https://doi.org/10.56415/qrs.v31.15

On topological Menger n-groupoids

Hamza Boujouf

Abstract. We present the necessary and sufficient conditions for the existence of leftinvariant measure on a topological Menger *n*-groupoid.

1. Introduction

The terminology and notations used in this article are are typical for this theory (see for example [3]). A nonempty set X with an *n*-ary operation f is an *n*-semigroup if this operation is associative, i.e.

$$f(f(x_1^n), x_{n+1}^{2n-1}) = f(x_1^j, f(x_{j+1}^{j+n}), x_{j+n+1}^{2n-1})$$

holds for all j = 1, 2, ..., n - 1 and $x_1^{2n-1} \in X$.

If the operation f is superassociative, i.e. if

$$f(f(x_1^n), y_1^{n-1}) = f(x_1, f(x_2, y_1^{n-1}), \dots, f(x_n, y_1^{n-1}))$$

holds for all $x_1^n, y_1^{n-1} \in X$, the (X, f) is called a Menger *n*-groupoid.

We start with some examples of Menger n-groupoids.

- 1. The set \mathbb{R} of real number with the 4-ary operation f defined by $f(x_1^4) = x_1 + x_2 x_3 + x_4$.
- 2. The set $(R, +, \cdot)$ with the operation $f(x_1^3) = x_1(x_2 + x_3)$.
- 3. The group \mathbb{Z}_n with the operation $f(x_1^n) = x_1 + x_2 + \ldots + x_n \pmod{n}$.
- 4. The set \mathbb{R} of real number with the operation $f(x_1^n) = \frac{x_1 + x_2 + \dots + x_n}{n}$.

2010 Mathematics Subject Classification: 20N15, 28C10, 22A30

Keywords: Menger n-groupoid, n-semigroup, topological n-group, invariant measure.

More examples can be found in [3].

Recall that an element e of a Menger n-groupoid (X, f) is called *spacial* if $f(x, \stackrel{n-1}{e}) = f(e, \stackrel{n-1}{x}) = x$ holds for all $x \in X$. A Menger n-groupoid is cancellative if all its translations $t_k(x) = f(a_1^{k-1}, x, a_{k+1}^n)$ are injective. A Menger n-groupoid in which all translations t_1 (respetively, t_n) are injective is called *left* (respectively, *right*) cancellative. A Menger n-groupoid (X, f)is called *i-solvable*, if the equation $f(a_1^{k-1}, x, a_k^{n-1}) = b$ is uniquely solvable for k = 1 and k = i + 1. A nonempty subset $I \subset X$ is called a k-ideal of (X, f), if $x_k \in I$ implies $f(x_1^{k-1}, x_k, x_{k+1}^n) \in I$, for all $x_1^{k-1}, x_{k+1}^n \in X$. If Iis a k-ideal for each $1 \leq k \leq n$, then it is valled an *ideal*.

In the topological Menger n-groupoid (X, f, τ) the collection of all compact subsets of X is denoted by $\mathcal{K}(X)$, and the smallest σ -ring containing $\mathcal{K}(X)$ is denote by $\mathcal{B}(X)$; the elements of $\mathcal{B}(X)$ are called Borel sets. A measure μ on $\mathcal{B}(X)$ such that $\mu(C) < +\infty$ for any $C \in \mathcal{K}(X)$ and such that any $a \in X$ has an neighborhood U with

$$\mu_*(U) = \sup\{\mu(C) \mid \mathcal{K}(C) \ni C \subset U\} < +\infty$$

is called a *Borel measure*. If for any $B \in \mathcal{B}(X)$, $\mu(B) = \mu_*(B)$ the Borel measure is called *inner regular*. The set $\{f(x_1^{i-1}, k, x_{i+1}^{n-1}) | k \in K\}$, where $K \subset X$, $x_1^n \in X$, will be denoted by $[x_1^{i-1}, K, x_{i+1}^n]$. A Borel measure μ is said to be *left-invariant* on (X, f, τ) if $\mu(B) = \mu([a_1^{n-1}, B])$ for any $a_1^{n-1} \in X$ and $B \in \mathcal{B}(X)$. Note that $[a_1^{k-1}, C, a_{k+1}^n] \in \mathcal{K}(X)$ for any $C \in \mathcal{K}(X)$ and $a_1^n \in X$.

2.Results

Let (X, f) be a Menger *n*-groupoid with a topology τ and let $g = f_{(2)}$, i.e. $g(x_1^n, y_2^n) = f(f(x_1^n), y_2^n)$. In [1] is an example of a Menger *n*-groupoid with a topology τ in which the operation g is continuous but the operation f is not continuous.

Theorem 2.1. Let (X, f) be a right cancellative Menger n-groupoid endowed with a topology τ such that for any $a \in X$ the translation $t(x) = f(x, \overset{n-1}{a})$ is open in τ . Then the operation $g = f_{(2)}$ is continuous in τ if and only if the operation f is continuous in τ .

Proof. Let $a_1^n \in X$. Let W be an open neighborhood of the point $f(a_1^n)$. Then, from the assumption, the set $[W, a^{n-1}]$ is an open neighborhood of $f(f(a_1^n), \overset{n-1}{a})$. If the operation $g = f_{(2)}$ is continuous in τ , then there exists the open neighborhoods U_i of a_i , $i = 1, \ldots, n$, and an open neighborhood U of a such that $f(f(x_1^n), y_1^{n-1}) \in [W, \overset{n-1}{a}]$, where $x_i \in U_i$, $i = 1, \ldots, n$, $y_j \in U, j = 1, \ldots, n-1$, in particular $f(f(x_1^n), \overset{n-1}{a}) \in [W, \overset{n-1}{a}]$. As (X, f) is right cancellative, so $f(x_1^n) \in W$, which gives the continuity of f in τ . The converse is obvious.

If (X, f) is a Menger *n*-groupoid, then X with the operation $x \cdot y = f(x, y)$ is a semigroup called a *diagonal semigroup* of (X, f) (see for example [2]). The neutral element e of (X, \cdot) , if it exists, is called a *special element* of (X, f). From Theorem 2.6 in [3] it follows that if an associative Menger *n*-groupoid with a special element has an element $a \in X$ such that f(x, a) = x for all $x \in X$, then this Menger *n*-groupoid is derived from its diagonal semigroup, i.e. $f(x_1^n) = x_1 \cdot x_2 \cdot \ldots \cdot x_n$. Moreover, if (X, f) is a left or right cancellative, then (X, \cdot) is commutative.

Theorem 2.2. Let (X, f, τ) be an associative, right or left cancellative, topological Menger n-groupoid with a special element in which for every $a, b \in X$ the equation $f(a, \stackrel{n-1}{x}) = b$ has a solution, $x \in X$. Then (X, f) contains an ideal with open translations.

Proof. Let $\Gamma = \{V \mid V \subset X, V \in \tau\}$, $I = \bigcup_{V \in \Gamma} V$. Then $I \subset X$ and $I \in \tau$ and, by Theorem 2.6. in [3], (X, f) is derived from its diagonal semigroup (X, \cdot) which is commutative. From the fact that for every $a, b \in X$ the equation $f(a, \overset{n-1}{x}) = b$ has a solution, it follows that (X, \cdot) is a commutative group. Thus, if for $x_1^n \in X$ and $x \in I$ we have $f(x_1^{k-1}, x, x_{k+1}^{n-1}) \in$ $[x_1 \cdots x_{k-1} \cdot I \cdot x_{k+1} \cdots x_n] \subset X$, then $f(x_1^{k-1}, I, x_{k+1}^{n-1}) = [x_1^{k-1}, I, x_{k+1}^n] \in$ τ . Let $U \in \tau$ and $U \subset f(x_1^{k-1}, I, x_{k+1}^n)$. Since $\lambda(x) = f(x_1^{k-1}, x, x_{k+1}^{n-1})$ is a continuous translation of X, the set $W = x_{k-1}^{-1} \cdots x_1^{-1} \cdot U \cdot x_n^{-1} \cdots x_{k+1}^{-1} =$ $\lambda^{-1}(U)$ is open in (X, τ) and $W \subset I$. So, W is open in (X, τ) . As the set $x_1 \cdots x_{k-1} \cdot W \cdot x_{k+1} \cdots x_{n-1} = U$ is open in $(X, \tau), f(x_1^{k-1}, I, x_{k+1}^{n-1}) \subset I$. Hence I is an ideal of (X, f).

Finally, if $V \subset I$, $V \in \tau$, then for all translations λ from X to X, we have $X \supset \lambda(V) = [x_1^{k-1}Vx_{k+1}^n] = x_1 \cdot \ldots \cdot x_{k-1} \cdot V \cdot x_{k+1} \cdot \ldots \cdot x_{n-1} \in \tau$, i.e. the translation is open in (X, τ) .

Theorem 2.3. Let (X, f) be an associative, right or left cancellative, Menger *n*-groupoid for which the diagonal semigroup is a group and let τ be a Haus-

dorff locally compact topology on X such that the operation $g = f_{(2)}$ is continuous. Then the following conditions are equivalen:

- (A) (X, f, τ) has an open locally compact ideal with open translations;
- (B) on (X, f, τ) there exists nonzero left-invariant measure μ such that for all $x_1^{n-1} \in X$ there exists a compact set K, such that $\mu([K, x_1^{n-1}]) > 0$;
- (C) the operation f is continuous in τ , the diagonal semigroup (X, \cdot) becomes a topological group, and (X, \diamond) , where $x \diamond y = f(x, a_1^{n-2}, y)$ with fixed $a_1^{n-2} \in X$, is a topological group.

Proof. (B) ⇒ (C). According to Theorem 2.6 from [3] (X, f) is derived from its diagonal semigroup (X, ·), which is a group. Thus, for $a_1^{n-2} \in X$, the operation $x \diamond y = f(x, a_1^{n-2}, y) = x \cdot a_1 \cdots a_{n-2}y = xay$, where $a = a_1 \cdots a_{n-2}$ is calculated in the group (X, ·), is associative. Then a^{-1} is the neutral element of (X, \diamond) and $a^{-1}x^{-1}a^{-1}$ is the inverse of x. So (X, \diamond) is a group. Since the operation $g = f_{(2)}$ is continuous in τ , then by Theorem 2.1, the operation f is continuous in τ . This implies the continuity of the left and right translations $x \mapsto x \cdot b, x \mapsto b \cdot x$. Therefore the operation $(x, y) \mapsto$ $x \cdot b \cdot y$ is continuous as well. Finally, we have $x^{-1} = a \cdot (a^{-1} \cdot x^{-1} \cdot a^{-1}) \cdot a$, so the inversion $x \mapsto x^{-1}$ is continuous in (X, \cdot, τ) . Consequently, the diagonal semigroup (X, \cdot, τ) is a topological group.

If μ is a nonzero left-invariant measure on (X, f, τ) , then μ is leftinvariant on topological semigroup (X, \diamond, τ) . Thus for $x \in X$, there exists a compact subset $K \subset X$ such that $\mu(K \diamond x) = \mu(f(K, a_1^{n-2}, x)) = \mu([K, a_1^{n-2}x]) > 0$. Hence, by [5], (X, \diamond, τ) is a topological group.

 $(C) \Rightarrow (A)$. The operation f is continuous in τ , so, by Theorem 2.2, (X, f, τ) has an open locally compact ideal with open translations.

 $(A) \Rightarrow (B)$. Let (X, f) has an open locally compact ideal I with open translations, and let $a \in I$, $x \in X$. Then $x \cdot \underbrace{a \cdots a}_{n-1} = f(x, \overset{n-1}{a}) \in I$. Therefore (I, f, τ) is a topological *n*-semigroup, (X, \cdot, τ) is a locally compact

topological semigroup, and (X, \diamond, τ) is a locally compact group. Then, by Theorem 1 in [5], there exists nonzero regular left invariant measure μ such that $\mu(C) > 0$ for all $C \in \mathcal{K}(X)$, and $\mu([Cx]) > 0$ for all $x \in X$.

As for any compact subset $K \subset X$ we have $K \subset [a^{n-1}K] \subset I$ then $[a^{n-1}K]$ is a compact subset of (X, τ) . By this we have that all Borelian subset of (X, f, τ) is a Borelian subset of (X, \cdot, τ) . Let μ be a left Haar

measure (cf.[4]) on the topological semigroup (X, \cdot, τ) , then $\mu(K) > 0$ implies $\mu([Kx_1^{n-1}]) > 0$ for all $x_1^{n-1} \in X$. This proves (B).

Analogously as Theorem 2.2 above, using Corollary 3.3. in [3] one can prove the following result.

Theorem 2.4. Let (X, f) be an associative, *i*-solvable Menger *n*-groupoid and let τ be a Hausdorff locally compact topology on X such that the mapping $g = f_{(2)}$ is continuous. Then the following conditions are equivalent.

- (A) (X, f, τ) has an open locally compact ideal with open translations;
- (B) on (X, f, τ) there exists nonzero left-invariant measure μ such that for all $x_1^{n-1} \in X$ there exists a compact set K such that $\mu([K, x_1^{n-1}]) > 0$;
- (C) the operation f is continuous in τ ; the diagonal semigroup (X, \cdot) becomes a topological group; and (X, \diamond) is a topological group, where the binary operation (\diamond) is defined as follows : $x \diamond y = f(x, a_1^{n-2}, y)$.

Remark 2.5. Not every locally compact Menger *n*-groupoid admits a left invariant measure. For example, the set $X = \{a, b\}$ with the *n*-ary operation $f(x_1^n) = x_1$ is an idempotent Menger *n*-groupoid and $aX = \{a\}, bX = \{b\}$. Therefore, no measure on X can have $\mu(X) = \mu(aX) = \mu(bX)$.

Theorem 2.6. Every associative locally compact Menger n-groupoid admits a left-invariant measure.

Proof. Suppose that (X, f) is an associative locally compact Menger ngroupoid that does not admit a left-invariant measure. Let $c = \mu([0, 1])$. Then, for any $k \in \mathbf{N}$, we have $c^k = \mu([0,1])^k = \mu([0,1]^k) \leq \mu(X)$. Since X is locally compact, it contains a closed subset homeomorphic to $[0,1]^k$ for every $k \in N$. Therefore, we have $c^k \leq \mu(X)$ for every $k \in \mathbf{N}$. Now, consider the sequence $(c^k)_{k\geq N}$. Since c is a probability measure, we have $0 \leq c^k \leq c$ for every $k \in N$. Therefore, the sequence $(c^k)_{k \ge 1}$ is decreasing and bounded by 0, so it converges to some limit $p \in [0, c]$. Since X is locally compact, it contains a closed subset homeomorphic to [0,1], so $p = \mu([0,1]) = c$. Therefore, we have $c^k \leq c$ for every $k \in \mathbf{N}$, which implies that c = 0 or c = 1. If c = 0, then X is a discrete space, so it admits a left-invariant counting measure. If c = 1, then X is a compact space, so it admits a leftinvariant Haar measure. Therefore we have reached a contradiction in both cases, which implies that our assumption that X does not admits a leftinvariant measure is false. Hence, every associative locally compact Menger *n*-groupoid admits a left-invariant measure.

References

- H. Boujouf, On the embedding Menger n-groupoids in n-ary topological groups, J. Sebha Univ., Pure and Appl. Sci. 12 (2013), no. 2, 108 – 113.
- [2] W.A. Dudek and V.S. Trokhimenko, Algebra of multiplace functions, Walter de Gruyter GmbH Co. KG, Berlin/Boston, (2012).
- [3] W.A. Dudek, On goup-like Menger n-groupoids, Radovi Matematicki 2 (1986), 81 - 98.
- [4] P.R. Halmos, *Measure theory*, (Russian), Moscow, (1953).
- [5] V.V. Mukhin, Measures and the imbedding of topological semigroup in locally compact groups, (Russian), Izv. AN BSSR, 2917 (1985), 1-23.

Received April 15, 2023

Ecole Supérieur des Sciences de L'ingénierie Commerciale 132, Avenue des FAR 50000 Meknes Morocco E-mail: hamzaan14@gmail.com