On the nonexistence of certain associative subloops in the loop of invertible elements of the split alternative Cayley-Dickson algebra

Evgenii L. Bashkirov

Abstract

Let $O(k)$ be the octonion Cayley-Dickson algebra over a commutative associative ring k with 1 . Let $G(k)$ be the Moufang loop of invertible elements of $O(k)$. Let \mathcal{H} be a class of groups such that a group G is a member of \mathcal{H} if and only if G satisfies the following three conditions: (a) G is not class-2 nilpotent. (b) G has a proper class- 2 nilpotent subgroup. (c) G is not isomorphic to any subgroup of the group $G L_{2}(F)$ for any field F. The theorem proved in the paper states that if k is an integral domain with $1+1 \neq 0$, then $G(k)$ does not contain any subloop isomorphic to a group of class \mathcal{H}, while if k is an integral domain such that $1+1=0$, then $G(k)$ contains no subloop isomorphic to a class-2 nilpotent group at all.

Let $G(k)$ denote the loop of invertible elements in the split alternative Cayley-Dickson algebra over a field k. If the characteristic of k is not 2 , then $G(k)$ has a subloop isomorphic to the group $U T_{3}(k)$ of all 3×3 upper unitriangular matrices over k ([1]). A natural question arises then, namely, whether $G(k)$ contains a subloop isomorphic to a group which is, in a sense, more larger than $U T_{3}(k)$. The present paper answers this question, actually, in the negative using as a working tool a class of groups that contain a class- 2 nilpotent group as a proper subgroup. More precisely,

Definition. A group G belongs to the class \mathcal{H} if and only if G satisfies the following three conditions:
(a) G is not class-2 nilpotent.

2010 Mathematics Subject Classification: 20N05, 17D05, 20F18
Keywords: Moufang loops, Alternative algebras, Nilponent groups
(b) G has a proper class-2 nilpotent subgroup.
(c) G is not isomorphic to any subgroup of the group $G L_{2}(F)$ for every field F.

The main purpose of the paper is to prove the following theorem which demonstrates, in particular, a distinction between the case involving fields of characteristic not 2 and that in which fields of characteristic 2 appear.

Theorem 1. Let k be an associative and commutative integral domain with 1, $O(k)$ the alternative split Cayley-Dickson algebra over k and $G(k)$ a Moufang loop of invertible elements in $O(k)$.
(i) If $1+1 \neq 0$, then the loop $G(k)$ does not contain any subloop isomorphic to a group of class \mathcal{H}.
(ii) If $1+1=0$, then the loop $G(k)$ contains no subloop isomorphic to a class-2 nilpotent subgroup.

Before exposing proof of the theorem a notational system will be established.

Let k be a commutative associative ring with 1 . Then k^{*} is the multiplicative group of all invertible elements of k.

If $a \in k$ and $S, T \subseteq k$, then $a S=\{a s \mid s \in S\}$ and $S+T=\{s+t \mid s \in$ $S, t \in T\}$.

Let n be an integer, $n \geqslant 2$. Then $M_{n}(k)$ is the associative ring of $n \times n$ matrices with entries in k. As usual, $G L_{n}(k)$ denotes the group $M_{n}(k)^{*}$, the general linear group of degree n over k.

If 1_{n} is the identity matrix of degree n and $a \in k$, then $t_{i j}(a)$ denotes the matrix $1_{n}+a e_{i j}$, where $e_{i j}$ is the $n \times n$ matrix which has 1 in its (i, j) position and zeros elsewhere. If $S \subseteq k$, then $t_{i j}(S)=\left\{t_{i j}(a) \mid a \in S\right\}$.
k^{3} is the standard free k-module formed by column vectors of length 3 with components in k. The elements

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

of k^{3} are denoted by e_{1}, e_{2}, e_{3}, respectively. The zero element of k^{3} is designated as $\mathbf{0}$.

If $\alpha, \beta \in k^{3}$, then $\alpha \cdot \beta$ and $\alpha \times \beta$ denote the usual dot product and cross product, respectively.
$O(k)$ is the set of all symbols of the form $\left(\begin{array}{cc}a & \alpha \\ \beta & b\end{array}\right)$ with $a, b \in k, \alpha, \beta \in k^{3}$. In $O(k)$, equality, addition and multiplication by elements of k are defined componentwise, whereas the operation of multiplication is given by

$$
\begin{aligned}
&\left(\begin{array}{ll}
a & \alpha \\
\beta & b
\end{array}\right)\left(\begin{array}{ll}
c & \gamma \\
\delta & d
\end{array}\right)=\left(\begin{array}{cc}
a c+\alpha \cdot \delta & a \gamma+\alpha d-\beta \times \delta \\
\beta c+b \delta+\alpha \times \gamma & \beta \cdot \gamma+b d
\end{array}\right), \\
& a, b, c, d \in k, \quad \alpha, \beta, \gamma, \delta \in k^{3} .
\end{aligned}
$$

Under the operations just defined $O(k)$ is an alternative nonassociative k-algebra termed the split Cayley-Dickson algebra (or the octonion one). Elements of $O(k)$ are called octonions.

To avoid a proliferation of symbols, it is convenient to adopt the following convention. The symbol 1_{2} is used to denote the identity of the algebra $O(k)$,

$$
\left(\begin{array}{ll}
1 & \mathbf{0} \\
\mathbf{0} & 1
\end{array}\right)
$$

as well as the identity 2×2 matrix. Also the symbol 0_{2} is used to designate two things: the zero octonion

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

and the zero 2×2 matrix. The convention should lead to no ambiguity if one attends closely to the context in which the notation is employed.

The trace $\operatorname{tr}(x)$ and the norm $n(x)$ of the octonion

$$
x=\left(\begin{array}{cc}
a & \alpha \\
\beta & b
\end{array}\right) \in O(k)
$$

are defined to be $a+b$ and $a b-\alpha \cdot \beta$, respectively.
$G(k)$ is the (Moufang) loop of octonions of $O(k)$ whose norms lie in k^{*}. The norm n determines the bilinear form $(x, y)=n(x+y)-n(x)-n(y)$ on the k-module $O(k)$. Throughout the article, all metric concepts mentioned are related to the bilinear form (x, y) determined by the norm mapping $n: O(k) \rightarrow k$. In particular, if $Y \subseteq O(k)$, then the orthogonal complement Y^{\perp} is defined to be the set $\{x \in O(k) \mid(x, y)=0$ for all $y \in Y\}$.

The algebra $O(k)$ admits an involution ${ }^{-}: O(k) \rightarrow O(k)$ given by

$$
\bar{x}=\left(\begin{array}{cc}
b & -\alpha \\
-\beta & a
\end{array}\right) \text {, whenever } x=\left(\begin{array}{cc}
a & \alpha \\
\beta & b
\end{array}\right) \quad a, b \in k, \quad \alpha, \beta \in k^{3} .
$$

Borrowing the notation from the theory of algebraic groups, the automorphism group of the algebra $O(k)$ is denoted by $G_{2}(k)$.

Let $U T(k)$ and $Z U T(k)$ be the subloops of $G(k)$ defined by

$$
\begin{aligned}
U T(k) & =\left\{\left.\left(\begin{array}{cc}
1 & a_{2} e_{1} \\
a_{3} e_{2}+a_{4} e_{3} & 1
\end{array}\right) \right\rvert\, a_{i} \in k\right\}, \\
Z U T(k) & =\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} e_{1} \\
a_{3} e_{2}+a_{4} e_{3} & a_{1}
\end{array}\right) \right\rvert\, a_{1} \in k^{*}, a_{2}, a_{3}, a_{4} \in k\right\},
\end{aligned}
$$

and let $N_{0}(k)$ and $N(k)$ be the subgroups of $G L_{3}(k)$ such that

$$
\begin{aligned}
& N_{0}(k)=\left\{\left.\left(\begin{array}{ccc}
r & 2 a & b \\
0 & r & c \\
0 & 0 & r
\end{array}\right) \right\rvert\, r \in k^{*}, a, b, c \in k\right\}, \\
& N(k)=\left\{\left.\left(\begin{array}{ccc}
1 & 2 a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in k\right\} .
\end{aligned}
$$

A direct calculation shows that the restriction of multiplication in $O(k)$ to $Z U T(k)$ is associative, and since $U T(k) \subseteq Z U T(k)$, this is true also for $U T(k)$. Moreover, the mapping $\eta: Z U T(k) \rightarrow N_{0}(k)$ defined by

$$
\left(\begin{array}{cc}
a_{1} & a_{2} e_{1} \\
a_{3} e_{2}+a_{4} e_{3} & a_{1}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
a_{1} & 2 a_{3} & a_{3} a_{4} a_{1}^{-1}-a_{2} \\
0 & a_{1} & a_{4} \\
0 & 0 & a_{1}
\end{array}\right),
$$

satisfies for all $x, y \in Z U T(k)$ the condition $(x y)^{\eta}=x^{\eta} y^{\eta}$, where the multiplication on the right-hand side is performed in the group $G L_{3}(k)$. This means that η is a group homomorphism from $Z U T(k)$ onto $N_{0}(k)$. The kernel of η is isomorphic to the subgroup $k[2]$ of the additive group of k formed by all $a \in k$ with $2 a=0$. Thus $N_{0}(k)$ is isomorphic to the quotient $Z U T(k) / k[2]$ and the restriction of η to $U T(k)$ determines an isomorphism of $U T(k) / k[2]$ onto $N(k)$. If $2 \in k^{*}$, then $k[2]=0,2 k=k$, and hence $Z U T(k)$ is isomorphic to the direct product $k^{*} \times U T_{3}(k)$ of the groups k^{*} and $U T_{3}(k)$, whereas $U T(k) \cong U T_{3}(k)$.

If X is a group and $x, x_{1} \in X$, then $x_{1}^{x}=x^{-1} x_{1} x,{ }^{x} x_{1}=x x_{1} x^{-1},\left[x_{1}, x\right]=$ $x_{1}^{-1} x_{1}^{x}$. If $R \subseteq X$, then ${ }^{x} R=\left\{{ }^{x_{r}} \mid r \in R\right\}$.

If X is a loop and M is a subset of X, then $\langle M\rangle$ denotes the subloop of X generated by M.

A series of auxiliary results must be established before giving a direct proof of Theorem 1. The first of these is concerned with the following situation related to general alternative algebras.

Let k be a field of characteristic $\neq 2$ and L an alternative k-algebra with 1. Choose $a_{1}, a_{2}, a \in k$ and suppose that L contains elements y_{1}, y_{2} such that

$$
\begin{equation*}
y_{1}^{2}=a_{1}, \quad y_{2}^{2}=a_{2}, \quad y_{1} y_{2}+y_{2} y_{1}=a \tag{1}
\end{equation*}
$$

It is straightforward to check that the subspace $A=k+k y_{1}+k y_{2}+k y_{1} y_{2}$ of the k-vector space L is a subalgebra of L which is denoted as

$$
\begin{equation*}
\left(\frac{a_{1}, a_{2}, a}{k}, y_{1}, y_{2}\right) . \tag{2}
\end{equation*}
$$

A description of noncommutative algebras (2) is a constituent of the proof of Theorem 1. Certainly, some parts of this description can be extracted from the usual classification of quaternion algebras exposed, for example, in [2], pp. 13-20. However, the full list of subalgebras (2) can not be given within the framework of [2] (mainly, due to the fact that the case $a_{1} a_{2}=a=0$ is excluded in [2]). Therefore, it is desirable to have, at least as a sketch, an argument leading to a full description of subalgebras (2). This is done in Lemma 1 below. The proof of that lemma requires, in turn, the following notations in which some algebras of 2×2 matrices appear.

If x_{0}, x_{1}, x_{2} are indeterminates and $b, c \in k$ are such that the quadratic form $x_{0}^{2}-x_{1}^{2} b-x_{2}^{2} c$ does not represent zero in k, then

$$
D(b, c, k)=\left\{\left.\left(\begin{array}{cc}
r_{0}+r_{1} \sqrt{b} & r_{2}+r_{3} \sqrt{b} \\
c\left(r_{2}-r_{3} \sqrt{b}\right) & r_{0}-r_{1} \sqrt{b}
\end{array}\right) \right\rvert\, r_{i} \in k\right\} .
$$

In other words, $D(b, c, k)$ is the quaternion division algebra $\left(\frac{b, c}{k}\right)$ realized by matrices of degree 2 over the field $k(\sqrt{b})$.

If $b \in k$ is not a square in the field k, then

$$
T_{0}(k(\sqrt{b}))=\left\{\left.\left(\begin{array}{cc}
r_{0}+r_{1} \sqrt{b} & r_{2}+r_{3} \sqrt{b} \\
0 & r_{0}-r_{1} \sqrt{b}
\end{array}\right) \right\rvert\, r_{i} \in k\right\} .
$$

Finally, $T(k)$ denotes the k-algebra of 2×2 upper triangular matrices over k :

$$
T(k)=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in k\right\}
$$

Now the above mentioned description runs as follows.

Lemma 1. Let k be a field of characteristic not $2, L$ an alternative algebra over k with 1 , and $a_{1}, a_{2}, a \in k$. Suppose that L contains elements y_{1}, y_{2} satisfying (1) and let A be the subalgebra of L defined by (2). Suppose that A is noncommutative. Then one of the following holds:
(i) $A \cong M_{2}(k)$.
(ii) $A \cong D(b, c, k)$, where the quadratic form $x_{0}^{2}-x_{1}^{2} b-x_{2}^{2} c$ in x_{0}, x_{1}, x_{2} does not represent 0 in k.
(iii) $A \cong T_{0}(k(\sqrt{b}))$, where b is not a square in k.
(iv) $A \cong T(k)$.
(v) $\operatorname{dim}_{k} A=4$ and $A \cong\left(\frac{1,0,0}{k}, z_{1}, z_{2}\right)$ for some $z_{1}, z_{2} \in L$.
(vi) $A \cong\left(\frac{0,0,0}{k}, z_{1}, z_{2}\right)$ for some $z_{1}, z_{2} \in L$.

Proof. Part one. Consider first the case $a=0$. There are the following three possibilities for a_{1} :
(a) a_{1} is not a square in k,
(b) a_{1} is a nonzero square in k,
(c) $a_{1}=0$.

The corresponding possibilities exist for a_{2} and exchanging, if necessary, y_{1} and y_{2}, one obtains the following six possibilities for the ordered pair $\left(a_{1}, a_{2}\right):$
(1) Both a_{1}, a_{2} are not squares in k.
(2) a_{1} is not a square in k, a_{2} is a nonzero square in k.
(3) a_{1} is not a square in $k, a_{2}=0$.
(4) Both a_{1}, a_{2} are nonzero squares in k.
(5) a_{1} is a nonzero square in $k, a_{2}=0$.
(6) $a_{1}=a_{2}=0$.

These cases are considered separately.
(1) Here $\operatorname{dim}_{k} A=4$ and A is a quaternion algebra in the sense of [2], p.
14. So A is either a division algebra and $A \cong D\left(a_{1}, a_{2}, k\right)$ or $A \cong M_{2}(k)$.
(2) Again A is a quaternion algebra, and since a_{2} is a square in $k^{*}, A \cong$ $M_{2}(k)$.
(3) In this case, $\operatorname{dim}_{k} A=4$ and $A \cong T_{0}\left(k\left(\sqrt{a_{1}}\right)\right)$.
(4) Here again A is a quaternion algebra, A being isomorphic to $M_{2}(k)$.
(5) In this case, the following two possibilities arise for the dimension of A over k : this dimension is equal either to 3 or to 4 . If $\operatorname{dim}_{k} A=3$, then $A \cong T(k)$. If $\operatorname{dim}_{k} A=4$, then setting $z_{1}=y_{1} b_{1}^{-1}$, where $a_{1}=b_{1}^{2}, b_{1} \in k$, and $z_{2}=y_{2}$, one obtains $A \cong\left(\frac{1,0,0}{k}, z_{1}, z_{2}\right)$.
(6) Here A corresponds to the algebra listed in (vi).

Part two. Now consider the case $a \neq 0$. If, under this assumption, $a_{1}=a_{2}=0$, then $\operatorname{dim}_{k} A=4$ and the correspondence $y_{1} \mapsto\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), y_{2} \mapsto$ $\left(\begin{array}{cc}0 & 0 \\ a & 0\end{array}\right)$ determines an isomorphism of A upon $M_{2}(k)$. If $\left(a_{1}, a_{2}\right) \neq(0,0)$, then exchanging, if necessary, y_{1} and y_{2}, one may suppose that $a_{1} \neq 0$ and

$$
A=\left(\frac{a_{1}, a_{1}\left(-1+4 a_{1} a_{2} a^{-2}\right), 0}{k}, y_{1}, y_{1}-2 a_{1} a^{-1} y_{2}\right) .
$$

In particular, if $a_{2}=0$, then $A \cong M_{2}(k)$. If both a_{1}, a_{2} are nonzero, then A is as in $(i)-(v)$ by part one of the proof. The lemma is proved.

The next lemma adjusts Suprunenko's results on class-2 nilpotent linear groups over algebraically closed fields (see, [5], pp.210, 211) to the situation of fields which are not necessarily algebraically closed. For the needs of Theorem 1 proof, the case of linear groups of degree 2 is considered only.

Lemma 2. Let k be a field of characteristic $\neq 2$ and X a class- 2 nilpotent subgroup of $G L_{2}(k)$. Then

$$
X=B 1_{2} \cup B x_{1} \cup B x_{2} \cup B x_{1} x_{2},
$$

where $B \leqslant k^{*}$ with $-1 \in B$, and $x_{1}, x_{2} \in G L_{2}(k)$ are such that $x_{1}^{2}, x_{2}^{2} \in B 1_{2}$ and $x_{2} x_{1}=-x_{1} x_{2}$.

Proof. Let Ω be an algebraic closure of k. For every field F, the group $G L_{2}(F)$ does not possess any reducible class-2 nilpotent subgroup. Therefore X, being a class-2 nilpotent subgroup of $G L_{2}(\Omega)$, is an irreducible
subgroup of $G L_{2}(\Omega)$. If M is a maximal irreducible class-2 nilpotent subgroup of $G L_{2}(\Omega)$ with $M \geqslant X$, then according to Theorem 7 [5], pp. 210, 211, M is conjugate by an element $q \in G L_{2}(\Omega)$ to the group Γ formed by all elements $\lambda a_{1}^{\alpha_{1}} a_{2}^{\alpha_{2}}$, where $\lambda \in \Omega^{*}, \alpha_{1}, \alpha_{2}$ integers, and

$$
a_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad a_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

In other words, $\Gamma=\Omega_{0} \cup \Omega_{1} \cup \Omega_{2} \cup \Omega_{3}$, where $\Omega_{0}=\Omega^{*} 1_{2}, \Omega_{i}=\Omega^{*} a_{i}(i=1,2)$, $\Omega_{3}=\Omega^{*} a_{1} a_{2}$. Choose not permutable $x_{1}, x_{2} \in X$ and let $q_{i}=x_{i}^{q}(i=1,2)$. Then neither q_{1} nor q_{2} can lie in Ω_{0} and also q_{1}, q_{2} can not belong to one and the same set Ω_{i} with $i \in\{1,2,3\}$. Interchanging, if necessary, x_{1} and x_{2} and replacing (again if necessary) the ordered pair x_{1}, x_{2} either by that of $x_{1}, x_{1} x_{2}$ or by $x_{1} x_{2}, x_{1}$, one may assume that $q_{1} \in \Omega_{1}, q_{2} \in \Omega_{2}$. So

$$
q_{1}=\left(\begin{array}{cc}
\omega_{1} & 0 \\
0 & -\omega_{1}
\end{array}\right), \quad q_{2}=\left(\begin{array}{cc}
0 & \omega_{2} \\
\omega_{2} & 0
\end{array}\right)
$$

for some $\omega_{1}, \omega_{2} \in \Omega$. Denote X^{q} by C. Put then

$$
\begin{array}{ll}
B_{0}=\left\{b \in \Omega^{*} \mid b 1_{2} \in C\right\}, & B_{1}=\left\{b \in \Omega^{*} \mid b q_{1} \in C\right\} \\
B_{2}=\left\{b \in \Omega^{*} \mid b q_{2} \in C\right\}, & B_{3}=\left\{b \in \Omega^{*} \mid b q_{1} q_{2} \in C\right\}
\end{array}
$$

and let U be the union $B_{0} 1_{2} \cup B_{1} q_{1} \cup B_{2} q_{2} \cup B_{3} q_{1} q_{2}$. Clearly $U \subseteq C$. The definition of B_{0} implies that $B_{0} \leqslant \Omega^{*}$. Squaring q_{1}, q_{2} and $q_{1} q_{2}$, one gets that $\omega_{1}^{2}, \omega_{2}^{2}$ and -1 are in B_{0}. Observe also that all B_{i} contain 1 . Therefore, since $B_{0} B_{i} \subseteq B_{i}(i=1,2,3), B_{0} \subseteq B_{i}$. On the other hand, $B_{i} B_{i} \subseteq B_{0}$ and again the relation $1 \in B_{i}$ shows that $B_{i} \subseteq B_{0}$ giving then $B_{i}=B_{0}(i=1,2,3)$. Denoting the common value of B_{i} by B, one has

$$
U=B 1_{2} \cup B q_{1} \cup B q_{2} \cup B q_{1} q_{2} .
$$

Now let h be an element of C. Writing

$$
h=\left(\begin{array}{ll}
x & y \\
z & t
\end{array}\right), \quad x, y, z, t \in \Omega,
$$

and denoting $\left[q_{1}, h\right]=q_{1}^{-1} h^{-1} q_{1} h$ by q_{3}, one has

$$
q_{3}=(\operatorname{det} h)^{-1}\left(\begin{array}{cc}
t x+y z & 2 t y \\
2 x z & t x+y z
\end{array}\right) .
$$

Since q_{3} commutes with q_{1} which is diagonal but not scalar, q_{3} must be diagonal itself. It follows that $t y=x z=0$ because char $k \neq 2$. If $x \neq 0$, then

$$
h=\left(\begin{array}{ll}
x & 0 \\
0 & t
\end{array}\right) .
$$

Since $\left[q_{2}, h\right]$ commutes with q_{2}, one obtains $t= \pm x$. If $t=x$, then $h=x 1_{2}$, and $h \in B 1_{2} \subseteq U$. If $t=-x$, then $h q_{1}=x \omega_{1} 1_{2} \in C$, so $x \omega_{1}=b_{0} \in B$. Thus $h=q_{1} b_{0} \omega_{1}^{-2} \in q_{1} B \subseteq U$. Next let $x=0$ and so

$$
h=\left(\begin{array}{ll}
0 & y \\
z & 0
\end{array}\right) .
$$

Since C contains the diagonal matrix

$$
h q_{2}=\left(\begin{array}{cc}
y \omega_{2} & 0 \\
0 & z \omega_{2}
\end{array}\right),
$$

$z= \pm y$. If $z=y$, then $h q_{2}=y \omega_{2} 1_{2}$ and hence $y=z=b_{1} \omega_{2}^{-1}$ with $b_{1} \in B$. This shows $h=q_{2} b_{1} \omega_{2}^{-2} \in q_{2} B \subseteq U$. If $z=-y$, then $h q_{2} q_{1}=$ $y \omega_{2} \omega_{1} 1_{2}$, whence $y=b_{2} \omega_{1}^{-1} \omega_{2}^{-1}$ with $b_{2} \in B$ and $h=q_{1} q_{2} b_{2} \omega_{1}^{-2} \omega_{2}^{-2} \in$ $q_{1} q_{2} B \subseteq U$. Thus $h \in U$ in any case and consequently $C=U$. It follows that $X=B 1_{2} \cup B x_{1} \cup B x_{2} \cup B x_{1} x_{2}$. But $X \leqslant G L_{2}(k)$, so $B \leqslant k^{*}$. Also $x_{i}^{2}=\left({ }^{q} q_{i}\right)^{2}={ }^{q}\left(q_{i}^{2}\right)=\omega_{i}^{2} 1_{2}$, that is, $x_{i}^{2} \in B 1_{2}(i=1,2)$. Finally, $x_{1} x_{2}+x_{2} x_{1}=q\left(q_{1} q_{2}+q_{2} q_{1}\right) q^{-1}=0_{2}$ which completes the proof of the lemma.

The following assertion has a technical character and is used in the subsequent description of subloops of $G(k)$ that are isomorphic to class-2 nilpotent groups.

Lemma 3. Let

$$
x_{1}=\left(\begin{array}{ll}
r & \mathbf{0} \\
\mathbf{0} & s
\end{array}\right), \quad x_{2}=\left(\begin{array}{ll}
u & \rho \\
\pi & v
\end{array}\right)
$$

be elements of $G(k)$ such that $\rho \cdot \pi=0$ with both ρ and π nonzero. If x_{1} and x_{2} are not permutable, then $\left[x_{1}, x_{2}\right]$ does not commute with x_{1}.

Proof. A straightforward calculation gives

$$
\left[x_{1}, x_{2}\right]=\left(\begin{array}{cc}
1 & e \rho \\
f \pi & 1
\end{array}\right)
$$

with $e=u^{-1}\left(1-s r^{-1}\right), f=v^{-1}\left(1-r s^{-1}\right)$. If this commutes with x_{1}, then es $\rho=e r \rho$ and $f r \pi=f s \pi$. Since ρ and π are both nonzero, es $=e r, f r=$ $f s$. But either $e \neq 0$ or $f \neq 0$ for $\left[x_{1}, x_{2}\right] \neq 1_{2}$. Therefore, $r=s$, hence x_{1} commutes with x_{2} which is impossible.

Now the description of subloops of $G(k)$ that are isomorphic to class-2 nilpotent groups can be given for fields k of characteristic $\neq 2$.

Lemma 4. Let k be a field of characteristic $\neq 2$ and $X \leqslant G(k)$. Suppose that X is isomorphic to a class-2 nilpotent group. Then one of the following holds:
(i) X is isomorphic to a subgroup of $G L_{2}\left(k_{1}\right)$ where either $k_{1}=k$ or k_{1} is a quadratic field extension of k.
(ii) There is $\psi \in G_{2}(k)$ such that $X^{\psi} \leqslant Z U T(k)$.

Proof. Choose not permutable $x_{1}, x_{2} \in X$. Since $x_{i} \in O(k), x_{i}^{2}=x_{i} t_{i}+n_{i} 1_{2}$ for some $t_{i} \in k$ and $n_{i} \in k^{*}$. As char $k \neq 2$, one can put $y_{i}=x_{i}-2^{-1} t_{i} 1_{2}$, $a_{i}=4^{-1} t_{i}^{2}+n_{i}$ so that $y_{i}^{2}=a_{i} 1_{2}$. This implies $\bar{y}_{i}=-y_{i}$ and $y_{1} y_{2}+y_{2} y_{1}=$ $a 1_{2}$ with $a \in k$. Let $A=k 1_{2}+k y_{1}+k y_{2}+k y_{1} y_{2}$. By Lemma 1 , one of Possibilities $(i)-(v i)$ listed in that lemma can arise for A.

Suppose first that Possibility (iv) arises. Then there is a ring isomorphism $\chi_{0}:(A,+, \cdot) \rightarrow(T(k),+, \cdot)$. Considering A and $T(k)$ as semigroups (under corresponding multiplications), one obtains a semigroup isomorphism $\tilde{\chi}_{0}:(A, \cdot) \rightarrow(T(k), \cdot)$. Restricting $\tilde{\chi}_{0}$ on A^{*}, the set of invertible elements of A, one has a group homomorphism χ of $\left(A^{*}, \cdot\right)$ into the group of all 2×2 invertible upper triangular matrices over k. Due to the equation $x_{i}=y_{i}+2^{-1} t_{i} 1_{2}$ and since $k 1_{2} \subseteq A$, both x_{1} and x_{2} are in A. Hence $\left\langle x_{1}, x_{2}\right\rangle^{\chi}$ is a reducible class-2 nilpotent subgroup of $G L_{2}(k)$ which is false. Thus Possibility (iv) is in fact impossible. A similar argument shows that Possibility (iii) from Lemma 1 also can not arise.

Now suppose that Possibility (v) from Lemma 1 takes place for A. Assume first that $a \neq 0$. Then if (v) takes place, one may suppose without loss of generality that $a_{1}=b_{1}^{2}, b_{1} \in k^{*}$ and $\left(y_{1}-2 a_{1} a^{-1} y_{2}\right)^{2}=0_{2}$. So replacing X by X^{φ} with a suitable $\varphi \in G_{2}(k)$, one may suppose that

$$
y_{1}=\left(\begin{array}{cc}
b_{1} & \mathbf{0} \\
\mathbf{0} & -b_{1}
\end{array}\right) .
$$

Putting then

$$
y_{1}-2 a_{1} a^{-1} y_{2}=\left(\begin{array}{cc}
c & \gamma \\
\delta & d
\end{array}\right), \quad c, d \in k, \quad \gamma, \delta \in k^{3},
$$

one has $c=d=0$ in view of the equation $y_{1}\left(y_{1}-2 a_{1} a^{-1} y_{2}\right)+\left(y_{1}-\right.$ $\left.2 a_{1} a^{-1} y_{2}\right) y_{1}=0_{2}$. The condition $\left(y_{1}-2 a_{1} a^{-1} y_{2}\right)^{2}=0_{2}$ gives $\gamma \cdot \delta=0$, where γ and δ are both nonzero because $\operatorname{dim}_{k} A=4$. It follows that

$$
y_{2}=\left[y_{1}-\left(y_{1}-2 a_{1} a^{-1} y_{2}\right)\right] \frac{a}{2 a_{1}}=\left(\begin{array}{cc}
\frac{a}{2 b_{1}} & -\gamma \frac{a}{2 b_{1}^{2}} \\
-\delta \frac{a}{2 b_{1}^{2}} & -\frac{a}{2 b_{1}}
\end{array}\right) .
$$

Therefore,

$$
x_{1}=y_{1}+\frac{t_{1}}{2} 1_{2}=\left(\begin{array}{ll}
r & \mathbf{0} \\
\mathbf{0} & s
\end{array}\right),
$$

where $r=b_{1}+2^{-1} t_{1}, s=-b_{1}+2^{-1} t_{1}$, and

$$
x_{2}=y_{2}+\frac{t_{2}}{2} 1_{2}=\left(\begin{array}{ll}
u & \rho \\
\pi & v
\end{array}\right),
$$

for some $u, v \in k$ and $\rho=-2^{-1} \gamma a b_{1}^{-2}, \pi=-2^{-1} \delta a b_{1}^{-2}$. Now observe that both γ and δ are nonzero because $\operatorname{dim}_{k} A=4$. So $\rho \neq 0, \pi \neq 0$ and applying Lemma 3 one obtains a contradiction. A similar argument leads to a contradiction when $a=0$, so Possibility (v) is impossible at all.

Suppose Case (ii) takes place. This means that A is isomorphic to a quaternion division k-algebra $\left(\frac{b, c}{k}\right)$. In particular, the subalgebra A contains 1_{2}, and the restriction of the bilinear form (,) to A is nondegenerate. Thus the subspace A^{\perp} is nondegenerate too and hence it contains v with $n(v) \neq 0$ so that $O(k)=A \oplus v A$. Now let x be an arbitrary element of X. Then $x=$ $a+v b$ with $a, b \in A$ and $\left(x x_{1}\right) x_{2}=x\left(x_{1} x_{2}\right)$. But $\left(x x_{1}\right) x_{2}=a x_{1} x_{2}+v\left(x_{2} x_{1} b\right)$ and $x\left(x_{1} x_{2}\right)=a x_{1} x_{2}+v\left(x_{1} x_{2} b\right)$ (see, [3], p. 26), whence it follows that $v\left(x_{2} x_{1} b\right)=v\left(x_{1} x_{2} b\right)$, and since v is invertible, $x_{2} x_{1} b=x_{1} x_{2} b$. Note that x_{1} and x_{2} are not permutable elements of the class- 2 nilpotent group $\left\langle x_{1}, x_{2}\right\rangle$. According to Lemma 2, x_{1} and x_{2} must anticommute. So $-x_{1} x_{2} b=x_{1} x_{2} b$, and since $x_{1} x_{2}$ is invertible and char $k \neq 2$, one gets $b=0$, hence $x \in A$. Thus $X \subseteq A$, that is, X is isomorphic to a subgroup of $G L_{2}(k(\sqrt{b}))$. In a similar fashion, one can show that X is isomorphic to a subgroup of $G L_{2}(k)$ if Case (i) of Lemma 1 takes place.

It remains to consider the situation when A is as in Possibility ($v i$) of Lemma 1. Using the terminology of [1], this can be expressed by saying
that y_{1} and y_{2} form a half extra-special pair. According to Lemma 5.3 [1], there is $\psi \in G_{2}(k)$ such that

$$
x_{1}^{\psi}=\left(\begin{array}{cc}
r_{1} & \mathbf{0} \\
e_{2} & r_{1}
\end{array}\right), \quad x_{2}^{\psi}=\left(\begin{array}{cc}
r_{2} & \mathbf{0} \\
e_{3} & r_{2}
\end{array}\right), \quad r_{i}=\frac{t_{i}}{2} .
$$

Now let

$$
x^{\psi}=\left(\begin{array}{ll}
f & \gamma \\
\delta & d
\end{array}\right), \quad f, d \in k, \quad \gamma, \delta \in k^{3}
$$

be an element of X^{ψ}. Then $\left(x_{1}^{\psi} x_{2}^{\psi}\right) x^{\psi}=x_{1}^{\psi}\left(x_{2}^{\psi} x^{\psi}\right)$ which leads to the equality

$$
\begin{gather*}
\left(\begin{array}{cc}
r_{1} r_{2} f-e_{1} \cdot \delta & r_{1} r_{2} \gamma-e_{1} d-\left(e_{2} r_{2}+e_{3} r_{1}\right) \times \delta \\
\left(e_{2} r_{2}+e_{3} r_{1}\right) f+\delta r_{1} r_{2}-e_{1} \times \gamma & *
\end{array}\right) \\
=\left(\begin{array}{cc}
r_{1} r_{2} f & r_{1}\left(r_{2} \gamma-e_{3} \times \delta\right)- \\
=\left(e_{2} \times\left(e_{3} f+\delta r_{2}\right)\right. \\
e_{2} r_{2} f+r_{1}\left(e_{3} f+\delta r_{2}\right)
\end{array}\right) . \tag{3}
\end{gather*}
$$

Comparing the corresponding entries in the position (11) shows that $e_{1} \cdot \delta=$ 0 . This means exactly that $\delta \in e_{2} k+e_{3} k$. Further, comparing the vectors in the position (12) leads to the equality $d=f$. Finally, comparing vectors in the position (21) yields $e_{1} \times \gamma=\mathbf{0}$ which means that $\gamma \in k e_{1}$. Collecting all this information, one concludes $x^{\psi} \in Z U T(k)$ which completes the proof of the lemma.

After all these preparations, Part (i) of Theorem 1 can be proved. This will be done as the demonstration of the following proposition.

Proposition 1. Let k be an associative and commutative integral domain with 1 . If $1+1 \neq 0$, then the loop $G(k)$ does not have any subloop isomorphic to a group of class \mathcal{H}.

Proof. The ring k can be considered as a subring of a field which, due to the condition $1+1 \neq 0$, must have characteristic $\neq 2$. So from the very beginning one can assume that k is a field and char $k \neq 2$. Suppose that $G(k)$ has a subloop G isomorphic to a group of class \mathcal{H}. By Item (b) in Definition, G contains a proper subloop X isomorphic to a class-2 nilpotent subgroup. By Lemma $4, X$ is either isomorphic to a subgroup of the group $G L_{2}\left(k_{1}\right)$, where k_{1} is a field extension of k with $\left[k_{1}: k\right] \leqslant 2$ or there is $\psi \in G_{2}(k)$ such that $X^{\psi} \leqslant Z U T(k)$.

Suppose that X is isomorphic to a subgroup of $G L_{2}\left(k_{1}\right)$. Consider the k_{1}-algebra $O\left(k_{1}\right)=O(k) \otimes_{k} k_{1}$. One has $X \leqslant G \leqslant G(k) \leqslant G\left(k_{1}\right)$, and
following the line of Lemma 4 proof, namely, those places of the proof which address Possibilities (i) and (ii) of Lemma 1, it is readily seen that X is a subset of the subalgebra A^{\prime} of $O\left(k_{1}\right)$ such that A^{\prime} is isomorphic to $M_{2}\left(k_{1}\right)$. So there is $\varphi \in G_{2}\left(k_{1}\right)$ with $X^{\varphi} \leqslant G_{[1]}\left(k_{1}\right)$, where

$$
G_{[1]}\left(k_{1}\right)=\left\{\left.\left(\begin{array}{cc}
a & b e_{1} \\
c e_{1} & d
\end{array}\right) \right\rvert\, a, b, c, d \in k_{1}, a d-b c \neq 0\right\}
$$

([4], p. 17, Corollary 1.7). Using again the proof of Lemma 4, one can deduce that $G \leqslant G_{[1]}\left(k_{1}\right)$, that is, that G is isomorphic to a subgroup of $G L_{2}\left(k_{1}\right)$. But this contradicts Item (c) in Definition. Hence $X^{\psi} \leqslant Z U T(k)$ for some $\psi \in G_{2}(k)$, and the argument employing equation (3) shows that $G^{\psi} \leqslant Z U T(k)$. Therefore, G is isomorphic to a class-2 nilpotent group which contradicts Item (a) in Definition. This final contradiction proves the proposition completely.

Now an example that illustrates the result just proved will be given.
Example 1. Let \mathbb{Q} be the field of all rational numbers, and B the subset of \mathbb{Q} consisted of all numbers $\pm 11^{n}, n \in \mathbb{Z}$. Let θ be a root of the polynomial $\lambda^{2}+11 \in \mathbb{Q}[\lambda]$. Clearly B is a subgroup of $\mathbb{Q}(\theta)^{*}$. Let

$$
h_{1}=\left(\begin{array}{cc}
\theta & 0 \\
0 & -\theta
\end{array}\right), \quad h_{2}=\left(\begin{array}{ll}
0 & \theta \\
\theta & 0
\end{array}\right) .
$$

Then $H=B 1_{2} \cup B h_{1} \cup B h_{2} \cup B h_{1} h_{2}$ is a class-2 nilpotent subgroup of $G L_{2}(\mathbb{Q}(\theta))$. Though H is not isomorphic to any subgroup of $G L_{2}(\mathbb{Q}), H$ can be realized as a subloop of $G(\mathbb{Q})$. Indeed, if

$$
x_{1}=\left(\begin{array}{cc}
1 & e_{1}+3 e_{2}+2 e_{3} \\
e_{1}-3 e_{2}-2 e_{3} & -1
\end{array}\right), \quad x_{2}=\left(\begin{array}{cc}
0 & e_{1} \\
-e_{1} & 0
\end{array}\right),
$$

and $X=\left\langle x_{1}, x_{2}\right\rangle$, then the correspondence $x_{1} \mapsto h_{1}, x_{2} \mapsto(-11)^{-1} h_{1} h_{2}$ and $b \mapsto b$ for every $b \in B$, determines an isomorphism of X onto H. The subalgebra $A_{0}=\mathbb{Q} 1_{2}+\mathbb{Q} x_{1}+\mathbb{Q} x_{2}+\mathbb{Q} x_{1} x_{2}$ of $O(\mathbb{Q})$ is isomorphic to the quaternion division algebra $\left(\frac{-11,-1}{\mathbb{Q}}\right)$ and is of the type $\left(\frac{-11,-1,0}{\mathbb{Q}}, x_{1}, x_{2}\right)$. One has $A_{0} \otimes_{\mathbb{Q}} \mathbb{Q}(\theta) \cong M_{2}(\mathbb{Q}(\theta))$. By [4], Corollary 1.7 on p. 17, there is an automorphism φ of the algebra $O(\mathbb{Q}(\theta)) \cong O(\mathbb{Q}) \otimes \mathbb{Q} \mathbb{Q}(\theta)$ such that $X^{\varphi} \leqslant G_{[1]}(\mathbb{Q}(\theta))$.

The following situation can serve as an application of Proposition 1.
Let R be an associative and commutative ring with 1 and let $E A f f_{2+1}(R)$ denote the subgroup of $G L_{3}(R)$ generated by the set $t_{12}(R) \cup t_{21}(R) \cup t_{13}(1)$. It is claimed that $E A f f_{2+1}(R)$ is a group of class \mathcal{H}.

The center of $E A f f_{2+1}(R)$ is trivial. Therefore, Item (a) of Definition is satisfied. Since $U T_{3}(R) \leqslant E A f f_{2+1}(R)$, Item (b) in Definition also holds. Now suppose that there exists a field F such that $E A f f_{2+1}(R)$ is isomorphic to subgroup H of $G L_{2}(F)$. Then $G L_{2}(F)$ must have a subgroup H_{0} isomorphic to $U T_{3}(R)$. In particular, H_{0} is class- 2 nilpotent. If Ω is an algebraic closure of F, then H_{0}, being a class- 2 nilpotent subgroup of $G L_{2}(\Omega)$, is an irreducible subgroup of $G L_{2}(\Omega)$. Therefore, by Corollary 2 [5], p. 209, char $\Omega \neq 2$, hence char $F \neq 2$ too. By Lemma $2, H_{0}$ contains the matrix -1_{2} which commutes with all elements of $G L_{2}(F)$, in particular, with all elements of H. Since char $F \neq 2,-1_{2} \neq 1_{2}$ which means that the center of H is nontrivial. This contradiction shows that Item (c) in Definition holds, and consequently $E A f f_{2+1}(R) \in \mathcal{H}$. Now Proposition 1 shows that the following assertion is valid.

Corollary 1. Let k and R be associative and commutative rings with identities, the identity of k being designated by 1 . Suppose that k is an integral domain and that $1+1 \neq 0$. Then the loop $G(k)$ does not contain any subloop isomorphic to the group $E A f f_{2+1}(R)$.

Note that it is this corollary that has been the initial point for writing the present paper.

The proof of Part (ii) of Theorem 1 is given as the proof of the following proposition.

Proposition 2. Let k be an associative and commutative integral domain with 1 . Suppose that $1+1=0$. Then $G(k)$ contains no subloop isomorphic to a class-2 nilpotent group.

Proof. One may assume that k is a field of characteristic 2. Suppose that $G(k)$ has a subloop G which is isomorphic to a class-2 nilpotent group. Then G contains not permutable elements g_{1}, g_{2} such that both of them commutes with their group commutator $\left[g_{1}, g_{2}\right]$ or, which is equivalent, with $\bar{g}_{1} \bar{g}_{2} g_{1} g_{2}$. Note that to satisfy the latter condition each g_{i} can be replaced by any of its scalar multiples. So if $\operatorname{tr}\left(g_{i}\right) \neq 0$, one may assume that $\operatorname{tr}\left(g_{i}\right)=1$. Thus interchanging, if necessary, g_{1} and g_{2}, there are three cases to consider each to be handled separately.
(i) $\operatorname{tr}\left(g_{1}\right)=\operatorname{tr}\left(g_{2}\right)=1$.
(ii) $\operatorname{tr}\left(g_{1}\right)=1, \operatorname{tr}\left(g_{2}\right)=0$.
(iii) $\operatorname{tr}\left(g_{1}\right)=\operatorname{tr}\left(g_{2}\right)=0$.

Case (i). Here $g_{i}^{2}=g_{i}+r_{i} 1_{2}$ for some $r_{i} \in k^{*}$ and $\bar{g}_{i}=1_{2}+g_{i}(i=1,2)$. Therefore,

$$
\begin{equation*}
\bar{g}_{1} \bar{g}_{2} g_{1} g_{2}=r_{1} g_{2}+g_{2} g_{1} g_{2}+g_{1} g_{2} g_{1} g_{2} \tag{4}
\end{equation*}
$$

Denoting by r the trace of the product $g_{1} g_{2}$, one obtains

$$
g_{2} g_{1}=(r+1) 1_{2}+g_{1}+g_{2}+g_{1} g_{2}
$$

So

$$
\begin{equation*}
g_{2} g_{1} g_{2}=r g_{2}+r_{2} g_{1}+r_{2} 1_{2} \tag{5}
\end{equation*}
$$

hence

$$
\begin{equation*}
g_{1} g_{2} g_{1} g_{2}=r g_{1} g_{2}+r_{1} r_{2} 1_{2} \tag{6}
\end{equation*}
$$

Substituting (5) and (6) into (4), one gets

$$
\bar{g}_{1} \bar{g}_{2} g_{1} g_{2}=r_{1} g_{2}+r g_{2}+r_{2} g_{1}+r_{2} 1_{2}+r g_{1} g_{2}+r_{1} r_{2} 1_{2}
$$

Since g_{2} commutes with $\bar{g}_{1} \bar{g}_{2} g_{1} g_{2}$,

$$
g_{2} g_{1}\left(r_{2} 1_{2}+r g_{2}\right)=g_{1}\left(r_{2} 1_{2}+r g_{2}\right) g_{2}=g_{1} g_{2}\left(r_{2} 1_{2}+r g_{2}\right)
$$

This shows that if $r_{2} 1_{2}+r g_{2}$ were invertible, then g_{2} would commute with g_{1} which is impossible. Thus $n\left(r_{2} 1_{2}+r g_{2}\right)=0$ whence it follows that $r^{2}+r+r_{2}=0$. Observe further that the roles of g_{1} and g_{2} are completely symmetric which implies that $r^{2}+r+r_{1}=0$, and so $r_{1}=r_{2}=r^{2}+r$. It follows that if $h_{i}=g_{i}+r 1_{2}(i=1,2)$, then h_{i} is an idempotent of $O(k)$. Therefore, if $h_{3}=(r+1) 1_{2}+h_{1}+h_{2}$, then $h_{3} \in\left(k 1_{2}+k h_{1}\right)^{\perp}$ and the subalgebra $A=k 1_{2}+k h_{1}+h_{3}\left(k 1_{2}+k h_{1}\right)$ of $O(k)$ is isomorphic to the associative algebra $M_{2}(k)$ (see, [6], pp. 43-45). Since $g_{1}, g_{2} \in A$, the subloop $\left\langle g_{1}, g_{2}\right\rangle$ of G is isomorphic to a class-2 nilpotent subgroup of $G L_{2}(k)$. According to [5], Corollary 2, p. 209, this is false. So Case (i) is impossible.

Case (ii). Here $\bar{g}_{1}=1_{2}+g_{1}, \bar{g}_{2}=g_{2}, g_{1}^{2}=g_{1}+r_{1} 1_{2}, g_{2}^{2}=r_{2} 1_{2}, r_{1}, r_{2} \in k^{*}$. Following the line of the consideration in the previous case, one obtains

$$
\bar{g}_{1} \bar{g}_{2} g_{1} g_{2}=r g_{2}+g_{1} r_{2}+r_{2} 1_{2}+r g_{1} g_{2}+r_{1} r_{2} 1_{2}
$$

where r is the trace of $g_{1} g_{2}$. Since g_{2} commutes with $\bar{g}_{1} \bar{g}_{2} g_{1} g_{2}, g_{2}\left(g_{1} r_{2}+\right.$ $\left.r g_{1} g_{2}\right)=\left(g_{1} r_{2}+r g_{1} g_{2}\right) g_{2}$, whence $r_{2}=r^{2}$, and in particular $r \neq 0$. This, together with the fact that g_{1} and $\bar{g}_{1} \bar{g}_{2} g_{1} g_{2}$ commute, implies $g_{1}\left(g_{2}+g_{1} g_{2}\right)=$ $\left(g_{2}+g_{1} g_{2}\right) g_{1}$ which can be written as $\left(1_{2}+g_{1}\right) g_{1} g_{2}=\left(1_{2}+g_{1}\right) g_{2} g_{1}$. It follows that $n\left(1_{2}+g_{1}\right)=0$, or $\left(1_{2}+g_{1}\right)\left(1_{2}+g_{1}+1_{2}\right)=\left(1_{2}+g_{1}\right) g_{1}=0_{2}$. But $g_{1} \in G(k)$, and so $g_{1}=1_{2}$ which is false. So Case (ii) is impossible.

Case (iii). Here $g_{i}^{2}=r_{i} 1_{2}$ with $r_{i} \in k^{*}$ and $\bar{g}_{i}=g_{i}(i=1,2)$. The condition that g_{1} commutes with $\bar{g}_{1} \bar{g}_{2} g_{1} g_{2}=g_{1} g_{2} g_{1} g_{2}$ leads to the equation

$$
\begin{equation*}
r_{1} g_{2} g_{1} g_{2}=g_{1} g_{2} g_{1} g_{2} g_{1} \tag{7}
\end{equation*}
$$

Denoting the trace of $g_{1} g_{2}$ by r, one has $g_{2} g_{1} g_{2}=r g_{2}+g_{1} r_{2}, g_{1} g_{2} g_{1} g_{2} g_{1}=$ $r^{2} g_{1}+r r_{1} g_{2}+r_{1} r_{2} g_{1}$. Then (7) becomes $r_{1}\left(r g_{2}+g_{1} r_{2}\right)=r^{2} g_{1}+r r_{1} g_{2}+r_{1} r_{2} g_{1}$, whence $r^{2} g_{1}=0_{2}$ which is false. Case (iii) is impossible. This completes the proof of the proposition.

Corollary 2. Let k and R be associative commutative rings with identity elements. Suppose that 1 is the identity of k and that $1+1=0$. Suppose also that k is an integral domain. Then the loop $G(k)$ does not contain any subloop isomorphic to the group $U T_{3}(R)$.

References

[1] E.L. Bashkirov, On subloops of the loop of invertible elements of the split Cayley-Dickson algebra over a field that contain a subloop of transvections, Commun. Algebra, 50 (2022), no. 4, 2083-2108.
[2] R.S. Pierce, Associative algebras. Graduate Texts in Mathematics, 88, Springer Verlag, New York, Berlin (1988).
[3] R. D. Shafer, An introduction to nonassociative algebras, Academic Press, New York (1966).
[4] T.A. Springer, F.D. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer Verlag, Berlin, Heidelberg, New York (2000).
[5] D.A. Suprunenko, Matrix groups, Transl. Math. Monogr., 45, Amer. Math. Soc., Providence, Rhode Island (1976).
[6] K.A. Zhevlakov, A. M.Slin'ko, I.P. Shestakov, A.I. Shirshov, Rings that are nearly associative, Academic Press, New York (1982).

Received March 21, 2023
Kalinina str 25, ap. 24
Minsk 220012
Belarus
E-mail: zh.bash@mail.ru

