied. The graph $\Gamma(M)$ consists of vertices as elements of ${ }_{R} M$ and two distinct elements n, m of $\Gamma(M)$ are adjacent if and only if $R n+R m=e$. We have established a connection between the co-maximal graph and the maximal topology on $\operatorname{Max}(M)$ in the case of multiplication le-modules. Also, the Beck's conjecture is settled for $\Gamma(M)$ which does not contain an infinite clique.

1. Introduction

An algebraic structure known as a le-module was introduced and explored by A.K. Bhuniya and M. Kumbhakar [3, 4, 5]. They were inspired to study abstract submodule theory, in particular le-module by the study of abstract ideal theory, particularly multiplicative lattices and lattice modules.

Sharma and Bhatwadekar [10] introduced a graph on elements of commutative ring R with unity by taking vertices as elements of R with two distinct vertices x and y are adjacent if and only if the addition of ideals generated by x and y is the whole ring R. They have shown that a commutative ring R is finite if and only if the graph associated with it is finitely colorable. Also, it is proved that the chromatic number of the graph is the sum of the number of maximal ideals and the number of units of R.
H.R. Maimani and others [6] studied a subgraph of a graph introduced in [10]. They studied the connectedness and diameter of the subgraph.
K. Samai [9] studied a subgraph $\Gamma_{2}(R)$ of $\Gamma(R)$ introduced in [10] with non-unit elements of R as a vertex set and obtained ring, graph as well

[^0]as the topological properties. Also, investigated the diameter, girth, cycles and dominating sets of a subgraph $\Gamma_{2}(R)$.

In [8], Puranik and others studied an associated graph $\Gamma(M)$ of a lemodule ${ }_{R} M$ with all non-zero proper submodule elements of M as vertices. Any two distinct vertices n and m are adjacent if and only if their sum is equal to e, the largest element of R_{R}. Also, the Beck's conjecture for $\Gamma(M)$ is established for coatomic le-modules.

In Section 1 we have recalled the definition of le-module and many concepts from le-modules as well as graph theory. In Section 2, we have settled Beck's conjecture for $\Gamma(M)$ which does not contain an infinite clique. Characterized the subgraph $\Gamma_{3}(M)$ to be complete bipartite if the number of maximal elements is exactly 2 and shown that it is n-partite if the number of maximal elements of M is exactly n. Also, prove that the subgraph $\Gamma_{3}(M)$ of $\Gamma(M)$ is connected with diameter is at most 3. In Section 3, we have proven that the existence of disjoint closed sets in the maximal spectrum ensures the existence of adjacent elements in the co-maximal graph and vice-versa. Also, it is shown that if the maximal spectrum of multiplication le-modules is Hausdorff, then the diameter of the subgraphs $\Gamma_{2}(M)$ and $\Gamma_{3}(M)$ are at least 3.

Definition 1.1. An le-semigroup $(M,+, \leqslant, e)$ is a commutative monoid with the zero element 0_{M} and is a complete lattice with the greatest element e , that satisfies $m+\left(\vee_{i \in I} m_{i}\right)=\vee_{i \in I}\left(m+m_{i}\right)$. Then M is called an lemodule over a commutative ring R with unity 1_{R} if there is a mapping $: R \times M \rightarrow M$ satisfying:

1. $r\left(m_{1}+m_{2}\right)=r m_{1}+r m_{2}$
2. $\left(r_{1}+r_{2}\right) m \leqslant r_{1} m+r_{2} m$
3. $\left(r_{1} r_{2}\right) m=r_{1}\left(r_{2} m\right)$
4. $1_{R} m=m ; 0_{R} m=r 0_{M}=0_{M}$
5. $r\left(\mathrm{~V}_{i \in I} m_{i}\right)=\vee_{i \in I}\left(r m_{i}\right)$ holds for all $r, r_{i} \in R, m, m_{i} \in M$ and $i \in I$ (I is an indexed set).

An element $n \in M$ is said to be a submodule element if $n+n, r n \leqslant n$ for all $r \in R$. The set of all submodule elements of M is denoted by $\operatorname{Sub}(M)$.

Observe that if $n, m \in \operatorname{Sub}(M)$ then $n+m \in \operatorname{Sub}(M), r n \in \operatorname{Sub}(M)$, $n \wedge m \in \operatorname{Sub}(M)$ and $n+n=n$. Let M be an le-module, $n \in M$ and
I be an ideal in R. Then $I n=\vee\left\{\sum_{i=0}^{k} r_{i} n: k \in \mathbb{N} ; r_{i} \in I\right\}$. If for each $n \in \operatorname{Sub}(M), n=I e$ for some ideal I of R, then the le-module M is known as a multiplication le-module. An element $m \in \operatorname{Sub}(M)$ is said to be maximal if $m<n$ for some $n \in S u b(M)$ implies $n=e$. The set of all maximal elements of M is denoted by $\operatorname{Max}(M)$. If $l \in \operatorname{Sub}(M)$ and $n \in M$, then $(l: n)=\{r \in R: r n \leqslant l\}$ is an ideal in R. If $t \in S u b(M)$ then $\operatorname{Ann}(t)=\{r \in R: r t=0\}$. Note that $\operatorname{Ann}(t)$ is an ideal in R. We define radical of an le-module M as $\operatorname{Rad}(M)=\wedge_{m \in \operatorname{Max}(M)} m$.

A graph G is the pair $(V(G) ; E(G))$, where $V(G)$ is the vertex set and $E(G)$ is the edge set. The degree of a vertex n is denoted by $\operatorname{deg}(n)$ and is equal to the number of edges incident on n. In G, the distance between two distinct vertices n and m, denoted by $d(n ; m)$ is the length of the shortest path between n and m. The diameter of a graph G is given by $\operatorname{diam}(G)=\sup \{d(n ; m) \mid n, m \in V(G)\}$. Graph G is called connected, if there is a path between any two vertices of G. The length of the shortest cycle in G is called the girth of G. A graph is called complete if each pair of vertices in G is adjacent. A complete r - partite graph is one in which each vertex is joined to every other vertex not in the same subset. A clique of a graph is its maximal complete subgraph and the number of vertices in the largest clique of a graph G, denoted by $\omega(G)$, is called the clique number of G. The minimum n for which a graph G is n-colorable is called the chromatic number of G, and is denoted by $\chi(G)$.

Proposition 1.2. (cf. [5]) Let M be an le-module and I be an ideal of R. Then In $\in \operatorname{Sub}(M)$ for all $n \in M$ and $R n$ is the smallest element of $S u b(M)$ covering n i.e. if $l \in S u b(M)$ and $n \leqslant l$, then $n \leqslant R n \leqslant l$.

In particular, $R n=n$ for all $n \in S u b(M)$.
Proposition 1.3. Let M be a multiplication le-module. If $m \in \operatorname{Max}(M)$ and $n_{1}, n_{2}, \ldots, n_{m} \in \operatorname{Sub}(M)$ such that $\left(\wedge_{\lambda} n_{\lambda}\right) \leqslant m$, then there exist some λ such that $n_{\lambda} \leqslant m$.

2. Comaximal graph of multiplication le-modules

Let M be an le-module and let $\Gamma(M)$ consist of vertices as elements of M and two distinct elements n, m of $\Gamma(M)$ are adjacent if and only if $R n+R m=e$. We denote $U(M)=\{n \in M \mid R n=e\}$.

The following theorem shows that the Beck's conjecture is true for $\Gamma(M)$ which does not contain infinite clique.

Theorem 2.4. Let M be an le-module. If $\Gamma(M)$ does not contain infinite clique, then $\chi(\Gamma(M))=\omega(\Gamma(M))=t+s$, where $t=|U(M)|$ and $s=$ $|\operatorname{Max}(M)|$.

Proof. Note that $|U(M)|$ and $|\operatorname{Max}(M)|$ are finite, otherwise $\Gamma(M)$ contains infinite clique. Suppose that $U(M)=\left\{n_{1}, n_{2}, \ldots, n_{t}\right\}$ and $\operatorname{Max}(M)=$ $\left\{m_{1}, m_{2}, \ldots, m_{s}\right\}$. Then $C=U(M) \cup \operatorname{Max}(M)$ is a clique in $\Gamma(M)$. Then $\chi(\Gamma(M)) \geq t+s$. Let $V_{1}=\left\{m \in M \mid m \leqslant m_{1}\right\}$ and for $i=1,2, \ldots, s ; V_{i}=$ $\left\{m \in M \mid m \leqslant m_{i}\right.$ but $m \nless m_{j}$ for $\left.j=1,2, \ldots, i-1\right\}$. Then $M=U(M) \cup$ $V_{1} \cup V_{2} \cup \ldots \cup V_{s}$ is a disjoint union of sets. Define $f: M \rightarrow\{1,2, \ldots, t+s\}$ as $f\left(n_{i}\right)=i$ where $n_{i} \in U(M)$ and $f\left(v_{j}\right)=t+j$ where $v_{j} \in V_{j}$ for $j=$ $1,2, \ldots, s$. If $k_{1}, k_{2} \in M$ with $k_{1} \neq k_{2}$ and $R k_{1}+R k_{2}=e$ implies $f\left(k_{1}\right) \neq$ $f\left(k_{2}\right)$. Thus the map f gives colouring implies $\chi(\Gamma(M))=t+s$.

In [10] Sharma and Bhatwadekar have shown that, every ring without infinite clique is finite. But the following example illustrates that even an infinite le-module can have a finite clique.

Example 2.5. Let $M=\left\{a_{i} \mid i \in \mathbb{N}\right\} \cup\left\{b_{i} \mid i \in \mathbb{N}\right\} \cup\{0, e\}$ is a le-module over \mathbb{Z}_{2} with + as $a_{i}+a_{j}=a_{1}, b_{i}+b_{j}=b_{1}$ and $a_{i}+b_{j}=e$ and scalar multiplication is $0 x=0$ and $1 x=x$ for all $x \in M$. By Proposition 1.2, each a_{i} is adjacent to each b_{j}, because $R a_{i}+R b_{j}=a_{1}+b_{1}=e$.

- 0

Figure 1: Lattice of M. Figure $2: \Gamma(M)-$ Comaximal graph of M.

Here $\operatorname{Sub}(M)=\left\{a_{1}, b_{1}\right\}$ and we have only 2 vertices clique because a_{i} is not adjacent to a_{j} and b_{i} is not adjacent to b_{j} for any $i, j \in \mathbb{N}$.

We consider subgraph $\Gamma_{2}(M)$ with the vertex set $\{n \in M \mid n \notin U(M)\}$.
Theorem 2.6. The graph with the vertex set $U(M)$ is complete. Moreover, $m \leqslant \operatorname{Rad}(M)$ if and only if $\operatorname{deg}_{\Gamma_{2}}(m)=0$, where $\operatorname{deg}_{\Gamma_{2}}(m)$ is a degree of M in a subgraph $\Gamma_{2}(M)$.

Proof. 1. Let $m_{1}, m_{2} \in U(M)$. Then $R m_{1}=e$ and $R m_{2}=e$. Consequently, $R m_{1}+R m_{2}=e$ and hence every pair of elements of $U(M)$ are adjacent.
2 . Let $m \leqslant \operatorname{Rad}(M)$, which implies $m \leqslant m_{i}$ for all $m_{i} \in \operatorname{Max}(M)$. If $\operatorname{deg}_{\Gamma_{2}}(m) \neq 0$, then there exists $n \in \Gamma_{2}(M)$ such that $R n+R m=e$. Now, there exists $m_{j} \in \operatorname{Max}(M)$ such that $n \leqslant m_{j}$. Therefore by Proposition 1.2, we have $R n+R m \leqslant R m_{j}+R m_{j}=m_{j}+m_{j}=m_{j} \neq e$, a contradiction. Hence $\operatorname{deg}_{\Gamma_{2}}(m)=0$.

Conversely, suppose that $d e g_{\Gamma_{2}}(m)=0$. If $m \nless \operatorname{Rad}(M)$, then there exists $m_{j} \in \operatorname{Max}(M)$ such that $m \nless m_{j}$. Thus $R m+m_{j}=R m+R m_{j}=e$, a contradiction to $\operatorname{deg}_{\Gamma_{2}}(m)=0$.

We consider subgraph $\Gamma_{3}(M)$ with the vertex set

$$
\{n \in M \mid n \notin U(M) \text { and } n \nless \operatorname{Rad}(M)\} .
$$

Theorem 2.7. Let M be an le-module. Then $\Gamma_{3}(M)$ is a complete bipartite if and only if $|\operatorname{Max}(M)|=2$.
Proof. Let $\operatorname{Max}(M)=\left\{m_{1}, m_{2}\right\}$. Then the vertex set of $\Gamma_{3}(M)=V_{1} \cup V_{2}$, where
$V_{1}=\left\{m \mid m \leqslant m_{1}\right.$ and $\left.m \nless m_{2}\right\}$ and $V_{2}=\left\{m \mid m \leqslant m_{2}\right.$ and $\left.m \nless m_{1}\right\}$.
Now for $n_{1} \in V_{1}$ and $n_{2} \in V_{2}$ we have $R n_{1} \nless m_{2}$ and $R n_{2} \nless m_{1}$. Hence $R n_{i} \leqslant R n_{1}+R n_{2} \nless m_{i}$ for $i=1,2$. But $R n_{1}+R n_{2} \in \operatorname{Sub}(M)$ and which implies $R n_{1}+R n_{2}=e$. Therefore $\Gamma_{3}(M)$ is a complete bipartite.

Conversely, suppose that $\Gamma_{3}(M)$ is a complete bipartite with V_{1} and V_{2} are two parts. Let $m_{1}=\vee\left\{v_{i_{1}} \mid v_{i_{1}} \in V_{1}\right\}$ and $m_{2}=\vee\left\{v_{i_{2}} \mid v_{i_{2}} \in V_{2}\right\}$. We first prove that $m_{1} \in V_{1}$. Otherwise, we have following two cases: Let $v_{i_{1}}, v_{j_{1}} \in V_{1}$.

1. If $v_{i_{1}} \vee v_{j_{1}} \in U(M)$, then $R\left(v_{i_{1}} \vee v_{j_{1}}\right)=e$. Now $v_{i_{1}} \vee v_{j_{1}} \leqslant v_{i_{1}}+v_{j_{1}}$ implies $R\left(v_{i_{1}} \vee v_{j_{1}}\right) \leqslant R\left(v_{i_{1}}+v_{j_{1}}\right)=R\left(v_{i_{1}}\right)+R\left(v_{j_{1}}\right)$. Therefore $R\left(v_{i_{1}} \vee v_{j_{1}}\right)=e$ implies $R\left(v_{i_{1}}\right)+R\left(v_{j_{1}}\right)=e$, a contradiction.
2. If $v_{i_{1}} \vee v_{j_{1}} \in V_{2}$, then $R\left(v_{i_{1}}\right)+R\left(v_{i_{1}} \vee v_{j_{1}}\right)=e$. Now $v_{i_{1}} \vee v_{j_{1}} \leqslant$ $v_{i_{1}}+v_{j_{1}}$ implies $R\left(v_{i_{1}} \vee v_{j_{1}}\right) \leqslant R\left(v_{i_{1}}+v_{j_{1}}\right)=R\left(v_{i_{1}}\right)+R\left(v_{j_{1}}\right)$. Therefore $R\left(v_{i_{1}}\right)+R\left(v_{i_{1}} \vee v_{j_{1}}\right)=e$ implies $R\left(v_{i_{1}}\right)+R\left(v_{i_{1}}\right)+R\left(v_{j_{1}}\right)=e$. Therefore, $R\left(v_{i_{1}}\right)+R\left(v_{j_{1}}\right)=e$, a contradiction.

Hence $m_{1} \in V_{1}$ and similarly we have $m_{2} \in V_{2}$. Since $m_{1} \in V_{1}$, we have $R m_{1} \neq e$ and also $R m_{1}+R v_{i_{1}}=R m_{1} \neq e$ implies $R m_{1} \notin V_{2}$. Similarly we have $R m_{2} \notin V_{1}$. If $n \in \operatorname{Max}(M)$ then $n \leqslant m_{1}$ or $n \leqslant m_{2}$. Otherwise $R n+R m_{1}=e$ and $R n+R m_{2}=e$, which is a contradiction to $\Gamma_{3}(M)$ is a complete bipartite.

Proposition 2.8. Let M be an le-module and $n>1$.

1. If $|\operatorname{Max}(M)|=n<\infty$, then $\Gamma_{3}(M)$ is an n-partite.
2. If $\Gamma_{3}(M)$ is an n-partite, then $|M a x(M)| \leqslant n$ and if $\Gamma_{3}(M)$ is not an $(n-1)$-partite, then $|\operatorname{Max}(M)|=n$.

Proof. 1. Let $\operatorname{Max}(M)=\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$. Take $V_{1}=\left\{m \in \Gamma_{3}(M) \mid m \leqslant\right.$ $\left.m_{1}\right\}$ and $V_{i}=\left\{m \in \Gamma_{3}(M) \mid m \leqslant m_{i}\right.$ and $m \nless m_{j}$ for $\left.j=1,2, \ldots, i-1\right\}$ for $i=2,3, \ldots, n$. If $m_{i_{1}}, m_{i_{2}} \in V_{i}$, then $R m_{i_{1}}+R m_{i_{2}} \leqslant R m_{i}+R m_{i}=$ $m_{i}+m_{i}=m_{i}<e$. Thus $m_{i_{1}}$ and $m_{i_{2}}$ are not adjacent. Similarly no two elements of V_{1} are adjacent. Therefore, $\Gamma_{3}(M)$ is n-partite.
2. Suppose that $\Gamma_{3}(M)$ is n-partite graph. Let $V_{1}, V_{2}, \ldots, V_{n}$ be the n parts of vertices of $\Gamma_{3}(M)$. Suppose that $|\operatorname{Max}(M)|>n$. Let $\left\{m_{1}, m_{2}, \ldots, m_{n+1}\right\}$ $\subseteq \operatorname{Max}(M)$. Let $t_{i} \leqslant m_{i}$ but $t_{i} \nless m_{j}$ for $i \neq j$. Note that $R t_{i}+R t_{j} \geqslant$ t_{i}, t_{j}. If $R t_{i}+R t_{j} \neq e$ then $R t_{i}+R t_{j} \leqslant m_{k}$ for some $m_{k} \in \operatorname{Max}(M)$. Therefore $t_{i}, t_{j} \leqslant m_{k}$, a contradiction. Hence $R t_{i}+R t_{j}=e$. Therefore $\left\{t_{1}, t_{2}, \ldots, t_{n+1}\right\}$ is a clique in $\Gamma_{3}(M)$. As we have $V_{1}, V_{2}, \ldots V_{n}$ are n parts of vertices of $\Gamma_{3}(M)$ and $\left\{t_{1}, t_{2}, \ldots, t_{n+1}\right\}$ is a clique in $\Gamma_{3}(M)$, by the Pigeonhole principle two $t_{i} \in V_{i}$ for some i, a contradiction. Therefore $|M a x(M)| \leqslant n$.

Now, if $\Gamma_{3}(M)$ is not $(n-1)$-partite and if $|\operatorname{Max}(M)|=s<n$, then by part (1), $\Gamma_{3}(M)$ is s-partite, a contradiction. Hence $|\operatorname{Max}(M)|=n$.

Theorem 2.9. Let M be a multiplication le-module and $|\operatorname{Max}(M)| \geqslant 2$. If $\Gamma_{3}(M)$ is a complete n-partite, then $n=2$.

Proof. Suppose that $\Gamma_{3}(M)$ is a complete n-partite. For $m_{1}, m_{2} \in \operatorname{Max}(M)$, let $V_{1}=\left\{m \in \Gamma_{3}(M) \mid m \leqslant m_{1}\right.$ and $\left.m \not m_{2}\right\}$ and $V_{2}=\left\{m \in \Gamma_{3}(M) \mid m \leqslant\right.$ m_{2} and $\left.m \nless m_{1}\right\}$. Observe that the elements of V_{i} are not adjacent for $i=1,2$ and every element of V_{1} is adjacent to each element of V_{2}. Since $\Gamma_{3}(M)$ is a complete n-partite graph implies V_{1} and V_{2} are two parts of $\Gamma_{3}(M)$. Now, we claim that $\operatorname{Rad}(M)=m_{1} \wedge m_{2}$. Suppose that $\operatorname{Rad}(M)<m \leqslant m_{1} \wedge m_{2}$ for some $m \in M$. This implies m is not adjacent to any element of V_{1} and of V_{2}. This is contradiction to $\Gamma_{3}(M)$ is complete n-partite. Therefore $\operatorname{Rad}(M)=m_{1} \wedge m_{2}$ and for any $m_{3} \in \operatorname{Max}(M)$, we have $m_{1} \wedge m_{2} \wedge m_{3}=m_{1} \wedge m_{2}$. Which implies $m_{1} \wedge m_{2} \leqslant m_{3}$. Then by Propostion 1.3, we have $m_{1} \leqslant m_{3}$ or $m_{2} \leqslant m_{3}$. As $m_{1}, m_{2}, m_{3} \in \operatorname{Max}(M)$, implies $m_{1}=m_{3}$ or $m_{2}=m_{3}$ and therefore $|\operatorname{Max}(M)|=2$. Hence by Theorem 2.7, $\Gamma_{3}(M)$ is a complete bipartite.

Theorem 2.10. If M is a multiplication le-module, then $\Gamma_{3}(M)$ is connected and $\operatorname{diam}\left(\Gamma_{3}(M)\right) \leqslant 3$.

Proof. Let $n, l \in \Gamma_{3}(M)$. Then we consider the following two cases:

1. Suppose that $n \wedge l \nless \operatorname{Rad}(M)$. Then $n \wedge l \nless m$ for some $m \in \operatorname{Max}(M)$. Hence, $R(n \wedge l)+R m=e$ and which implies $R n+R m=e$ and $R l+R m=e$. Therefore $n-m-l$ is a path and so $d(n, m) \leqslant 2$.
2. Suppose that $n \wedge l \leqslant \operatorname{Rad}(M)$. Let $S_{n}=\{m \in \operatorname{Max}(M) \mid n \leqslant m\}$ and $S_{l}=$ $\{m \in \operatorname{Max}(M) \mid l \leqslant m\}$ implies $\operatorname{Max}(M)=S_{n} \cup S_{l}$. Because if there exist $m_{0} \in \operatorname{Max}(M)$ such that $m_{0} \notin S_{m}$ and $m_{0} \notin S_{n}$, then $n \wedge l \leqslant m_{0}$ implies $R n \wedge R l \leqslant m_{0}$. Suppose n is adjacent to t in $\Gamma_{2}(M)$. Then $t \notin \operatorname{Rad}(M)$. If $n \leqslant m_{1}$, then $t \not m_{1}$ and so $t \leqslant m_{2}$ for some $m_{2} \in S_{l}-S_{n}$. If $R t \wedge R l \leqslant$ $\operatorname{Rad}(M)$ then by Proposition $1.3, R t \leqslant \operatorname{Rad}(M)$ or $R l \leqslant \operatorname{Rad}(M)$. But $l \nless$ m for some $m \in S_{n}$ implies $R l \nless m$ for some $m \in S_{n}$ and therefore $R l \nless$ $\operatorname{Rad}(M)$. Similarly $R t \notin \operatorname{Rad}(M)$. Hence $R t \wedge R l \notin \operatorname{Rad}(M)$. Therefore by Case(i), there exists a path between $R t$ and $R l$ and $d(R t, R l) \leqslant 2$. Suppose $R t-m-R l$ is a path for some $m \in M$ and hence $n-R t-m-l$ is a path between n and l. Consequently, $d(n, l) \leqslant 3$.

3. Maximal spectrum and comaximal graph

In [5], Kumbhakar and Bhuniya, studied the Zariski topology on le-modules. They have defined $V(n)=\{p \in \operatorname{Spec}(M) \mid n \leqslant p\}$ and $V^{*}(n)=\{p \in$ $\operatorname{Spec}(M) \mid(p: e) \subseteq(n: e)\}$ for $n \in \operatorname{Sub}(M)$. If M is a multiplication le-module, then $\{V(n) \mid n \in \operatorname{Sub}(M)\}$ forms the Zarisky topology of closed sets on the prime spectrum $\operatorname{Spec}(M)$.

Throughout this section, M denotes a multiplication le-module unless otherwise stated.

Here, we consider $\operatorname{Max}(M)=\{m \in S u b(M) \mid m$ is maximal element $\}$ as a subset of $\operatorname{Spec}(M)=\{p \in \operatorname{Sub}(M) \mid p$ is prime element $\}$ with the subspace topology.

Thus, if $M(t)=\{m \in \operatorname{Max}(M) \mid t \leqslant m\}$, then $T=\{M(t) \mid t \in \operatorname{Sub}(M)\}$ forms a basis of closed subsets on $\operatorname{Max}(M)$.

Lemma 3.11. Let M be a multiplication le-module. If A and B are disjoint closed subsets of $\operatorname{Max}(M)$, then there exist $t_{1}, t_{2} \in \operatorname{Sub}(M)$ such that $A=$ $M\left(t_{1}\right), B=M\left(t_{2}\right)$ and $R t_{1}+R t_{2}=e$. Also if A is closed and open set, then there exist $t_{1}, t_{2} \in \operatorname{Sub}(M)$ such that $R t_{1}+R t_{2}=e$ and $t_{1} \wedge t_{2} \leqslant \operatorname{Rad}(M)$.

Proof. If A and B are closed sets implies there exist $t_{1}, t_{2} \in \operatorname{Sub}(M)$ such that $A=M\left(t_{1}\right), B=M\left(t_{2}\right)$. We have $t_{1} \leqslant R t_{1}, t_{2} \leqslant R t_{2}$ and therefore $t_{1} \leqslant R t_{1}+R t_{2}$ and $t_{2} \leqslant R t_{1}+R t_{2}$. If $R t_{1}+R t_{2} \neq e$, then such that $R t_{1}+$ $R t_{2} \leqslant m$ for some $m \in \operatorname{Max}(M)$. But $t_{1}, t_{2} \leqslant R t_{1}+R t_{2} \leqslant m$ and this implies $m \in M\left(t_{1}\right) \cap M\left(t_{2}\right)=A \cap B$, a contradiction. Consequently $R t_{1}+R t_{2}=e$.

Now, if A is both closed and open, then A and A^{c} are closed sets. Therefore by above argument there exist $t_{1}, t_{2} \in \operatorname{Sub}(M)$ such that $A=$ $M\left(t_{1}\right), A^{c}=M\left(t_{2}\right)$ and $R t_{1}+R t_{2}=e$. Now we have $t_{1} \leqslant m_{1}$ for all $m_{1} \in A$ and $t_{2} \leqslant m_{2}$ for all $m_{2} \in A^{c}$. This implies $t_{1} \wedge t_{2} \leqslant m_{1}$ for all $m_{1} \in A$ and $t_{1} \wedge t_{2} \leqslant m_{2}$ for all $m_{2} \in A^{c}$. Therefore $t_{1} \wedge t_{2} \leqslant m$ for all $m \in \operatorname{Max}(M)$. This implies $t_{1} \wedge t_{2} \leqslant \operatorname{Rad}(M)$.

Remark 3.12. The existence of disjoint closed subsets in the maximal spectrum gives the existence of adjacent elements in the comaximal graph.

Proposition 3.13. Let $n_{1}, n_{2}, n_{3} \in \Gamma_{3}(M)$ be distinct elements and let $D(t)=\operatorname{Max}(M) / M(t)$. Then
(1) n_{1} is adjacent to n_{2} and n_{3} if and only if $M\left(R n_{1}\right) \subseteq D\left(R n_{2} \wedge R n_{3}\right)$.
(2) $d\left(n_{1}, n_{2}\right)=1$ if and only if $M\left(R n_{1}\right) \cap M\left(R n_{2}\right)=\emptyset$.
(3) $d\left(n_{1}, n_{2}\right)=2$ if and only if $M\left(R n_{1}\right) \cap M\left(R n_{2}\right) \neq \emptyset$ and $R n_{1} \wedge R n_{2} \nless$ $\operatorname{Rad}(M)$.
(4) $d\left(n_{1}, n_{2}\right)=3$ if and only if $M\left(R n_{1}\right) \cap M\left(R n_{2}\right) \neq \emptyset$ and $R n_{1} \wedge R n_{2} \leqslant$ $\operatorname{Rad}(M)$.

Proof. (1). Suppose that $M\left(R n_{1}\right) \subseteq D\left(R n_{2} \wedge R n_{3}\right)$. This implies $R n_{1}+$ $\left(R n_{2} \wedge R n_{3}\right)=e$. Therefore, $R n_{1}+R n_{2}=e$ and $R n_{1}+R n_{3}=e$. Thus n_{1} is adjacent to both n_{2} and n_{3}.

Conversely, suppose that n_{1} is adjacent to both n_{2} and n_{3}. Therefore $R n_{1}+R n_{2}=e$ and $R n_{1}+R n_{3}=e$, which implies $M\left(R n_{1}\right) \cap M\left(R n_{2}\right)=\emptyset$ and $M\left(R n_{1}\right) \cap M\left(R n_{3}\right)=\emptyset$. On contrary, if there exist $m \in M\left(R n_{1}\right)$ and $m \notin D\left(R n_{2} \wedge R n_{3}\right)$, then $R n_{2} \wedge R n_{3} \leqslant m$, and by Proposition 1.3, we have $R n_{2} \leqslant m$ or $R n_{3} \leqslant m$. Hence we have $m \in M\left(R n_{2}\right)$ or $m \in M\left(R n_{3}\right)$ and consequently $m \notin M\left(R n_{1}\right)$, a contradiction.
(2). $d\left(n_{1}, n_{2}\right)=1$ if and only if $R n_{1}+R n_{2}=e$ if and only if $M\left(R n_{1}\right) \cap$ $M\left(R n_{2}\right)=\emptyset$.
(3). Suppose that, $d\left(n_{1}, n_{2}\right)=2$. Which implies $R n_{1}+R t=e$ and $R n_{2}+$ $R t=e$ for some $t \in M$. Note that t is adjacent to both n_{1} and n_{2} and hence
by (i) above we have $M(R t) \subseteq D\left(R n_{1} \wedge R n_{2}\right)$. Thus $m \in M(R t)$ implies $m \notin M\left(R n_{1} \wedge R n_{2}\right)$. Hence $R n_{1} \wedge R n_{2} \nless \operatorname{Rad}(M)$. Conversely, suppose that $M\left(R n_{1}\right) \cap M\left(R n_{2}\right) \neq \emptyset$ and $R n_{1} \wedge R n_{2} \nless \operatorname{Rad}(M)$. Thus there exists $m \in \operatorname{Max}(M)$ such that $R n_{1} \wedge R n_{2} \nless m$ implies $R n_{1}+m=R n_{1}+R m=$ e and $R n_{2}+m=R n_{2}+R m=e$. Therefore $n_{1}-m-n_{2}$ is a shortest path and which implies $d\left(n_{1}, n_{2}\right)=2$.
(4) Follows from (2), (3) and Theorem 2.10.

Theorem 3.14. Let M be a multiplication le-module with $\operatorname{Max}(M)$ is Hausdorff. Then $\operatorname{diam}\left(\Gamma_{3}(M)\right)=\min \{|\operatorname{Max}(M)|, 3\}$. If $|\operatorname{Max}(M)|=2$, then $\operatorname{gr}\left(\Gamma_{3}(M)\right)=4$ or ∞ otherwise $g r\left(\Gamma_{3}(M)\right)=3$.

Proof. First we prove that $|\operatorname{Max}(M)| \geqslant 3$ if and only if $\operatorname{diam}\left(\Gamma_{3}(M)\right)=3$. Suppose that $|\operatorname{Max}(M)| \geqslant 3$ and m_{1}, m_{2}, m_{3} are distinct maximal elements in M. Since $\operatorname{Max}(M)$ is Hausdorff, there are $t_{i} \in \operatorname{Sub}(M)$ such that $m_{i} \in$ $D\left(t_{i}\right)$ and $D\left(t_{i}\right) \cap D\left(t_{j}\right)=\emptyset$ for $i \neq j$. Thus $D\left(t_{i}\right) \subseteq M\left(t_{j}\right)$ for $i \neq j$. Now $D\left(t_{i}\right) \cup M\left(t_{i}\right)=\operatorname{Max}(M)$ implies $M\left(t_{i}\right) \cup M\left(t_{j}\right)=\operatorname{Max}(M)$. Hence $t_{i} \wedge t_{j} \leqslant$ m for all $m \in \operatorname{Max}(M)$ implies $t_{i} \wedge t_{j} \leqslant \operatorname{Rad}(M)$. Now $m_{3} \in M\left(t_{1}\right) \cap M\left(t_{2}\right)$ implies $M\left(t_{1}\right) \cap M\left(t_{2}\right) \neq \emptyset$. Therefore by the Proposition 3.13, $d\left(t_{1}, t_{2}\right)=3$ implies $\operatorname{diam}\left(\Gamma_{3}(M)\right)=3$.

Conversely, suppose that $\operatorname{diam}\left(\Gamma_{3}(M)\right)=3$. On contrary if $|\operatorname{Max}(M)|<$ 3 , then either $|\operatorname{Max}(M)|=1$ or 2 . The case $|\operatorname{Max}(M)|=1$ is not possible, because then $\Gamma_{3}(M)$ will contain only one vertex, a contradiction to $\operatorname{diam}\left(\Gamma_{3}(M)\right)=3$. Now suppose that $\operatorname{Max}(M)=\left\{m_{1}, m_{2}\right\}$ and for vertices n_{1}, n_{2} we have $d\left(n_{1}, n_{2}\right)=3$. Hence there are vertices t_{1}, t_{2} such that $n_{1}-t_{1}-t_{2}-n_{2}$ is a shortest path between n_{1} and n_{2}. If $n_{1} \leqslant m_{1}$ then $t_{1} \leqslant m_{2}$ implies $t_{2} \leqslant m_{1}$ and hence $n_{2} \leqslant m_{2}$. This gives a contradiction, because n_{1} and n_{2} are not adjacent. Similarly $n_{2} \leqslant m_{2}$ is not possible. Therefore $|\operatorname{Max}(M)| \geqslant 3$.

Now let $|\operatorname{Max}(M)|=2$. Then $\operatorname{Max}(M)=\left\{m_{1}, m_{2}\right\}$ and $\operatorname{Max}(M)$ is Hausdorff implies there exist $t_{1}, t_{2} \in \operatorname{Sub}(M)$ with $M\left(t_{1}\right)=\left\{m_{1}\right\}$ and $M\left(t_{2}\right)=\left\{m_{2}\right\}$. Therefore, we have $t_{1}+t_{2}=R t_{1}+R t_{2}=m_{1}+m_{2}=e$ and we have shortest cycle of length 4 namely $t_{1}-t_{2}-m_{1}-m_{2}-t_{1}$. If $t_{1}, t_{2}, t_{3} \in$ $\Gamma_{3}(M)$, then by the Pigeonhole Principle at least two of them $\leqslant m_{1}$ or m_{2}. Therefore there is no triangle in $\Gamma_{3}(M)$. If $\left|M_{m_{1}}\right|=2$ or $\left|M_{m_{2}}\right|=2$ then $t \leqslant m_{1}$ implies $t=0$ or $t=m_{1}$ for $\left|M_{m_{1}}\right|=2$. Hence in this case we have no cycle implies $\operatorname{gr}\left(\Gamma_{3}(M)\right)=\infty$.

Corollary 3.15. Let M be a multiplication le-module with $\operatorname{Max}(M)$ is

Hausdorff. Then $\operatorname{diam}\left(\Gamma_{2}(M)\right)=\min \{|\operatorname{Max}(M)|, 3\}$. If $|\operatorname{Max}(M)|=2$, then $\operatorname{gr}\left(\Gamma_{2}(M)\right)=4$ or ∞ otherwise $g r\left(\Gamma_{2}(M)\right)=3$.

References

[1] S. Ballal and V. Kharat, Zariski topology on lattice modules, Asian-Euro. J. Math., 8 (2015), no. 4, 1550066 (10 pages).
[2] S. Ballal and V. Kharat, On minimal spectrum of multiplication lattice modules, Math. Bohemica, 144 (2019), $85-97$.
[3] A.K. Bhuniya and M. Kumbhakar, On irrducible pseudo-prime spectrum of topological le-modules, Quasigroups and Related Systems, 26 (2018),, 251262.
[4] A.K. Bhuniya and M. Kumbhakar, Uniqueness of primary decompositions in Laskerian le-modules, Acta Math. Hungar., 158 (2019), 202 - 215.
[5] A.K. Bhuniya and M. Kumbhakar, On the prime spectrum of an lemodule, J. Algebra Appl., 20 (2021), paper no. 2150220.
[6] H.M. Maimani, M. Salimi and A. Sattari Comaximal graph of commutative rings, J. Algebra, 319 (2008), 1801 - 1808.
[7] J.R. Munkres, Topology, Second Ed., Prentice Hall, New Jersey, (1999).
[8] S. Puranik, S. Ballal and V. Kharat, Associated graphs of le-modules, International J. Next-Generation Computing, 12 (2021), 280 - 291.
[9] K. Samei, On the comaximal graph of a commutative ring, Canad. Math. Bull., 57 (2014), $413-423$.
[10] P.K. Sharma and S.M. Bhatwadekar A note on graphical representation of rings, J. Algebra, 176 (1995), 124 - 127.

Received April 19, 2023
S. Ballal

School of Mathematics and Statistics, University of Hyderabad, Hyderabad-500 046, India
E-mail: sachinballal@uohyd.ac.in
S. Puranik, V. Kharat

Department of Mathematics, Savitribai Phule Pune University, Pune-411 007, India
E-mail: srpuranik28@gmail.com, laddoo1@yahoo.com

[^0]: 2010 Mathematics Subject Classification: 06E10, 06E99, 06F99,06B23, 06F25
 Keywords: Prime submodule element, radical element, Zariski topology, complete lattices, le-modules
 This research work is an outcome of the project supported by the Institute of Eminence (UoH-I0E-RC5-22-021), University of Hyderabad.

