Quasigroups and Related Systems 31 (2023), 185 — 200

https://doi.org/10.56415/qrs.v31.14

On the nonexistence of certain associative subloops
in the loop of invertible elements

of the split alternative Cayley-Dickson algebra

Evgenii L. Bashkirov

Abstract. Let O(k) be the octonion Cayley-Dickson algebra over a commutative
associative ring k with 1. Let G(k) be the Moufang loop of invertible elements of O(k).
Let H be a class of groups such that a group G is a member of H if and only if G satisfies
the following three conditions: (a) G is not class-2 nilpotent. (b) G has a proper class-2
nilpotent subgroup. (c¢) G is not isomorphic to any subgroup of the group GL2(F) for
any field F'. The theorem proved in the paper states that if k is an integral domain with
141 # 0, then G(k) does not contain any subloop isomorphic to a group of class H, while
if k is an integral domain such that 1+ 1 = 0, then G(k) contains no subloop isomorphic

to a class-2 nilpotent group at all.

Let G(k) denote the loop of invertible elements in the split alternative
Cayley-Dickson algebra over a field k. If the characteristic of k is not 2,
then G(k) has a subloop isomorphic to the group UT3(k) of all 3 x 3 upper
unitriangular matrices over k ([1]). A natural question arises then, namely,
whether G (k) contains a subloop isomorphic to a group which is, in a sense,
more larger than UT5(k). The present paper answers this question, actually,
in the negative using as a working tool a class of groups that contain a class-2
nilpotent group as a proper subgroup. More precisely,

Definition. A group G belongs to the class H if and only if G satisfies the
following three conditions:

(a) G is not class-2 nilpotent.
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(b) G has a proper class-2 nilpotent subgroup.

(¢) G is not isomorphic to any subgroup of the group G'Lo(F’) for every
field F.

The main purpose of the paper is to prove the following theorem which
demonstrates, in particular, a distinction between the case involving fields
of characteristic not 2 and that in which fields of characteristic 2 appear.

Theorem 1. Let k be an associative and commutative integral domain with
1, O(k) the alternative split Cayley-Dickson algebra over k and G(k) a
Moufang loop of invertible elements in O(k).

(1) If 1+ 1 #0, then the loop G(k) does not contain any subloop isomor-
phic to a group of class H.

(ii) If 1 +1 =0, then the loop G(k) contains no subloop isomorphic to a
class-2 milpotent subgroup.

Before exposing proof of the theorem a notational system will be estab-
lished.

Let k£ be a commutative associative ring with 1. Then £* is the multi-
plicative group of all invertible elements of k.

Ifa€kand S, T Ck,thenaS={as|seStand S+T ={s+t|se€
S,teT}.

Let n be an integer, n > 2. Then M, (k) is the associative ring of n x n
matrices with entries in k. As usual, GL, (k) denotes the group M, (k)*,
the general linear group of degree n over k.

If 1,, is the identity matrix of degree n and a € k, then ¢;;(a) denotes
the matrix 1,, + ae;j, where e;; is the n X n matrix which has 1 in its (4, j)
position and zeros elsewhere. If S C k, then t;;(S) = {t;j(a) | a € S}.

k3 is the standard free k-module formed by column vectors of length 3
with components in k. The elements

1 0 0
0f, 1, 0
0 0 1

of k3 are denoted by ey, ea, €3, respectively. The zero element of k3 is des-
ignated as 0.

If a, 3 € k3, then - 3 and « x 8 denote the usual dot product and cross
product, respectively.
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O(k) is the set of all symbols of the form (§ 5 ) with a,b € k,a, B € k3.
In O(k), equality, addition and multiplication by elements of k are defined
componentwise, whereas the operation of multiplication is given by

a a\ (c v\ _ ac+a-0 ay+ad— 0 x§
B b)\6 d) \Be+bl+axy B-v+bd ’
CL,b,C,de, 04,5»%5€k3-

Under the operations just defined O(k) is an alternative nonassociative
k-algebra termed the split Cayley-Dickson algebra (or the octonion one).
Elements of O(k) are called octonions.

To avoid a proliferation of symbols, it is convenient to adopt the follow-
ing convention. The symbol 15 is used to denote the identity of the algebra

O(k),
o %)

as well as the identity 2 x 2 matrix. Also the symbol 09 is used to designate
two things: the zero octonion

0 0

0 0

and the zero 2 x 2 matrix. The convention should lead to no ambiguity if
one attends closely to the context in which the notation is employed.
The trace tr(z) and the norm n(x) of the octonion

z= (g ‘g) € O(k)

are defined to be a + b and ab — « - 8, respectively.

G(k) is the (Moufang) loop of octonions of O(k) whose norms lie in £*.
The norm n determines the bilinear form (z,y) = n(zx+y) —n(z) —n(y) on
the k-module O(k). Throughout the article, all metric concepts mentioned
are related to the bilinear form (x,y) determined by the norm mapping
n: O(k) — k. In particular, if Y C O(k), then the orthogonal complement
Y+ is defined to be the set {z € O(k) | (z,y) =0 for all y € Y}.

The algebra O(k) admits an involution ~: O(k) — O(k) given by

(b —« (o « 3
x—(_ﬁ a>,whenever:p—<6 b) a,bek, o b€k’
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Borrowing the notation from the theory of algebraic groups, the auto-
morphism group of the algebra O(k) is denoted by Ga(k).
Let UT(k) and ZUT (k) be the subloops of G(k) defined by

. 1 aseq )
070 ~{ (1 o %)},

. al aseq
2UT (k) = {<a362 +age3  ay )

and let No(k) and N (k) be the subgroups of GL3(k) such that

ai € k*,ag,ag,a4 S k} s

r 2a b
No(k) = 0 r c||rekfabcek,,
0 0 r
1 2a b
NkEk)=¢10 1 c||abcek
0 1

A direct calculation shows that the restriction of multiplication in O(k)
to ZUT (k) is associative, and since UT' (k) C ZUT(k), this is true also for
UT (k). Moreover, the mapping n: ZUT (k) — No(k) defined by

-1
a1 2a3 asasa; —a
ar aser 1 3 030404 2
— 0 al a4 ,
azez + asez  aj 0 0 a

satisfies for all =,y € ZUT (k) the condition (xy)" = z"y", where the mul-
tiplication on the right-hand side is performed in the group GLs(k). This
means that n is a group homomorphism from ZUT(k) onto No(k). The
kernel of 7 is isomorphic to the subgroup k[2] of the additive group of k
formed by all a € k with 2a = 0. Thus Ny(k) is isomorphic to the quotient
ZUT(k)/k[2] and the restriction of n to UT'(k) determines an isomorphism
of UT(k)/k[2] onto N(k). If 2 € k*, then k[2] = 0,2k = k, and hence
ZUT (k) is isomorphic to the direct product k* x UTs(k) of the groups k*
and UTs(k), whereas UT' (k) = UTs(k).

If X isa group and @, 21 € X, then 2% = 7 1oz, vy = zvyz7!, (11, 2] =
z7te?. If RC X, then *R={% |r € R}.

If X is a loop and M is a subset of X, then (M) denotes the subloop of
X generated by M.
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A series of auxiliary results must be established before giving a direct
proof of Theorem 1. The first of these is concerned with the following
situation related to general alternative algebras.

Let k be a field of characteristic # 2 and L an alternative k-algebra with
1. Choose aj,a2,a € k and suppose that L contains elements y1,ys such
that

yi=a1, ¥5=as y1y2+ Yy =a (1)

It is straightforward to check that the subspace A = k + ky1 + kyo + ky1y2
of the k-vector space L is a subalgebra of L which is denoted as

ai,a2,a
( ! L 7y17y2)- (2)

A description of noncommutative algebras (2) is a constituent of the proof of
Theorem 1. Certainly, some parts of this description can be extracted from
the usual classification of quaternion algebras exposed, for example, in [2],
pp. 13-20. However, the full list of subalgebras (2) can not be given within
the framework of [2| (mainly, due to the fact that the case ajag =a =0 is
excluded in [2]). Therefore, it is desirable to have, at least as a sketch, an
argument leading to a full description of subalgebras (2). This is done in
Lemma 1 below. The proof of that lemma requires, in turn, the following
notations in which some algebras of 2 x 2 matrices appear.

If xg,x1, 9 are indeterminates and b, ¢ € k are such that the quadratic

form x3 — 22b — z4c does not represent zero in k, then

D(b,e,k) = {(C@ti};\//l%) :EJ_F:%) ‘ ri € k}

In other words, D(b,c, k) is the quaternion division algebra (%) realized

by matrices of degree 2 over the field k(v/b).
If b € k is not a square in the field k, then

Ty(k(V)) = {<m +ruv8 Zif:f@ ’ e k}

Finally, T'(k) denotes the k-algebra of 2 x 2 upper triangular matrices over

o-{(;)

Now the above mentioned description runs as follows.

a,b,cek‘}.
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Lemma 1. Let k be a field of characteristic not 2, L an alternative algebra
over k with 1, and a1,a2,a € k. Suppose that L contains elements y1,ys
satisfying (1) and let A be the subalgebra of L defined by (2). Suppose that
A is noncommutative. Then one of the following holds:

(i) A= My(k).

ii) A= D(b,c, k), where the quadratic form x2 — x2b — z3¢ in xg, T1, T2
0 1 2
does not represent 0 in k.

(iii) A= To(k(V/Db)), where b is not a square in k.
(iv) A=T(k).

(v) dimpy A =4 and A = (%, 2:1,2:2> for some z1, 29 € L.

(vi) A (0’2’0, 21, zg) for some z1, 29 € L.

Proof. PART ONE. Consider first the case a = 0. There are the following
three possibilities for aq:

(a) aj is not a square in k,
(b) ap is a nonzero square in k,
(c) a1 =0.

The corresponding possibilities exist for as and exchanging, if necessary,
y1 and yo, one obtains the following six possibilities for the ordered pair

(a1,a2):

(1) Both ay,as are not squares in k.

(2) aj is not a square in k, ay is a nonzero square in k.

(3) aj is not a square in k, ag = 0.

5

)
)
)

(4) Both aq,as are nonzero squares in k.
) ap is a nonzero square in k, ag = 0.
)

(6 a1:a2:0.
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These cases are considered separately.

(1) Here dimy A = 4 and A is a quaternion algebra in the sense of [2], p.
14. So A is either a division algebra and A = D(a1, ag, k) or A = My (k).

(2) Again A is a quaternion algebra, and since ay is a square in k*, A =
M (k).

(3) In this case, dimy A = 4 and A = Ty(k(\/a1)).

(4) Here again A is a quaternion algebra, A being isomorphic to M (k).

(5) In this case, the following two possibilities arise for the dimension of A
over k: this dimension is equal either to 3 or to 4. If dimy A = 3, then
A2 T(k). If dimy A = 4, then setting z; = ylbl_l, where a; = b?,by € k,

and zo = Y, one obtains A = (1’2’0, z1, 22).

(6) Here A corresponds to the algebra listed in (vi).

PART TwWO. Now consider the case a # 0. If, under this assumption,
a1 = ag = 0, then dimy A = 4 and the correspondence y; — (J3),42 —
(00) determines an isomorphism of A upon Ms(k). If (a1,a2) # (0,0),
then exchanging, if necessary, y; and yo2, one may suppose that a; # 0 and

—1+4 ~2),0
s (al,m( —I—kamza ), i —2a1a_1y2>.

In particular, if ag = 0, then A = My(k). If both aj,as are nonzero, then
Ais asin (i) — (v) by part one of the proof. The lemma is proved. O

The next lemma adjusts Suprunenko’s results on class-2 nilpotent linear
groups over algebraically closed fields (see, [5], pp.210, 211) to the situation
of fields which are not necessarily algebraically closed. For the needs of
Theorem 1 proof, the case of linear groups of degree 2 is considered only.

Lemma 2. Let k be a field of characteristic # 2 and X a class-2 nilpotent
subgroup of GLo(k). Then

X = BlyU Bz U Bxo U Bxyxo,

where B < k* with —1 € B, and x1, 22 € GLy(k) are such that x2, 23 € Bl
and Tox1 = —T129.

Proof. Let €2 be an algebraic closure of k. For every field F', the group
G L2 (F) does not possess any reducible class-2 nilpotent subgroup. There-
fore X, being a class-2 nilpotent subgroup of GLy(2), is an irreducible
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subgroup of GL2(Q2). If M is a maximal irreducible class-2 nilpotent sub-
group of GLy(Q2) with M > X, then according to Theorem 7 [5], pp. 210,
211, M is conjugate by an element g € GL2(Q2) to the group I' formed by

all elements Aaj'a5?, where A € Q% aq, g integers, and

a1:<1 0> a2:<o 1)

0 -1/’ 1 0/°

In other words, T' = QoUQ; UNyUN3, where Qy = Q*15, Q; = Q*a; (1 = 1,2),
Q3 = N*ajaz. Choose not permutable 1,29 € X and let ¢; = z}(i = 1,2).
Then neither ¢; nor ¢ can lie in g and also ¢, g2 can not belong to one
and the same set ; with i € {1,2,3}. Interchanging, if necessary, x; and
x9 and replacing (again if necessary) the ordered pair x1, o either by that

of x1,x129 or by x129,x1, one may assume that g1 € Q1,q2 € Q2. So

(w1 0 . 0 w2
a1 = 0 —w)’ Q2 = wy 0
for some w1, wy € ). Denote X? by C. Put then
B():{bEQ*“)lQEC}, Blz{bEQ*‘b(hEC},

By={be Q" |bge € C}, Bs={beQ*|bqq € C},

and let U be the union Byls U Bigqy U Bags U Bsgiqe. Clearly U C C.
The definition of By implies that By < Q*. Squaring q1, g2 and ¢1q2, one
gets that w}, w3 and —1 are in By. Observe also that all B; contain 1.
Therefore, since BoB; C B;(i = 1,2,3), By € B;. On the other hand,
B;B; C By and again the relation 1 € B; shows that B; C By giving then
B; = By(i = 1,2, 3). Denoting the common value of B; by B, one has

U = BlyUBq UBg2U Bqiqo.

Now let h be an element of C. Writing

h= (”” y)7 z,y, 2t € Q,

z t

and denoting [q1, h] = ql_lhflqlh by g3, one has

_ _1 (tr+yz 2ty
g3 = (deth) < 2rz tx+yz)’
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Since g3 commutes with ¢; which is diagonal but not scalar, g3 must be
diagonal itself. It follows that ty = xz = 0 because char k # 2. If x #£ 0,

then
x 0
h—<0t>

Since [g2, h] commutes with g2, one obtains ¢t = +x. If ¢t = x, then h = z1s,
and h € Bly CU. If t = —x, then hq; = 2wi1ly € C, so zwy = by € B.
Thus h = qlbgwl_2 € 1B CU. Next let x =0 and so

h:(g g).

Since C' contains the diagonal matrix

_(yw2 O

z = ty. If 2z = y, then hgs = ywsls and hence y = z = b1w2_1 with
by € B. This shows h = qzblwgz € @B CU. If z = —y, then hgaq1 =
ywowi lg, whence y = bgwl_lwz_l with b € B and h = Q1QQb2w1_2w2_2 €
q1q2B C U. Thus h € U in any case and consequently C' = U. It follows
that X = Blg U Bx; U Bxa U Bxjzy. But X < GLa(k), so B < k*.
Also 2?2 = (%)% = 4q?) = w?ls, that is, 2? € Bla(i = 1,2). Finally,
r129 + 2211 = q(q1G2 + q2q1)qg~t = 0 which completes the proof of the
lemma. O

The following assertion has a technical character and is used in the
subsequent description of subloops of G(k) that are isomorphic to class-2

nilpotent groups.
T = <T’ 0) s To = (U p>
0 s T v

be elements of G(k) such that p-m = 0 with both p and ® nonzero. If x;
and xo are not permutable, then [x1,x2] does not commute with xi.

Lemma 3. Let

Proof. A straightforward calculation gives

o= (g 7)



194 E. L. Bashkirov

with e = =1 (1 —sr™1), f = v~ 1(1 —rs~1). If this commutes with x1, then
esp = erp and frm = fsw. Since p and 7 are both nonzero, es = er, fr =
fs. But either e # 0 or f # 0 for [z, x9| # 1. Therefore, r = s, hence 1
commutes with xo which is impossible. O

Now the description of subloops of G(k) that are isomorphic to class-2
nilpotent groups can be given for fields k of characteristic # 2.

Lemma 4. Let k be a field of characteristic # 2 and X < G(k). Suppose
that X is isomorphic to a class-2 nilpotent group. Then one of the following
holds:

(1) X is isomorphic to a subgroup of GLa(k1) where either ki =k or ky
s a quadratic field extension of k.

(ii) There is ¢ € Go(k) such that XV < ZUT(k).

Proof. Choose not permutable z1,ro € X. Since z; € O(k), 22 = z;t;+n;l2
for some t; € k and n; € k*. As char k # 2, one can put y; = x; — 27,19,
a; = 4*17512 + n; so that yf = a;19. This implies §; = —y; and y1ys + Yyoy1 =
aly with @ € k. Let A = kls + ky1 + ky2 + kyi1yo. By Lemma 1, one of
Possibilities (i) — (v¢) listed in that lemma can arise for A.

Suppose first that Possibility (iv) arises. Then there is a ring isomor-
phism xo: (4,+,-) = (T'(k),+,-). Considering A and T'(k) as semigroups
(under corresponding multiplications), one obtains a semigroup isomor-
phism xo: (4,-) = (T'(k),-). Restricting xo on A*, the set of invertible
elements of A, one has a group homomorphism y of (A*,-) into the group
of all 2 x 2 invertible upper triangular matrices over k. Due to the equation
z; = y; + 27 ;15 and since kly C A, both z; and x5 are in A. Hence
(@1, 22)X is a reducible class-2 nilpotent subgroup of GLy(k) which is false.
Thus Possibility (iv) is in fact impossible. A similar argument shows that
Possibility (7i7) from Lemma 1 also can not arise.

Now suppose that Possibility (v) from Lemma 1 takes place for A. As-
sume first that a # 0. Then if (v) takes place, one may suppose without loss
of generality that a; = b%,b; € k* and (y; — 2a1a 1y2)? = 02. So replacing
X by X% with a suitable ¢ € G2(k), one may suppose that

(b O
Y1 = 0 —b )
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Putting then

Y1 — 2611@_11/2 = <§ g) ) C,d € kv 776 € k37

one has ¢ = d = 0 in view of the equation y;(y1 — 2a1a " y2) + (y1 —
2a1a 1 y2)y1 = 02. The condition (y; — 2a1a 1y2)? = 0y gives v - § = 0,
where v and § are both nonzero because dimy A = 4. It follows that

a a
_1 a 20, e
Y2 = |y1 — (Y1 — 2010 y2)| 57— = K
[ ( )] 2a1 <_6 ZQ _221 )

Therefore,

t r 0
= —1 =
1=y + 5 12 <0 S) )

where 7 = by + 27,5 = —b; + 27 ¢, and

to u p
= —1 =
T2 =Y2 + 5 12 (W ),

for some u,v € k and p = —2_1’yab1_2,7r = —2_15abl_2. Now observe that
both 7 and § are nonzero because dimy A = 4. So p # 0,7 # 0 and
applying Lemma 3 one obtains a contradiction. A similar argument leads
to a contradiction when a = 0, so Possibility (v) is impossible at all.

Suppose Case (ii) takes place. This means that A is isomorphic to a
quaternion division k-algebra (%) In particular, the subalgebra A contains
12, and the restriction of the bilinear form (,) to A is nondegenerate. Thus
the subspace A* is nondegenerate too and hence it contains v with n(v) # 0
so that O(k) = A®vA. Now let = be an arbitrary element of X. Then z =
a+vbwith a,b € Aand (zx1)xe = x(x122). But (xx1)rs = axrixo+v(xoz1b)
and z(z1x2) = axize + v(z122b) (see, [3], p. 26), whence it follows that
v(xow1b) = v(z122b), and since v is invertible, zox1b = z1x2b. Note that x;
and x9 are not permutable elements of the class-2 nilpotent group (x1,x2).
According to Lemma 2, 1 and 2o must anticommute. So —xz1x9b = x122b,
and since x1x9 is invertible and char k # 2, one gets b = 0, hence x € A.
Thus X C A, that is, X is isomorphic to a subgroup of GLa(k(v/b)). In a
similar fashion, one can show that X is isomorphic to a subgroup of G Ly(k)
if Case (i) of Lemma 1 takes place.

It remains to consider the situation when A is as in Possibility (vi) of
Lemma 1. Using the terminology of [1], this can be expressed by saying
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that y; and yo form a half extra-special pair. According to Lemma 5.3 [1],
there is 1) € Ga(k) such that

0 0 t;
xllz} = (rl > ’ fzp = <T2 ) ) T, = l~
ey T1 e3 T2 2

o _ ([ 3
x —(5 d>’ f,dek, ~,d6€k

Now let

be an element of X¥. Then (xlfx;/})xw = $11b($12bx¢) which leads to the
equality

rrof —e1 -0 rirey — erd — (eare + e3r1) X §
(eary + e3r1) f + 6rirg —ep X 7y * 3)
_ riref r1(roy —es X ) —ea X (esf + dra)
earaf +ri(esf +0r2) * '

Comparing the corresponding entries in the position (11) shows that e; -6 =
0. This means exactly that § € eak + e3k. Further, comparing the vectors
in the position (12) leads to the equality d = f. Finally, comparing vectors
in the position (21) yields e; x v = 0 which means that v € ke;. Collecting
all this information, one concludes ¥ € ZUT (k) which completes the proof
of the lemma. ]

After all these preparations, Part (i) of Theorem 1 can be proved. This
will be done as the demonstration of the following proposition.

Proposition 1. Let k be an associative and commutative integral domain
with 1. If 141 # 0, then the loop G(k) does not have any subloop isomorphic
to a group of class H.

Proof. The ring k can be considered as a subring of a field which, due to
the condition 1 4+ 1 # 0, must have characteristic # 2. So from the very
beginning one can assume that & is a field and char & # 2. Suppose that
G(k) has a subloop G isomorphic to a group of class H. By Item (b) in
Definition, G' contains a proper subloop X isomorphic to a class-2 nilpotent
subgroup. By Lemma 4, X is either isomorphic to a subgroup of the group
GLa(k1), where ki is a field extension of k with [k; : k] < 2 or there is
Y € Ga(k) such that XV < ZUT (k).

Suppose that X is isomorphic to a subgroup of GLs(k;). Consider the
ki-algebra O(k1) = O(k) ®j k1. One has X < G < G(k) < G(k1), and
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following the line of Lemma 4 proof, namely, those places of the proof
which address Possibilities (i) and (ii) of Lemma 1, it is readily seen that
X is a subset of the subalgebra A" of O(k;) such that A’ is isomorphic to
Ms(k1). So there is ¢ € Ga(k1) with X¥ < G[l](kl), where

G ={ (o0, ")

([4], p. 17, Corollary 1.7). Using again the proof of Lemma 4, one can
deduce that G < Gyj(k1), that is, that G is isomorphic to a subgroup of
G Ly(ky). But this contradicts Item (c) in Definition. Hence X¥ < ZUT (k)
for some 1 € Ga(k), and the argument employing equation (3) shows that
GY < ZUT(k). Therefore, G is isomorphic to a class-2 nilpotent group
which contradicts Item (a) in Definition. This final contradiction proves
the proposition completely. O

a,b,c,dekl,ad—bc#O}

Now an example that illustrates the result just proved will be given.

Example 1. Let Q be the field of all rational numbers, and B the subset of
Q consisted of all numbers +11",n € Z. Let 6 be a root of the polynomial
A2 +11 € Q[)\]. Clearly B is a subgroup of Q(6)*. Let

0 0 0 0
hl_(o 9>’ h2_<9 o)‘
Then H = Bls U Bhy U Bho U Bhihs is a class-2 nilpotent subgroup of

GL2(Q(#)). Though H is not isomorphic to any subgroup of GLy(Q), H
can be realized as a subloop of G(Q). Indeed, if

o 1 e1 + 3eg + 2e3 o — 0 e
L= 61—362—263 —1 ’ 2= —e1 0 ’

and X = (z1,x2), then the correspondence xy +— hy,z9 — (—11)"1hihy
and b — b for every b € B, determines an isomorphism of X onto H. The
subalgebra Ay = Q12 + Qx1 + Qo + Qx122 of O(Q) is isomorphic to the
quaternion division algebra (%) and is of the type (%, x1, x2>.
One has Ay ®g Q(8) = M>(Q(¢)). By [4], Corollary 1.7 on p. 17, there
is an automorphism ¢ of the algebra O(Q(f)) = O(Q) ®g Q(#) such that

X? < Gpy(Q(0)).
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The following situation can serve as an application of Proposition 1.

Let R be an associative and commutative ring with 1 and let FAf fa11(R)
denote the subgroup of GL3(R) generated by the set t12(R)Uta; (R)Ut13(1).
It is claimed that FAf fo1(R) is a group of class H.

The center of EAf fay1(R) is trivial. Therefore, Item (a) of Definition is
satisfied. Since UT3(R) < FAf for1(R), Item (b) in Definition also holds.
Now suppose that there exists a field F' such that EAf foy1(R) is isomor-
phic to subgroup H of GLy(F'). Then GLy(F') must have a subgroup Hy
isomorphic to UT3(R). In particular, Hy is class-2 nilpotent. If 2 is an alge-
braic closure of F', then Hy, being a class-2 nilpotent subgroup of G L2(12),
is an irreducible subgroup of GLy(f2). Therefore, by Corollary 2 [5], p. 209,
char  # 2, hence char F' # 2 too. By Lemma 2, Hy contains the matrix
—12 which commutes with all elements of GLo(F'), in particular, with all
elements of H. Since char F' # 2, —15 # 15 which means that the center of
H is nontrivial. This contradiction shows that Item (c) in Definition holds,
and consequently FAffor1(R) € H. Now Proposition 1 shows that the
following assertion is valid.

Corollary 1. Let k and R be associative and commutative rings with iden-
tities, the identity of k being designated by 1. Suppose that k is an integral
domain and that 1+1 # 0. Then the loop G(k) does not contain any subloop
isomorphic to the group EAf for1(R).

Note that it is this corollary that has been the initial point for writing
the present paper.

The proof of Part (i7) of Theorem 1 is given as the proof of the following
proposition.

Proposition 2. Let k be an associative and commutative integral domain
with 1. Suppose that 1 +1 = 0. Then G(k) contains no subloop isomorphic
to a class-2 milpotent group.

Proof. One may assume that k is a field of characteristic 2. Suppose that
G (k) has a subloop G which is isomorphic to a class-2 nilpotent group. Then
G contains not permutable elements g1, go such that both of them commutes
with their group commutator [g1, go] or, which is equivalent, with §1g29192.
Note that to satisfy the latter condition each g; can be replaced by any of
its scalar multiples. So if tr(g;) # 0, one may assume that tr(g;) = 1. Thus
interchanging, if necessary, g1 and go, there are three cases to consider each
to be handled separately.
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(i) tr(g1) = tr(g2) = 1.
(ii) tr(g1) =1,tr(g2) = 0.
(iii) tr(g1) = tr(g2) = 0.
Case (i). Here g = g; + rils for some r; € k* and g; = 1o+ g;(i = 1, 2).

Therefore,
G1929192 = 7192 + 929192 + 919291 2. (4)

Denoting by r the trace of the product g;g2, one obtains

9291 = (r+1)1a + g1 + g2 + 9192

So
929192 = rg2 + 291 + 1r2lo, (5)

hence
91929192 = 19192 + rirala. (6)

Substituting (5) and (6) into (4), one gets
91929192 = r1g2 + 192 + r2g1 + r2la + rgige + rirala.

Since go commutes with g1g29192,

9291(rela +7rg2) = g1(rela +792)g2 = g1g2(r2la + rga2).

This shows that if rols 4+ 7go were invertible, then go would commute with
g1 which is impossible. Thus n(rsly + rg2) = 0 whence it follows that
r2 + 7 +ry = 0. Observe further that the roles of g; and gs are completely
symmetric which implies that 72> +r 4+ = 0, and so |, = ro = r2 + 7.
It follows that if h; = g; + rla(i = 1,2), then h; is an idempotent of
O(k‘) Therefore, if hy = (’l“ + 1)12 4+ h1 + hg, then hg € (k‘lQ + k‘hl)J‘
and the subalgebra A = kly + khy 4 ha(kla + khy) of O(k) is isomorphic
to the associative algebra Mas(k) (see, 6], pp. 43-45). Since g1,g2 € A,
the subloop (g1, g2) of G is isomorphic to a class-2 nilpotent subgroup of
GLy(k). According to [5], Corollary 2, p. 209, this is false. So Case (i) is
impossible.

Case (ii). Here g1 = 1a+9g1,92 = g2, 9% = g1+7112,95 = rola, r1, 70 € k*.
Following the line of the consideration in the previous case, one obtains

§1G29192 =192 + g1m2 + r2la + rgige + rirala,
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where r is the trace of gi1g2. Since go commutes with g1G29192, g2(g172 +
rg9192) = (9172 + rg192)g2, whence ro = r2, and in particular » # 0. This,
together with the fact that g; and g1g29192 commute, implies g1 (g2+g192) =
(92+9192)g1 which can be written as (124+g1)g192 = (12+91)g291. It follows
that n(la +¢1) = 0, or (12 +g1)(12 + g1 + 12) = (12 + g1)g1 = 02. But
g1 € G(k), and so g1 = 19 which is false. So Case (ii) is impossible.

Case (iii). Here g? = r;ly with r; € k* and ¢; = ¢;(i = 1,2). The
condition that g commutes with g1g29192 = 91929192 leads to the equation

1929192 = 9192919291 - (7)

Denoting the trace of g1g2 by r, one has gag192 = 792 + 9172, g192919291 =
r2g14+rr1ga+r17291. Then (7) becomes r1(rga+gima) = r2g1+rriga+riragi,
whence r2g; = 0o which is false. Case (iii) is impossible. This completes
the proof of the proposition. O

Corollary 2. Let k and R be associative commutative rings with identity
elements. Suppose that 1 is the identity of k and that 1 +1 = 0. Suppose
also that k is an integral domain. Then the loop G(k) does not contain any
subloop isomorphic to the group UT3(R).
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