https://doi.org/10.56415/qrs.v31.14

On the nonexistence of certain associative subloops in the loop of invertible elements of the split alternative Cayley-Dickson algebra

Evgenii L. Bashkirov

Abstract. Let O(k) be the octonion Cayley–Dickson algebra over a commutative associative ring k with 1. Let G(k) be the Moufang loop of invertible elements of O(k). Let \mathcal{H} be a class of groups such that a group G is a member of \mathcal{H} if and only if G satisfies the following three conditions: (a) G is not class-2 nilpotent. (b) G has a proper class-2 nilpotent subgroup. (c) G is not isomorphic to any subgroup of the group $GL_2(F)$ for any field F. The theorem proved in the paper states that if k is an integral domain with $1+1 \neq 0$, then G(k) does not contain any subloop isomorphic to a group of class \mathcal{H} , while if k is an integral domain such that 1+1 = 0, then G(k) contains no subloop isomorphic to a class-2 nilpotent group at all.

Let G(k) denote the loop of invertible elements in the split alternative Cayley-Dickson algebra over a field k. If the characteristic of k is not 2, then G(k) has a subloop isomorphic to the group $UT_3(k)$ of all 3×3 upper unitriangular matrices over k ([1]). A natural question arises then, namely, whether G(k) contains a subloop isomorphic to a group which is, in a sense, more larger than $UT_3(k)$. The present paper answers this question, actually, in the negative using as a working tool a class of groups that contain a class-2 nilpotent group as a proper subgroup. More precisely,

Definition. A group G belongs to the class \mathcal{H} if and only if G satisfies the following three conditions:

(a) G is not class-2 nilpotent.

²⁰¹⁰ Mathematics Subject Classification: 20N05, 17D05, 20F18 Keywords: Moufang loops, Alternative algebras, Nilponent groups

- (b) G has a proper class-2 nilpotent subgroup.
- (c) G is not isomorphic to any subgroup of the group $GL_2(F)$ for every field F.

The main purpose of the paper is to prove the following theorem which demonstrates, in particular, a distinction between the case involving fields of characteristic not 2 and that in which fields of characteristic 2 appear.

Theorem 1. Let k be an associative and commutative integral domain with 1, O(k) the alternative split Cayley-Dickson algebra over k and G(k) a Moufang loop of invertible elements in O(k).

- (i) If $1+1 \neq 0$, then the loop G(k) does not contain any subloop isomorphic to a group of class \mathcal{H} .
- (ii) If 1 + 1 = 0, then the loop G(k) contains no subloop isomorphic to a class-2 nilpotent subgroup.

Before exposing proof of the theorem a notational system will be established.

Let k be a commutative associative ring with 1. Then k^* is the multiplicative group of all invertible elements of k.

If $a \in k$ and $S, T \subseteq k$, then $aS = \{as \mid s \in S\}$ and $S + T = \{s + t \mid s \in S, t \in T\}$.

Let n be an integer, $n \ge 2$. Then $M_n(k)$ is the associative ring of $n \times n$ matrices with entries in k. As usual, $GL_n(k)$ denotes the group $M_n(k)^*$, the general linear group of degree n over k.

If 1_n is the identity matrix of degree n and $a \in k$, then $t_{ij}(a)$ denotes the matrix $1_n + ae_{ij}$, where e_{ij} is the $n \times n$ matrix which has 1 in its (i, j)position and zeros elsewhere. If $S \subseteq k$, then $t_{ij}(S) = \{t_{ij}(a) \mid a \in S\}$.

 k^3 is the standard free k-module formed by column vectors of length 3 with components in k. The elements

$$\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

of k^3 are denoted by e_1, e_2, e_3 , respectively. The zero element of k^3 is designated as **0**.

If $\alpha, \beta \in k^3$, then $\alpha \cdot \beta$ and $\alpha \times \beta$ denote the usual dot product and cross product, respectively.

O(k) is the set of all symbols of the form $\begin{pmatrix} a & \alpha \\ \beta & b \end{pmatrix}$ with $a, b \in k, \alpha, \beta \in k^3$. In O(k), equality, addition and multiplication by elements of k are defined componentwise, whereas the operation of multiplication is given by

$$\begin{pmatrix} a & \alpha \\ \beta & b \end{pmatrix} \begin{pmatrix} c & \gamma \\ \delta & d \end{pmatrix} = \begin{pmatrix} ac + \alpha \cdot \delta & a\gamma + \alpha d - \beta \times \delta \\ \beta c + b\delta + \alpha \times \gamma & \beta \cdot \gamma + bd \end{pmatrix}, \\ a, b, c, d \in k, \quad \alpha, \beta, \gamma, \delta \in k^3.$$

Under the operations just defined O(k) is an alternative nonassociative k-algebra termed the split Cayley-Dickson algebra (or the octonion one). Elements of O(k) are called octonions.

To avoid a proliferation of symbols, it is convenient to adopt the following convention. The symbol 1_2 is used to denote the identity of the algebra O(k),

$$\begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & 1 \end{pmatrix}$$

as well as the identity 2×2 matrix. Also the symbol 0_2 is used to designate two things: the zero octonion

$$\begin{pmatrix} 0 & \mathbf{0} \\ \mathbf{0} & 0 \end{pmatrix}$$

and the zero 2×2 matrix. The convention should lead to no ambiguity if one attends closely to the context in which the notation is employed.

The trace tr(x) and the norm n(x) of the octonion

$$x = \begin{pmatrix} a & \alpha \\ \beta & b \end{pmatrix} \in O(k)$$

are defined to be a + b and $ab - \alpha \cdot \beta$, respectively.

G(k) is the (Moufang) loop of octonions of O(k) whose norms lie in k^* . The norm *n* determines the bilinear form (x, y) = n(x+y) - n(x) - n(y) on the *k*-module O(k). Throughout the article, all metric concepts mentioned are related to the bilinear form (x, y) determined by the norm mapping $n: O(k) \to k$. In particular, if $Y \subseteq O(k)$, then the orthogonal complement Y^{\perp} is defined to be the set $\{x \in O(k) \mid (x, y) = 0 \text{ for all } y \in Y\}$.

The algebra O(k) admits an involution $\overline{}: O(k) \to O(k)$ given by

$$\bar{x} = \begin{pmatrix} b & -\alpha \\ -\beta & a \end{pmatrix}$$
, whenever $x = \begin{pmatrix} a & \alpha \\ \beta & b \end{pmatrix}$ $a, b \in k, \quad \alpha, \beta \in k^3$.

Borrowing the notation from the theory of algebraic groups, the automorphism group of the algebra O(k) is denoted by $G_2(k)$.

Let UT(k) and ZUT(k) be the subloops of G(k) defined by

$$UT(k) = \left\{ \begin{pmatrix} 1 & a_2e_1 \\ a_3e_2 + a_4e_3 & 1 \end{pmatrix} \middle| a_i \in k \right\},\$$
$$ZUT(k) = \left\{ \begin{pmatrix} a_1 & a_2e_1 \\ a_3e_2 + a_4e_3 & a_1 \end{pmatrix} \middle| a_1 \in k^*, a_2, a_3, a_4 \in k \right\},\$$

and let $N_0(k)$ and N(k) be the subgroups of $GL_3(k)$ such that

$$N_{0}(k) = \left\{ \begin{pmatrix} r & 2a & b \\ 0 & r & c \\ 0 & 0 & r \end{pmatrix} \middle| r \in k^{*}, a, b, c \in k \right\},$$
$$N(k) = \left\{ \begin{pmatrix} 1 & 2a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in k \right\}.$$

A direct calculation shows that the restriction of multiplication in O(k) to ZUT(k) is associative, and since $UT(k) \subseteq ZUT(k)$, this is true also for UT(k). Moreover, the mapping $\eta: ZUT(k) \to N_0(k)$ defined by

$$\begin{pmatrix} a_1 & a_2e_1 \\ a_3e_2 + a_4e_3 & a_1 \end{pmatrix} \mapsto \begin{pmatrix} a_1 & 2a_3 & a_3a_4a_1^{-1} - a_2 \\ 0 & a_1 & a_4 \\ 0 & 0 & a_1 \end{pmatrix},$$

satisfies for all $x, y \in ZUT(k)$ the condition $(xy)^{\eta} = x^{\eta}y^{\eta}$, where the multiplication on the right-hand side is performed in the group $GL_3(k)$. This means that η is a group homomorphism from ZUT(k) onto $N_0(k)$. The kernel of η is isomorphic to the subgroup k[2] of the additive group of kformed by all $a \in k$ with 2a = 0. Thus $N_0(k)$ is isomorphic to the quotient ZUT(k)/k[2] and the restriction of η to UT(k) determines an isomorphism of UT(k)/k[2] onto N(k). If $2 \in k^*$, then k[2] = 0, 2k = k, and hence ZUT(k) is isomorphic to the direct product $k^* \times UT_3(k)$ of the groups k^* and $UT_3(k)$, whereas $UT(k) \cong UT_3(k)$.

If X is a group and $x, x_1 \in X$, then $x_1^x = x^{-1}x_1x$, $x_1^x = xx_1x^{-1}$, $[x_1, x] = x_1^{-1}x_1^x$. If $R \subseteq X$, then $xR = \{x_r \mid r \in R\}$.

If X is a loop and M is a subset of X, then $\langle M \rangle$ denotes the subloop of X generated by M.

A series of auxiliary results must be established before giving a direct proof of Theorem 1. The first of these is concerned with the following situation related to general alternative algebras.

Let k be a field of characteristic $\neq 2$ and L an alternative k-algebra with 1. Choose $a_1, a_2, a \in k$ and suppose that L contains elements y_1, y_2 such that

$$y_1^2 = a_1, \quad y_2^2 = a_2, \quad y_1 y_2 + y_2 y_1 = a.$$
 (1)

It is straightforward to check that the subspace $A = k + ky_1 + ky_2 + ky_1y_2$ of the k-vector space L is a subalgebra of L which is denoted as

$$\left(\frac{a_1, a_2, a}{k}, y_1, y_2\right). \tag{2}$$

A description of noncommutative algebras (2) is a constituent of the proof of Theorem 1. Certainly, some parts of this description can be extracted from the usual classification of quaternion algebras exposed, for example, in [2], pp. 13–20. However, the full list of subalgebras (2) can not be given within the framework of [2] (mainly, due to the fact that the case $a_1a_2 = a = 0$ is excluded in [2]). Therefore, it is desirable to have, at least as a sketch, an argument leading to a full description of subalgebras (2). This is done in Lemma 1 below. The proof of that lemma requires, in turn, the following notations in which some algebras of 2×2 matrices appear.

If x_0, x_1, x_2 are indeterminates and $b, c \in k$ are such that the quadratic form $x_0^2 - x_1^2 b - x_2^2 c$ does not represent zero in k, then

$$D(b,c,k) = \left\{ \begin{pmatrix} r_0 + r_1\sqrt{b} & r_2 + r_3\sqrt{b} \\ c(r_2 - r_3\sqrt{b}) & r_0 - r_1\sqrt{b} \end{pmatrix} \middle| r_i \in k \right\}.$$

In other words, D(b, c, k) is the quaternion division algebra $\left(\frac{b, c}{k}\right)$ realized by matrices of degree 2 over the field $k(\sqrt{b})$.

If $b \in k$ is not a square in the field k, then

$$T_0(k(\sqrt{b})) = \left\{ \begin{pmatrix} r_0 + r_1\sqrt{b} & r_2 + r_3\sqrt{b} \\ 0 & r_0 - r_1\sqrt{b} \end{pmatrix} \middle| r_i \in k \right\}.$$

Finally, T(k) denotes the k-algebra of 2×2 upper triangular matrices over k:

$$T(k) = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in k \right\}.$$

Now the above mentioned description runs as follows.

Lemma 1. Let k be a field of characteristic not 2, L an alternative algebra over k with 1, and $a_1, a_2, a \in k$. Suppose that L contains elements y_1, y_2 satisfying (1) and let A be the subalgebra of L defined by (2). Suppose that A is noncommutative. Then one of the following holds:

- (i) $A \cong M_2(k)$.
- (ii) $A \cong D(b, c, k)$, where the quadratic form $x_0^2 x_1^2 b x_2^2 c$ in x_0, x_1, x_2 does not represent 0 in k.
- (iii) $A \cong T_0(k(\sqrt{b}))$, where b is not a square in k.
- $(iv) A \cong T(k).$
- (v) dim_k A = 4 and $A \cong \left(\frac{1,0,0}{k}, z_1, z_2\right)$ for some $z_1, z_2 \in L$.

(vi)
$$A \cong \left(\frac{0,0,0}{k}, z_1, z_2\right)$$
 for some $z_1, z_2 \in L$.

Proof. PART ONE. Consider first the case a = 0. There are the following three possibilities for a_1 :

- (a) a_1 is not a square in k,
- (b) a_1 is a nonzero square in k,
- (c) $a_1 = 0$.

The corresponding possibilities exist for a_2 and exchanging, if necessary, y_1 and y_2 , one obtains the following six possibilities for the ordered pair (a_1, a_2) :

- (1) Both a_1, a_2 are not squares in k.
- (2) a_1 is not a square in k, a_2 is a nonzero square in k.
- (3) a_1 is not a square in $k, a_2 = 0$.
- (4) Both a_1, a_2 are nonzero squares in k.
- (5) a_1 is a nonzero square in $k, a_2 = 0$.
- (6) $a_1 = a_2 = 0.$

These cases are considered separately.

- (1) Here $\dim_k A = 4$ and A is a quaternion algebra in the sense of [2], p. 14. So A is either a division algebra and $A \cong D(a_1, a_2, k)$ or $A \cong M_2(k)$.
- (2) Again A is a quaternion algebra, and since a_2 is a square in k^* , $A \cong M_2(k)$.
- (3) In this case, $\dim_k A = 4$ and $A \cong T_0(k(\sqrt{a_1}))$.
- (4) Here again A is a quaternion algebra, A being isomorphic to $M_2(k)$.
- (5) In this case, the following two possibilities arise for the dimension of A over k: this dimension is equal either to 3 or to 4. If $\dim_k A = 3$, then $A \cong T(k)$. If $\dim_k A = 4$, then setting $z_1 = y_1 b_1^{-1}$, where $a_1 = b_1^2, b_1 \in k$, and $z_2 = y_2$, one obtains $A \cong \left(\frac{1,0,0}{k}, z_1, z_2\right)$.
 - (6) Here A corresponds to the algebra listed in (vi).

PART TWO. Now consider the case $a \neq 0$. If, under this assumption, $a_1 = a_2 = 0$, then $\dim_k A = 4$ and the correspondence $y_1 \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, y_2 \mapsto \begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix}$ determines an isomorphism of A upon $M_2(k)$. If $(a_1, a_2) \neq (0, 0)$, then exchanging, if necessary, y_1 and y_2 , one may suppose that $a_1 \neq 0$ and

$$A = \left(\frac{a_1, a_1(-1 + 4a_1a_2a^{-2}), 0}{k}, y_1, y_1 - 2a_1a^{-1}y_2\right).$$

In particular, if $a_2 = 0$, then $A \cong M_2(k)$. If both a_1, a_2 are nonzero, then A is as in (i) - (v) by part one of the proof. The lemma is proved. \Box

The next lemma adjusts Suprunenko's results on class-2 nilpotent linear groups over algebraically closed fields (see, [5], pp.210, 211) to the situation of fields which are not necessarily algebraically closed. For the needs of Theorem 1 proof, the case of linear groups of degree 2 is considered only.

Lemma 2. Let k be a field of characteristic $\neq 2$ and X a class-2 nilpotent subgroup of $GL_2(k)$. Then

$$X = B1_2 \cup Bx_1 \cup Bx_2 \cup Bx_1x_2,$$

where $B \leq k^*$ with $-1 \in B$, and $x_1, x_2 \in GL_2(k)$ are such that $x_1^2, x_2^2 \in B1_2$ and $x_2x_1 = -x_1x_2$.

Proof. Let Ω be an algebraic closure of k. For every field F, the group $GL_2(F)$ does not possess any reducible class-2 nilpotent subgroup. Therefore X, being a class-2 nilpotent subgroup of $GL_2(\Omega)$, is an irreducible

subgroup of $GL_2(\Omega)$. If M is a maximal irreducible class-2 nilpotent subgroup of $GL_2(\Omega)$ with $M \ge X$, then according to Theorem 7 [5], pp. 210, 211, M is conjugate by an element $q \in GL_2(\Omega)$ to the group Γ formed by all elements $\lambda a_1^{\alpha_1} a_2^{\alpha_2}$, where $\lambda \in \Omega^*, \alpha_1, \alpha_2$ integers, and

$$a_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad a_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

In other words, $\Gamma = \Omega_0 \cup \Omega_1 \cup \Omega_2 \cup \Omega_3$, where $\Omega_0 = \Omega^* 1_2$, $\Omega_i = \Omega^* a_i$ (i = 1, 2), $\Omega_3 = \Omega^* a_1 a_2$. Choose not permutable $x_1, x_2 \in X$ and let $q_i = x_i^q (i = 1, 2)$. Then neither q_1 nor q_2 can lie in Ω_0 and also q_1, q_2 can not belong to one and the same set Ω_i with $i \in \{1, 2, 3\}$. Interchanging, if necessary, x_1 and x_2 and replacing (again if necessary) the ordered pair x_1, x_2 either by that of $x_1, x_1 x_2$ or by $x_1 x_2, x_1$, one may assume that $q_1 \in \Omega_1, q_2 \in \Omega_2$. So

$$q_1 = \begin{pmatrix} \omega_1 & 0\\ 0 & -\omega_1 \end{pmatrix}, \quad q_2 = \begin{pmatrix} 0 & \omega_2\\ \omega_2 & 0 \end{pmatrix}$$

for some $\omega_1, \omega_2 \in \Omega$. Denote X^q by C. Put then

$$B_0 = \{ b \in \Omega^* \mid b1_2 \in C \}, \quad B_1 = \{ b \in \Omega^* \mid bq_1 \in C \}, \\ B_2 = \{ b \in \Omega^* \mid bq_2 \in C \}, \quad B_3 = \{ b \in \Omega^* \mid bq_1q_2 \in C \},$$

and let U be the union $B_0 1_2 \cup B_1 q_1 \cup B_2 q_2 \cup B_3 q_1 q_2$. Clearly $U \subseteq C$. The definition of B_0 implies that $B_0 \leq \Omega^*$. Squaring q_1, q_2 and $q_1 q_2$, one gets that ω_1^2, ω_2^2 and -1 are in B_0 . Observe also that all B_i contain 1. Therefore, since $B_0 B_i \subseteq B_i (i = 1, 2, 3), B_0 \subseteq B_i$. On the other hand, $B_i B_i \subseteq B_0$ and again the relation $1 \in B_i$ shows that $B_i \subseteq B_0$ giving then $B_i = B_0 (i = 1, 2, 3)$. Denoting the common value of B_i by B, one has

$$U = B1_2 \cup Bq_1 \cup Bq_2 \cup Bq_1q_2.$$

Now let h be an element of C. Writing

$$h = \begin{pmatrix} x & y \\ z & t \end{pmatrix}, \quad x, y, z, t \in \Omega,$$

and denoting $[q_1, h] = q_1^{-1}h^{-1}q_1h$ by q_3 , one has

$$q_3 = (\det h)^{-1} \begin{pmatrix} tx + yz & 2ty \\ 2xz & tx + yz \end{pmatrix}.$$

Since q_3 commutes with q_1 which is diagonal but not scalar, q_3 must be diagonal itself. It follows that ty = xz = 0 because char $k \neq 2$. If $x \neq 0$, then

$$h = \begin{pmatrix} x & 0 \\ 0 & t \end{pmatrix}.$$

Since $[q_2, h]$ commutes with q_2 , one obtains $t = \pm x$. If t = x, then $h = x \mathbf{1}_2$, and $h \in B \mathbf{1}_2 \subseteq U$. If t = -x, then $hq_1 = x\omega_1\mathbf{1}_2 \in C$, so $x\omega_1 = b_0 \in B$. Thus $h = q_1b_0\omega_1^{-2} \in q_1B \subseteq U$. Next let x = 0 and so

$$h = \begin{pmatrix} 0 & y \\ z & 0 \end{pmatrix}.$$

Since C contains the diagonal matrix

$$hq_2 = \begin{pmatrix} y\omega_2 & 0\\ 0 & z\omega_2 \end{pmatrix},$$

 $z = \pm y$. If z = y, then $hq_2 = y\omega_2 1_2$ and hence $y = z = b_1\omega_2^{-1}$ with $b_1 \in B$. This shows $h = q_2b_1\omega_2^{-2} \in q_2B \subseteq U$. If z = -y, then $hq_2q_1 = y\omega_2\omega_1 1_2$, whence $y = b_2\omega_1^{-1}\omega_2^{-1}$ with $b_2 \in B$ and $h = q_1q_2b_2\omega_1^{-2}\omega_2^{-2} \in q_1q_2B \subseteq U$. Thus $h \in U$ in any case and consequently C = U. It follows that $X = B1_2 \cup Bx_1 \cup Bx_2 \cup Bx_1x_2$. But $X \leqslant GL_2(k)$, so $B \leqslant k^*$. Also $x_i^2 = (q_i)^2 = q(q_i^2) = \omega_i^2 1_2$, that is, $x_i^2 \in B1_2(i = 1, 2)$. Finally, $x_1x_2 + x_2x_1 = q(q_1q_2 + q_2q_1)q^{-1} = 0_2$ which completes the proof of the lemma.

The following assertion has a technical character and is used in the subsequent description of subloops of G(k) that are isomorphic to class-2 nilpotent groups.

Lemma 3. Let

$$x_1 = \begin{pmatrix} r & \mathbf{0} \\ \mathbf{0} & s \end{pmatrix}, \quad x_2 = \begin{pmatrix} u & \rho \\ \pi & v \end{pmatrix}$$

be elements of G(k) such that $\rho \cdot \pi = 0$ with both ρ and π nonzero. If x_1 and x_2 are not permutable, then $[x_1, x_2]$ does not commute with x_1 .

Proof. A straightforward calculation gives

$$[x_1, x_2] = \begin{pmatrix} 1 & e\rho \\ f\pi & 1 \end{pmatrix}$$

with $e = u^{-1}(1 - sr^{-1})$, $f = v^{-1}(1 - rs^{-1})$. If this commutes with x_1 , then $es\rho = er\rho$ and $fr\pi = fs\pi$. Since ρ and π are both nonzero, es = er, fr = fs. But either $e \neq 0$ or $f \neq 0$ for $[x_1, x_2] \neq 1_2$. Therefore, r = s, hence x_1 commutes with x_2 which is impossible.

Now the description of subloops of G(k) that are isomorphic to class-2 nilpotent groups can be given for fields k of characteristic $\neq 2$.

Lemma 4. Let k be a field of characteristic $\neq 2$ and $X \leq G(k)$. Suppose that X is isomorphic to a class-2 nilpotent group. Then one of the following holds:

- (i) X is isomorphic to a subgroup of $GL_2(k_1)$ where either $k_1 = k$ or k_1 is a quadratic field extension of k.
- (ii) There is $\psi \in G_2(k)$ such that $X^{\psi} \leq ZUT(k)$.

Proof. Choose not permutable $x_1, x_2 \in X$. Since $x_i \in O(k), x_i^2 = x_i t_i + n_i 1_2$ for some $t_i \in k$ and $n_i \in k^*$. As char $k \neq 2$, one can put $y_i = x_i - 2^{-1} t_i 1_2$, $a_i = 4^{-1} t_i^2 + n_i$ so that $y_i^2 = a_i 1_2$. This implies $\bar{y}_i = -y_i$ and $y_1 y_2 + y_2 y_1 = a_1 2$ with $a \in k$. Let $A = k 1_2 + k y_1 + k y_2 + k y_1 y_2$. By Lemma 1, one of Possibilities (i) - (vi) listed in that lemma can arise for A.

Suppose first that Possibility (iv) arises. Then there is a ring isomorphism $\chi_0: (A, +, \cdot) \to (T(k), +, \cdot)$. Considering A and T(k) as semigroups (under corresponding multiplications), one obtains a semigroup isomorphism $\tilde{\chi}_0: (A, \cdot) \to (T(k), \cdot)$. Restricting $\tilde{\chi}_0$ on A^* , the set of invertible elements of A, one has a group homomorphism χ of (A^*, \cdot) into the group of all 2×2 invertible upper triangular matrices over k. Due to the equation $x_i = y_i + 2^{-1}t_i 1_2$ and since $k 1_2 \subseteq A$, both x_1 and x_2 are in A. Hence $\langle x_1, x_2 \rangle^{\chi}$ is a reducible class-2 nilpotent subgroup of $GL_2(k)$ which is false. Thus Possibility (iv) is in fact impossible. A similar argument shows that Possibility (iii) from Lemma 1 also can not arise.

Now suppose that Possibility (v) from Lemma 1 takes place for A. Assume first that $a \neq 0$. Then if (v) takes place, one may suppose without loss of generality that $a_1 = b_1^2, b_1 \in k^*$ and $(y_1 - 2a_1a^{-1}y_2)^2 = 0_2$. So replacing X by X^{φ} with a suitable $\varphi \in G_2(k)$, one may suppose that

$$y_1 = \begin{pmatrix} b_1 & \mathbf{0} \\ \mathbf{0} & -b_1 \end{pmatrix}.$$

Putting then

$$y_1 - 2a_1a^{-1}y_2 = \begin{pmatrix} c & \gamma \\ \delta & d \end{pmatrix}, \quad c, d \in k, \quad \gamma, \delta \in k^3,$$

one has c = d = 0 in view of the equation $y_1(y_1 - 2a_1a^{-1}y_2) + (y_1 - 2a_1a^{-1}y_2)y_1 = 0_2$. The condition $(y_1 - 2a_1a^{-1}y_2)^2 = 0_2$ gives $\gamma \cdot \delta = 0$, where γ and δ are both nonzero because dim_k A = 4. It follows that

$$y_2 = \left[y_1 - (y_1 - 2a_1a^{-1}y_2)\right] \frac{a}{2a_1} = \begin{pmatrix} \frac{a}{2b_1} & -\gamma \frac{a}{2b_1^2} \\ -\delta \frac{a}{2b_1^2} & -\frac{a}{2b_1} \end{pmatrix}.$$

Therefore,

$$x_1 = y_1 + \frac{t_1}{2} \mathbf{1}_2 = \begin{pmatrix} r & \mathbf{0} \\ \mathbf{0} & s \end{pmatrix}$$

where $r = b_1 + 2^{-1}t_1$, $s = -b_1 + 2^{-1}t_1$, and

$$x_2 = y_2 + \frac{t_2}{2} \mathbf{1}_2 = \begin{pmatrix} u & \rho \\ \pi & v \end{pmatrix},$$

for some $u, v \in k$ and $\rho = -2^{-1}\gamma a b_1^{-2}, \pi = -2^{-1}\delta a b_1^{-2}$. Now observe that both γ and δ are nonzero because $\dim_k A = 4$. So $\rho \neq 0, \pi \neq 0$ and applying Lemma 3 one obtains a contradiction. A similar argument leads to a contradiction when a = 0, so Possibility (v) is impossible at all.

Suppose Case (ii) takes place. This means that A is isomorphic to a quaternion division k-algebra $(\frac{b,c}{k})$. In particular, the subalgebra A contains 1_2 , and the restriction of the bilinear form (,) to A is nondegenerate. Thus the subspace A^{\perp} is nondegenerate too and hence it contains v with $n(v) \neq 0$ so that $O(k) = A \oplus vA$. Now let x be an arbitrary element of X. Then x = a+vb with $a, b \in A$ and $(xx_1)x_2 = x(x_1x_2)$. But $(xx_1)x_2 = ax_1x_2+v(x_2x_1b)$ and $x(x_1x_2) = ax_1x_2 + v(x_1x_2b)$ (see, [3], p. 26), whence it follows that $v(x_2x_1b) = v(x_1x_2b)$, and since v is invertible, $x_2x_1b = x_1x_2b$. Note that x_1 and x_2 are not permutable elements of the class-2 nilpotent group $\langle x_1, x_2 \rangle$. According to Lemma 2, x_1 and x_2 must anticommute. So $-x_1x_2b = x_1x_2b$, and since x_1x_2 is invertible and char $k \neq 2$, one gets b = 0, hence $x \in A$. Thus $X \subseteq A$, that is, X is isomorphic to a subgroup of $GL_2(k(\sqrt{b}))$. In a similar fashion, one can show that X is isomorphic to a subgroup of $GL_2(k)$ if Case (i) of Lemma 1 takes place.

It remains to consider the situation when A is as in Possibility (vi) of Lemma 1. Using the terminology of [1], this can be expressed by saying

that y_1 and y_2 form a half extra-special pair. According to Lemma 5.3 [1], there is $\psi \in G_2(k)$ such that

$$x_1^{\psi} = \begin{pmatrix} r_1 & \mathbf{0} \\ e_2 & r_1 \end{pmatrix}, \quad x_2^{\psi} = \begin{pmatrix} r_2 & \mathbf{0} \\ e_3 & r_2 \end{pmatrix}, \quad r_i = \frac{t_i}{2}.$$

Now let

$$x^{\psi} = \begin{pmatrix} f & \gamma \\ \delta & d \end{pmatrix}, \quad f, d \in k, \quad \gamma, \delta \in k^3$$

be an element of X^{ψ} . Then $(x_1^{\psi}x_2^{\psi})x^{\psi} = x_1^{\psi}(x_2^{\psi}x^{\psi})$ which leads to the equality

$$\begin{pmatrix} r_1 r_2 f - e_1 \cdot \delta & r_1 r_2 \gamma - e_1 d - (e_2 r_2 + e_3 r_1) \times \delta \\ (e_2 r_2 + e_3 r_1) f + \delta r_1 r_2 - e_1 \times \gamma & * \end{pmatrix}$$

$$= \begin{pmatrix} r_1 r_2 f & r_1 (r_2 \gamma - e_3 \times \delta) - e_2 \times (e_3 f + \delta r_2) \\ e_2 r_2 f + r_1 (e_3 f + \delta r_2) & * \end{pmatrix}.$$

$$(3)$$

Comparing the corresponding entries in the position (11) shows that $e_1 \cdot \delta = 0$. This means exactly that $\delta \in e_2k + e_3k$. Further, comparing the vectors in the position (12) leads to the equality d = f. Finally, comparing vectors in the position (21) yields $e_1 \times \gamma = \mathbf{0}$ which means that $\gamma \in ke_1$. Collecting all this information, one concludes $x^{\psi} \in ZUT(k)$ which completes the proof of the lemma.

After all these preparations, Part (i) of Theorem 1 can be proved. This will be done as the demonstration of the following proposition.

Proposition 1. Let k be an associative and commutative integral domain with 1. If $1+1 \neq 0$, then the loop G(k) does not have any subloop isomorphic to a group of class \mathcal{H} .

Proof. The ring k can be considered as a subring of a field which, due to the condition $1 + 1 \neq 0$, must have characteristic $\neq 2$. So from the very beginning one can assume that k is a field and char $k \neq 2$. Suppose that G(k) has a subloop G isomorphic to a group of class \mathcal{H} . By Item (b) in Definition, G contains a proper subloop X isomorphic to a class-2 nilpotent subgroup. By Lemma 4, X is either isomorphic to a subgroup of the group $GL_2(k_1)$, where k_1 is a field extension of k with $[k_1 : k] \leq 2$ or there is $\psi \in G_2(k)$ such that $X^{\psi} \leq ZUT(k)$.

Suppose that X is isomorphic to a subgroup of $GL_2(k_1)$. Consider the k_1 -algebra $O(k_1) = O(k) \otimes_k k_1$. One has $X \leq G \leq G(k) \leq G(k_1)$, and

following the line of Lemma 4 proof, namely, those places of the proof which address Possibilities (i) and (ii) of Lemma 1, it is readily seen that X is a subset of the subalgebra A' of $O(k_1)$ such that A' is isomorphic to $M_2(k_1)$. So there is $\varphi \in G_2(k_1)$ with $X^{\varphi} \leq G_{[1]}(k_1)$, where

$$G_{[1]}(k_1) = \left\{ \begin{pmatrix} a & be_1 \\ ce_1 & d \end{pmatrix} \middle| a, b, c, d \in k_1, ad - bc \neq 0 \right\}$$

([4], p. 17, Corollary 1.7). Using again the proof of Lemma 4, one can deduce that $G \leq G_{[1]}(k_1)$, that is, that G is isomorphic to a subgroup of $GL_2(k_1)$. But this contradicts Item (c) in Definition. Hence $X^{\psi} \leq ZUT(k)$ for some $\psi \in G_2(k)$, and the argument employing equation (3) shows that $G^{\psi} \leq ZUT(k)$. Therefore, G is isomorphic to a class-2 nilpotent group which contradicts Item (a) in Definition. This final contradiction proves the proposition completely.

Now an example that illustrates the result just proved will be given.

Example 1. Let \mathbb{Q} be the field of all rational numbers, and B the subset of \mathbb{Q} consisted of all numbers $\pm 11^n, n \in \mathbb{Z}$. Let θ be a root of the polynomial $\lambda^2 + 11 \in \mathbb{Q}[\lambda]$. Clearly B is a subgroup of $\mathbb{Q}(\theta)^*$. Let

$$h_1 = \begin{pmatrix} heta & 0 \\ 0 & - heta \end{pmatrix}, \quad h_2 = \begin{pmatrix} 0 & heta \\ heta & 0 \end{pmatrix}$$

Then $H = B1_2 \cup Bh_1 \cup Bh_2 \cup Bh_1h_2$ is a class-2 nilpotent subgroup of $GL_2(\mathbb{Q}(\theta))$. Though H is not isomorphic to any subgroup of $GL_2(\mathbb{Q})$, H can be realized as a subloop of $G(\mathbb{Q})$. Indeed, if

$$x_1 = \begin{pmatrix} 1 & e_1 + 3e_2 + 2e_3 \\ e_1 - 3e_2 - 2e_3 & -1 \end{pmatrix}, \quad x_2 = \begin{pmatrix} 0 & e_1 \\ -e_1 & 0 \end{pmatrix},$$

and $X = \langle x_1, x_2 \rangle$, then the correspondence $x_1 \mapsto h_1, x_2 \mapsto (-11)^{-1}h_1h_2$ and $b \mapsto b$ for every $b \in B$, determines an isomorphism of X onto H. The subalgebra $A_0 = \mathbb{Q}1_2 + \mathbb{Q}x_1 + \mathbb{Q}x_2 + \mathbb{Q}x_1x_2$ of $O(\mathbb{Q})$ is isomorphic to the quaternion division algebra $\left(\frac{-11,-1}{\mathbb{Q}}\right)$ and is of the type $\left(\frac{-11,-1,0}{\mathbb{Q}}, x_1, x_2\right)$. One has $A_0 \otimes_{\mathbb{Q}} \mathbb{Q}(\theta) \cong M_2(\mathbb{Q}(\theta))$. By [4], Corollary 1.7 on p. 17, there is an automorphism φ of the algebra $O(\mathbb{Q}(\theta)) \cong O(\mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{Q}(\theta)$ such that $X^{\varphi} \leq G_{[1]}(\mathbb{Q}(\theta))$. The following situation can serve as an application of Proposition 1.

Let R be an associative and commutative ring with 1 and let $EAff_{2+1}(R)$ denote the subgroup of $GL_3(R)$ generated by the set $t_{12}(R) \cup t_{21}(R) \cup t_{13}(1)$. It is claimed that $EAff_{2+1}(R)$ is a group of class \mathcal{H} .

The center of $EAff_{2+1}(R)$ is trivial. Therefore, Item (a) of Definition is satisfied. Since $UT_3(R) \leq EAff_{2+1}(R)$, Item (b) in Definition also holds. Now suppose that there exists a field F such that $EAff_{2+1}(R)$ is isomorphic to subgroup H of $GL_2(F)$. Then $GL_2(F)$ must have a subgroup H_0 isomorphic to $UT_3(R)$. In particular, H_0 is class-2 nilpotent. If Ω is an algebraic closure of F, then H_0 , being a class-2 nilpotent subgroup of $GL_2(\Omega)$, is an irreducible subgroup of $GL_2(\Omega)$. Therefore, by Corollary 2 [5], p. 209, char $\Omega \neq 2$, hence char $F \neq 2$ too. By Lemma 2, H_0 contains the matrix -1_2 which commutes with all elements of $GL_2(F)$, in particular, with all elements of H. Since char $F \neq 2$, $-1_2 \neq 1_2$ which means that the center of H is nontrivial. This contradiction shows that Item (c) in Definition holds, and consequently $EAff_{2+1}(R) \in \mathcal{H}$. Now Proposition 1 shows that the following assertion is valid.

Corollary 1. Let k and R be associative and commutative rings with identities, the identity of k being designated by 1. Suppose that k is an integral domain and that $1+1 \neq 0$. Then the loop G(k) does not contain any subloop isomorphic to the group $EAf f_{2+1}(R)$.

Note that it is this corollary that has been the initial point for writing the present paper.

The proof of Part (ii) of Theorem 1 is given as the proof of the following proposition.

Proposition 2. Let k be an associative and commutative integral domain with 1. Suppose that 1 + 1 = 0. Then G(k) contains no subloop isomorphic to a class-2 nilpotent group.

Proof. One may assume that k is a field of characteristic 2. Suppose that G(k) has a subloop G which is isomorphic to a class-2 nilpotent group. Then G contains not permutable elements g_1, g_2 such that both of them commutes with their group commutator $[g_1, g_2]$ or, which is equivalent, with $\bar{g}_1 \bar{g}_2 g_1 g_2$. Note that to satisfy the latter condition each g_i can be replaced by any of its scalar multiples. So if $\operatorname{tr}(g_i) \neq 0$, one may assume that $\operatorname{tr}(g_i) = 1$. Thus interchanging, if necessary, g_1 and g_2 , there are three cases to consider each to be handled separately.

- (i) $tr(g_1) = tr(g_2) = 1$.
- (ii) $\operatorname{tr}(g_1) = 1, \operatorname{tr}(g_2) = 0.$
- (iii) $tr(g_1) = tr(g_2) = 0.$

Case (i). Here $g_i^2 = g_i + r_i \mathbf{1}_2$ for some $r_i \in k^*$ and $\bar{g}_i = \mathbf{1}_2 + g_i (i = 1, 2)$. Therefore,

$$\bar{g}_1\bar{g}_2g_1g_2 = r_1g_2 + g_2g_1g_2 + g_1g_2g_1g_2. \tag{4}$$

Denoting by r the trace of the product g_1g_2 , one obtains

$$g_2g_1 = (r+1)1_2 + g_1 + g_2 + g_1g_2.$$

 So

$$g_2g_1g_2 = rg_2 + r_2g_1 + r_2\mathbf{1}_2, (5)$$

hence

$$g_1g_2g_1g_2 = rg_1g_2 + r_1r_2\mathbf{1}_2. (6)$$

Substituting (5) and (6) into (4), one gets

$$\bar{g}_1\bar{g}_2g_1g_2 = r_1g_2 + rg_2 + r_2g_1 + r_2\mathbf{1}_2 + rg_1g_2 + r_1r_2\mathbf{1}_2.$$

Since g_2 commutes with $\bar{g}_1 \bar{g}_2 g_1 g_2$,

$$g_2g_1(r_21_2 + rg_2) = g_1(r_21_2 + rg_2)g_2 = g_1g_2(r_21_2 + rg_2).$$

This shows that if $r_2 l_2 + rg_2$ were invertible, then g_2 would commute with g_1 which is impossible. Thus $n(r_2 l_2 + rg_2) = 0$ whence it follows that $r^2 + r + r_2 = 0$. Observe further that the roles of g_1 and g_2 are completely symmetric which implies that $r^2 + r + r_1 = 0$, and so $r_1 = r_2 = r^2 + r$. It follows that if $h_i = g_i + rl_2(i = 1, 2)$, then h_i is an idempotent of O(k). Therefore, if $h_3 = (r + 1)l_2 + h_1 + h_2$, then $h_3 \in (kl_2 + kh_1)^{\perp}$ and the subalgebra $A = kl_2 + kh_1 + h_3(kl_2 + kh_1)$ of O(k) is isomorphic to the associative algebra $M_2(k)$ (see, [6], pp. 43–45). Since $g_1, g_2 \in A$, the subloop $\langle g_1, g_2 \rangle$ of G is isomorphic to a class-2 nilpotent subgroup of $GL_2(k)$. According to [5], Corollary 2, p. 209, this is false. So Case (i) is impossible.

Case (ii). Here $\bar{g}_1 = 1_2 + g_1$, $\bar{g}_2 = g_2$, $g_1^2 = g_1 + r_1 1_2$, $g_2^2 = r_2 1_2$, $r_1, r_2 \in k^*$. Following the line of the consideration in the previous case, one obtains

$$\bar{g}_1\bar{g}_2g_1g_2 = rg_2 + g_1r_2 + r_2\mathbf{1}_2 + rg_1g_2 + r_1r_2\mathbf{1}_2,$$

where r is the trace of g_1g_2 . Since g_2 commutes with $\bar{g}_1\bar{g}_2g_1g_2$, $g_2(g_1r_2 + rg_1g_2) = (g_1r_2 + rg_1g_2)g_2$, whence $r_2 = r^2$, and in particular $r \neq 0$. This, together with the fact that g_1 and $\bar{g}_1\bar{g}_2g_1g_2$ commute, implies $g_1(g_2+g_1g_2) = (g_2+g_1g_2)g_1$ which can be written as $(1_2+g_1)g_1g_2 = (1_2+g_1)g_2g_1$. It follows that $n(1_2 + g_1) = 0$, or $(1_2 + g_1)(1_2 + g_1 + 1_2) = (1_2 + g_1)g_1 = 0_2$. But $g_1 \in G(k)$, and so $g_1 = 1_2$ which is false. So Case (ii) is impossible.

Case (iii). Here $g_i^2 = r_i 1_2$ with $r_i \in k^*$ and $\bar{g}_i = g_i (i = 1, 2)$. The condition that g_1 commutes with $\bar{g}_1 \bar{g}_2 g_1 g_2 = g_1 g_2 g_1 g_2$ leads to the equation

 $r_1 g_2 g_1 g_2 = g_1 g_2 g_1 g_2 g_1. \tag{7}$

Denoting the trace of g_1g_2 by r, one has $g_2g_1g_2 = rg_2 + g_1r_2, g_1g_2g_1g_2g_1 = r^2g_1 + rr_1g_2 + r_1r_2g_1$. Then (7) becomes $r_1(rg_2+g_1r_2) = r^2g_1 + rr_1g_2 + r_1r_2g_1$, whence $r^2g_1 = 0_2$ which is false. Case (iii) is impossible. This completes the proof of the proposition.

Corollary 2. Let k and R be associative commutative rings with identity elements. Suppose that 1 is the identity of k and that 1 + 1 = 0. Suppose also that k is an integral domain. Then the loop G(k) does not contain any subloop isomorphic to the group $UT_3(R)$.

References

- E.L. Bashkirov, On subloops of the loop of invertible elements of the split Cayley-Dickson algebra over a field that contain a subloop of transvections, Commun. Algebra, 50 (2022), no. 4, 2083–2108.
- [2] R.S. Pierce, Associative algebras. Graduate Texts in Mathematics, 88, Springer Verlag, New York, Berlin (1988).
- [3] R. D. Shafer, An introduction to nonassociative algebras, Academic Press, New York (1966).
- [4] T.A. Springer, F.D. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer Verlag, Berlin, Heidelberg, New York (2000).
- [5] D.A. Suprunenko, *Matrix groups*, Transl. Math. Monogr., 45, Amer. Math. Soc., Providence, Rhode Island (1976).
- [6] K.A. Zhevlakov, A. M.Slin'ko, I.P. Shestakov, A.I. Shirshov, Rings that are nearly associative, Academic Press, New York (1982).

Received March 21, 2023

Kalinina str 25, ap. 24 Minsk 220012 Belarus E-mail: zh.bash@mail.ru