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Endomorphisms of precyclic n-groups

Sonia Dog and Nikolay A. Shchuchkin

Abstract. We characterize the sets of homomorphisms, endomorphisms and automor-

phisms of n-ary groups with cyclic retracts.

1. Introduction

Polyadic groups, called also n-ary groups or n-groups, are a generalization
of groups. Therefore, n-group theory is closely related to group theory. It
is known that for every n-group (G, f) there exists a group (G, *) and its
automorphism ¢ such that f(z1,...,2,) = 21 * p(x2) * ... * " H(z,) * b,
@" 1(x)*b=0bxx and ¢(b) = b for some element b € G (see for example
[2]). Then we write (G, f) = dery,(G,*). If in the n-group operation f
we fix all inner elements, we get the operation ¢ that depends only on two
outer elements. The algebra (G,¢) obtained in this way is a group called
the retract of (G, f). All retracts of an n-group (G, f) = dery, (G, *) are
isomorphic to the group (G,x*) (see [3]). Therefore, we can assume that
xoy= f(x,a,...,a,y). We then write (G, o) = ret,(G, f). Moreover, for

each a € G, the mapping ¢(z) = f(@,z,a,...,a) is an automorphism of the
group (G,o) and (G, f) = deryp(rety (G, f)) for b= f(@,...,a), where @ is
such that f(a,...,a,a) = a (see [3]). An n-group with an abelian retract is

called semiabelian. In [5] it is shown that an n-group is semiabelian if and
only if it is medial (entropic). In this case ¢! is the identity mapping.
An n-group with a cyclic retract is called precyclic (in Russian termi-
nology — semicyclic). An infinite precyclic n-group is isomorphic to the
n-group (Z, f;) = dery(Z,+), 0 < I < "771, or to the n-group (Z, f(_1)) =
der_10(Z,+) (for odd n only) [6]. The first is type (o0, 1,1), the second
type (00, —1,0). A finite precyclic n-group of order m is isomorphic to the
n-group dery ;(Zy,, +) with l|gcd(m,n — 1) or to the n-group dery ;(Zm,, +),
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where k > 1, ged(k,m) = 1, k" ! = 1(modm), kI = I(modm) and
llged(m, Sk), Sk = 1+ k+Kk* 4+ ...+ k"2 = ]“‘7;7_11_1 We say (cf. [6])
that the first is type (m,1,1), the second is type (m,k,[).

First we will show that the set of all homomorphisms from a precyclic
n-group into a semiabelian n-group forms an n-group. Next we character-
ize (n,2)-semirings of endomorphisms of precyclic n-groups. Some of our
results were inspired by theorems proved in [7] and [8]. We give them in a
more general, more useful version. We also provide new, simpler and shorter
proofs. '

For simplicity, the sequence x;,zi;1,...,z; will be written as xg; the

. k)
sequence z,x, ...,z (k times) as (:1: . We also assume that n > 2.

2. Homomorphisms of precyclic n-groups

Using the mediality it is not difficult to see that the set Hom (G, G") of all
homomorphisms of an n-group (G, f) into a semiabelian n-group (G, f')
forms a semiabelian n-group with respect the n-ary operation F' defined by

F(hy,ha, ..., hy)(z) = f'(h1(x), ho(x),. .., ha(x)),
where the homomorphism skew to A is defined by h(z) = h(z).

Note that if an n-group (G’, f') has no dempotents, the set Hom(G, G")
may be empty. This is the case, for example, with the 5-groups (Zg, f)
and (Zg, f') 1-derived from the additive groups Zg an Z4, respectively. In-
deed, for any homomorphism h : (Zg, f) — (Za, f’) there will be h(0) = ¢,
h(1) = hf(0,0,0,0,0) = f'(h(0),Rh(0),h(0),h(0),h(0)) = c+ 1, h(2) =
hf(1,0,0,0,0) = h(1) +4c+ 1 = ¢+ 2. So, h(k) = ¢+ k(mod4). But
then h(1) = hf(1,4,0,0,0) = h(1) + h(4) + 3¢+ 1 = ¢ + 2(mod 4) which is
impossible.

Let’s start with lemmas that will be needed later. The first lemma is
obvious, the second is a modification of Theorem 3 from [4]

Lemma 2.1. Consider the diagram

@.n—2 )
Ch
I ! w, ! !
(G ) f ) (H ) fl)
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where 1) and +)" are isomorphism of the corresponding n-groups. If A\, A\g
are homomorphisms of n-groups, and n-groups (G', "), (H', f') are semia-
belian, then Hom(G,G") and Hom(H, H') form isomorphic n-groups. This
isomorphism acts according to the rule ®(a) = ' arp~1L.

The converse is not true. This is the case, for example, when G’ has
only one element.

Lemma 2.2. A mapping h from an n-group der, ,(G, *) into a semiabelian
n-group dery, q(G', ) is an n-group homomorphism if and only if there exists
an element ¢ € G' and a group homomorphism B : (G,*) — (G',-) such that
Be =B, h = R.[ and B(a) = D(c) - d, where Re(x) = x - ¢ for all z € G’
and D(c) = c-(c) - ¥3(c) - ... - " 2(c).

Proof. Let (G, f) = dery (G, *) and (G, f') = dery q(G’, -) be two n-groups
and let (G, f") be semiabelian.

If there exists a group homomorphism 3 : (G,*) — (G’,-) such that
B =B and B(a) = D(c)-d for some fixed ¢ € G’, then for h(z) = B(z)-c

we have

h(f (@) = B(f(a1)) - = Blar * p(x2) x ... %" Han) xa) - c

)+ B Han) - Bla)

) " B(zn) - D(c) - d - c

2) T B(an) e (e) P (e) d e
(
)

Hence h : G — G’ is an n-group homomorphism.

Conversely, let h: (G, f) = (G, f') be an n-group homomorphism and
(G,0) =reto(G, f), (G',0) =rety(G’, f'). Then 5 : (G,0) — (G, ¢) defined
(n—2) _
by B'(x) = f'(h(z), h(a),a@) is a homomorphism. Since @ and b are neutral
elements of these groups, 3'(a) = b.

Let @ = h(g) for some g € G. Then
(n—2) (n—2) (n—2)

B'(x) = f'(h(x), h(a), @) = f'(h(x), h(a), h(g)) = h(f(z, a ,g)) = h(zog).
Thus h(a) =h(g~tog) =h(g™1).
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Now, denoting h(g~!) by ¢/, we obtain

h(z)=h(xog tog)=p(rog™) = ()0 (g7") =p(z)oC.

All retracts of an n-group der, (G, *) are isomorphic to (G, *) (cf. [3]),
so (G,0) and (G, ), also (G’,¢) and (G, ), are isomorphic. Thus, a group
homomorphism /3’ corresponds to some homomorphism f : (G, *) — (G, ).
Hence h(z) = () - ¢, i.e. h = R for some ¢ € G'.

Since h: (G, f) = (G', f') is a homomorphism of n-groups,

h(f(21)) = f(h(@1), h(z2), ..., h(zs))
implies
/B(f(a‘ﬂll)) cC= f/<,8($1) : C7/8($2) *Cy.n 7/6('1;71) . C)~

Consequently,

Ba1) - Bo(w2) - Bp*(x3) - ... Be™ H(wn) - Bla) - ¢

= (B(z1) - ¢) - ¥(B(w2) - ) - *(B(wz) - ¢) - ... - " H(B(wn) - €) - d.

From this, putting x; =a for all i = 1,2,...,n, we obtain
Bla)-c=c ) -4*(c) ... " c) b= D(c) - 4" () -d=D(c)-d-c,
which shows that 8(a) = D(c) - d.

Putting in the previous identity zo = x and xz; = @ for other z; we get

Be(x) - Bla) - c=c-pB(x) -p(c) - Y*(c) ... " (c) - d
=yp(x)- D(c)-d-c=yp(z)- B(a)-c.

Thus B¢ = ¥, which completes the proof. O

As a consequence of the above lemma we obtain

Corollary 2.3. A mapping h from an n-group dery, o(G,*) into a semia-
belian n-group dery, 4(G', -) is an n-group homomorphism if and only if there
exists an element ¢ € G' such that f = h - ¢~ is a group homomorphism

from (G, *) into (G',-), B =B and B(a) = D(c) - d.

Let (G, f) = deryq(G,*) and (G, f) = deryq(G',-). If (G',f') is a
semiabelian n-group, then each homomorphism h; € Hom(G,G’) has the
form h; = R, 3;, where 3; and ¢; are as in the above lemma. Consequently,
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F(hy)(z) = f'(hi(z), ho(2), ..., hn—1(2), hn(2))
= f'(Bi(x) - c1, Ba(x) - 2, ..., Brn—1() - Cn1, Bu() - Cn)
= (Bi(x) - 1) - (Ba(x) - c2) - " (Br1(®) - en1) - (Bulan) - € ) -d
= Bi(x) YBa(x)-.. . " 2B 1(2) Bula) - cr-Y(ca) ... Y2 (cno1) Cn-d
= Bu(x) - YBa(x) .- Y2 Bpa(2) - Bul) - f1(c}) = B(x) - f'(c
2.

where 5= B1- 9B ... " 2B 1 B = Pr- oo Bua”
homomorphism from (G, ) to (G, -). Thus,

)
- Bn is a

F(h}) = RyB, where u= f'(c}), B=7F1-Fop- .. Bn1¢" 2 Bn. (1)

Let (G', f') be a semiabelian n-group. Then (G',-) = ret,(G’, f') is an

(n)
abelian group (for any a € G') and (G, f') = dery 4(G',-) for d = f'(@)

and ¢(r) = f’(ﬁ,xf”c_ﬂ)). Moreover, D(z) = x - p(z) - 2(z) - - - " 2(x)

is an endomorphism of (G, ) such that ¢(d- D(x)) = d- D(x) = f’((na_fl), Q)

for every x € G'.

We will use these facts to describe the set of homomorphisms of precyclic
n-groups. We'll start with precyclic n-groups of type (oo, 1,1).

First, for (G', f') = dery q(G’,-) and an arbitrary natural [ we define

the set
Gl ={(z0)|¥(2) = 2, Z=d D)} CG xG.

Using the mediality of (G’, ') and the above facts, we can see that G’(l 2
with the operation

g'((z1,¢1), (22,02), -, (20, 0n)) = (217227 ooz, f(CT)) (2)
is a semiabelian n-group.

Theorem 2.4. If the set of all homomorphisms from a precyclic n-group
(G, f) of type (00, 1,1) into a semiabelian n-group (G', f') = dery, 4(G’, ) is
nonempty, then it forms an n-group isomorphic to the n-group (G'(l d),g’).

Proof. Any precyclic n-group of type (oo, 1,1) is isomorphic to the n-group
(Z, fi) = der1(Z,+). Let h be a homomorphism from (Z, f;) into a semi-
abelian n-group (G, f’) = dery 4(G’,-). Then, according to Lemma 2.2,
h = R.f for some homomorphism g from (Z,+) to (G',-), B(x) = ¥(B(x))
and B(l1) = d - D(c) for some ¢ € G'. Any homomorphism 3 of a cyclic
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group is determined by the value of 8 on the generator of this group. So, if
B(1) = z, then z = (1) = ¥B(1) = (2) and 2! = B(I) = d - D(c). Hence,
any homomorphism h : (Z, f;) — (G’, ') determines one pair (z,¢) € G/(l,d)'

On the other side, for each pair (z,c) € G/(l a) there is only one homo-
morphism f : (Z,+) — (G',-) such that 8(1) = z. Hence B(k) = z¥. Thus
VB(k) = Y(2F) = Y(2)F = 2F = B(k) for every k € Z. So, 93 = S and
B(l) =2 =d- D(c).

This shows that the pair (z, ¢) uniquely determines the homomorphism
h = R.p with 8(1) = z. So, there is one-to-one correspondence between
elements of the set Hom(G, G’) and elements of the set G/(l a) Denote this

correspondence by 7, i.e. 7(h;) = (2i,¢;) for h; = R, 5; and z; = [1(1).
Then B;(k) = Bi(k1) = B;(1)F = 2F.

k
Since B(1) = (B1- B2+ ... Bp)(1) = 2122+ ... 2,

T(F(hY)) = (21722 ..z, [1(c})) = g((21, 1), (22, €2), - . -, (205 Cn))
=g(7(h1),7(h2),...,7(hy)).

Hence 7 is an isomorphism. O

Since z¥ = B(k) = e for k € Ker 3, the first coordinate of each pair
(z,¢) € G/(l d) has finite order in the group (G, -).

All precyclic n-groups of type (0o, —1,0) are idempotent and exist only
for odd n. All such n-groups can be identified with the n-group (Z, f_1)) =
der_1,0(Z,+). The homomorphic image of the idempotent n-group is also
the n-idempotent group. This means that the homomorphism from (Z, f(_1))
into the n-group (G, f’) exists only if (G’, f') has at least one idemotent.
By Lemma 2.2, any such homomorphism has the form h = R.3, where
B(0) = D(c) - d and B3(x) = B(z)~! for z € Z. So, D(c) = d~! and
Y(z) = z71 for 2 € B(Z). Moreover, h(0) = R.3(0) = c. Consequently,

¢ = h(0) = hf(_l)((())) = f'(h(0)) = f’((c)). Thus as a consequence of

Lemma 2.2 we obtain

Lemma 2.5. A mapping h from an n-group der_yo(Z,+) into a semia-
belian n-group dery, 4(G', -) is an n-group homomorphism if and only if there
exists an idempotent ¢ € G' and a group homomorphism (3 : (Z,+) — (G', ")
such that h = R.B3, D(c) = d~ ! and B(x)~! = vB(x) for x € Z.
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The proofs of the following theorems is very similar to the proof of
Theorem 2.4. So we skip them.

Theorem 2.6. If the set of all homomorphisms from a precyclic n-group
of type (00, —1,0) into a semiabelian n-group (G',f") = dery 4(G',-) is
nonempty, then it forms an n-group isomorphic to the n-group (G, g"),
where

Gl ={(z,0)|¢(z) =27Y, D(c)=d '} C G xG and
d"((z1,¢1), (22,€2), .., (2n,cn)) = (21-22_1-23-24_1' . 'z;_ll‘zn, ().

Theorem 2.7. If the set of all homomorphisms from a precyclic n-group of
type (m, k,1) with k > 1, into a semiabelian n-group (G', f') = dery. 4(G', )
s nonempty, then it forms an n-group isomorphic to the n-group (G’(l dy J).

Example 2.8. Let us consider three 5-groups: (Gi, fi) = ders3(Ze, +),
(G, f1) = der11(Z,+) and (G, f') = der11(Z4,+). Then, as already
mentioned, the set Hom(G1,G’) is empty. The set Hom(G1,G’) contains
four homomorphisms. They are defined by h.(z) = r + ¢(mod4), where
x=4t4+7r,0<r <4and ¢c=0,1,2,3. Hom(G',G’) also contains four
homomorphisms, namely h.(x) = x 4+ ¢(mod 4), ¢ =0,1,2,3.

3. Endomoprhisms of precyclic n-groups

Recall that an (n, 2)-nearring (G, f,-) is an n-group (G, f) with an associa-
tive multiplication such that

a- f(af) = f({a-zi}7) and  f(2))-a = f({zi-a}7)

for all a,z} € G. An (n,2)-nearring (G, f,-) with a semiabelian n-group
(G, f) is called an (n, 2)-semiring; with an abelian n-group — an (n, 2)-ring.

In [5] it is noted that the set End(G, f) of all endomorphisms of a semi-
abelian n-group (G, f) forms an (n,2)-semiring with respect to the n-ary
operation F' defined as for homomorphisms and an ordinary superposition
of endomorphisms. The set of all endomorphisms of an abelian n-group
forms an (n, 2)-ring with unity.

Based on the results of the previous section, we can characterize (n, 2)-
semirings of endomorphisms of precyclic n-groups. For this we will use the
following lemma which is a consequence of Lemma 2.2.
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Lemma 3.1. A mapping h : Z — 7Z is an endomorphism of an n-group
(Z, fi) of type (00,1,1) if and only if here exists an element ¢ € Z and an
endomorphism 8 of (Z,+) such that h = R. and B(1) = (n — 1)c+ L.

Let h = R.S be an endomorphism of (Z, f;). Then h(0) = c¢. Hence,
if (1) = m, then () = B(I1) = I5(1) = lm. So, Im = (n — 1)c + I,
i.e. for fixed m,n and [ there is only one c¢ satisfying this equation. This
means that each endomorphism of (Z, f;) depends only on m and has the
form hp,(x) = m + ¢, where ¢, = hy, (0) and ml = I(mod (n — 1)). So,
7(hm) = m is a bijection from the set End(Z, f;) onto the set

Z( )y = {m|ml = l(mod (n — 1))} C Z.
This is an (n, 2)-semiring with respect to the operation
g (mi,ma,...,my) =mi+mo+...+my

and an ordinary multiplication of numbers.

I(m—1)
n—1 7

F(himys hing s -« s By, ) (2) = fi(Bmy (2), hing (2), <+« By, (2))
= (zm1+cmy) + (zma+ Cmy) + ...+ (2my + e, ) +1

=z(mi+ma+...+mp)+ fi(CmysCmgy -5 Cm,,)
+ l(m1+m2+---+mn_n) +l
+ 5

Since Im = (n — 1)c + [ means that ¢ = we have

z(my +mao+...+my, P

mi+mo+...4+mp—1)
n—1

)
z(mi+ma+ ...+ my)
2( )

mi+ma + ...+ Mnp) + Cmytmottmn = Pmytmotm, (2)-
Hence 7(F (hmys himgs - - -y himy,)) = §'(7(himy ), 7(hing ) - -+ 7(him, ).
Also 7(hmy © hiny) = T(himy ) » T(hmy,)-

So, 7 is an isomorphism between (End(Z, f;), F, o) and (Z( ), g, -)-

Theorem 3.2. The set of endomorphisms of a precyclic n-group of type
(00,1,1) forms an (n,2)-semiring isomorphic to (Z ), 9',-)-

Endomorphisms of precyclic n-groups of type (0o, —1,0) are characteri-
zed by

Lemma 3.3. A mapping h : Z — 7Z is an endomorphism of a precyclic
n-group of type (00, —1,0) if and only if h(z) = mz + ¢ for some m,c € Z.
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Using the same method as in the proof of Theorem 3.2 we obtain

Theorem 3.4. The set of all endomorphisms of a precyclic n-group (Z, f(_1))
of type (00, —1,0) forms an (n, 2)-semiring isomorphic to the (n,2)-semiring
(Z X Z,g,*), where

g((m17 Cl)’ (mZ’ 02)7 s (mm Cn)) = (f(—l)(myll)a f(—l)(c?)) and

(m1,c1) * (Mg, c2) = (mima, mica + c1).

For endomorphisms of precyclic n-groups of type (m, k, 1) we have

Theorem 3.5. A mapping h: Z,, — Ly, is an endomorphism of an n-group
(Zm, fey) if and only if h(z) = txr+c(modm) and tl = Skc+I(modm) for
some t,c € Lp,. Such endomorphisms forms an (n,2)-semiring isomorphic
to the (n,2)-semiring (ng’b),g7 ), where

%D = {(t,¢)|t,c € L, tl = Syc+ l(modm)},

g((t1,e1), (t2,2)5 -+ -5 (tns en)) = (fr0)(E1)s faey(c1))  and

(t1,c1) * (2, c2) = (t1t1,t1ca + c1).
Proof. Each endomorphism of (Z,,+) has the form f(z) = tx(modm).
Hence, by Lemma 2.2, h: Z,, — Z,, is an endomorphism of an n-group
(Zms fiyy) if and only if h(x) = B(x) + ¢ = tx + c(mod m) for some ¢ € Z,
such that 8(I) = D(c) +1. But D(c) = ¢+ kc+ k?>c+ ... + k" 2c = Sie.
So, (1) = tl = Sgc + l(modm). In Z,, there is only one ¢ satisfying this
equation. Indeed, if 8(I) = D(c) +{, then f(z) +d = h(z) = B(z) + ¢,

whence ¢ = d(modm). Thus, 7(h) = (¢,¢) is a bijection between the set of
(k,0)

all endomorphism of (Zy,, f(x)) and Z
Moreover, for all hy, ..., h, € End(Zy,, fk,)) we have

E(hT) () = fep(h1(z), hao(z), ..., hn(2))

= (hzte1)+k(ti+a)+k2 (taxtco)+. . +E" 2 (tpo1z+cno1) +(taz+cn) +1

=(t1+kto+...+E" 2t 1 +ty)r+ (1 +hkea+ ...+ k" 2e g e +1)

= Jr,0)(@) + fap(cl) = hyo + fkp)-

Hence
T(F(hT)) = (fie,0) fep)) = 9((t1,¢1), (t2,¢2), -+ oy (Ens Cn))
= g(T(hl)v T(h2)> s 7T(hn))v

which shows that 7 is an isomorphism. O
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Observe that in the above proof for fixed k and [ the element c is uniquely
determined by ¢, so an endomorphism h = RS of (Zm, f,)) is uniquely
determined by the value of ¢ = 3(1). Thus, the the set 7% can be iden-
tified with the set P = {t € Zp, |tb = Skc+ l(modm)}. Consequently,
the (n,2)-semiring (Z,(fb’l),g,*) can be identified with the (n,2)-semiring

(Pﬁ,{f’l), f(k,0)> ), where - is an ordinary multiplication modulo m.

4. Automoprhisms of precyclic n-groups

A binary composition (superposition) of automorphisms of a fixed n-group
is an automorphism of this n-group. Thus for a given n-group (G, f) the set
Aut(G, f) of all its automorphisms is a group contained in the semigroup
End(G, f). Hence, as a consequence of the above results, we obtain

Proposition 4.1. A mapping h : G — G is an automorphism of a semia-
belian n-group (G, f) = dery o(G, ) if and only if there exists c € G and an
automorphism [ of (G, -) such that B = ¢B, h = R and 5(a) = D(c)-a.

Theorem 3.10 in [1] implies the following characterization:

Proposition 4.2. A mapping h : G — G is an automorphism of a semia-
belian n-group (G, f) = dery o(G, ) if and only if h = R.B, where 3 is an
automorphism of (G,-), B(a) = a and p(c) = ¢ = ™.

Corollary 4.3. Let (G, f) = dery, (G, ) be a precyclic n-group, c € G and
B € Aut(G,-). Then h = R.5 € Aut(G, f) if and only if R. € Aut(G, f)
and € Aut(G, f).

Proof. If h = R.f3 is an automorphism of (G, f) = der, (G, -), then, by the
above Propositions, S¢ = ¢f and B(a) = a. Hence, as it is not difficult to
see, (3 is an automorphism of (G, f). Consequently, also R. = h3~! is an
automorphism of (G, f). The converse statement is obvious. O

The above fact also follows from the results proven in [1].
Theorem 4.4. If (G, f) = dery, (G, -) is a precyclic n-group, then
Aut(Gv f) = R@(G> f) X Autll(G7 ')7

where

Ro(G, f) = {Re|plc) = c = "} and
Auto (G, ) ={B € Aut(G, ) | B(a) = a}.
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Proof. Ry(G, f) and Aut, (G, -) are subgroups of Aut(G, f) and Aut(G, ),
respectively. (G,-) is abelian, so R, (G, f) is a normal subgroup. Moreover,
if v € Ry(G, f) N Auty (G, -), then ¢ = R. = 3. Thus, R.(a) = f(a) = a,
which gives ¢ = e. Therefore, R, (G, f) N Aut,(G, ) = {€}. Consequently,
Aut(G, f) 2 R,(G, f) x Aute (G, -). O

Theorem 4.5. If a precyclic n-group (G, f) = dery, o(G,-) has at least one
idempotent, then

Aut(G, f) = RE(G,f) X Aut(G, '),

where R,y is a group of right translations of (G, -) determined by idem-
potent elements.

Proof. Let (G, f) = dery, o(G,-) be a precyclic n-group containing at least
one idempotent. We will show first that (G, f) is isomorphic to (G,g) =
der, (G, ).

Let ¢ be an idempotent of (G, f). Then

c=fle,e,....0) =c-p(c) - ©*(c) 0" %(c) c-a (3)
Thus,

a-ct=ct o) ?(c) ... "2 L (4)
Hence
R.-1f(z}) = x1 - p(x2) - O*x3) . " 2 (1) Tp @t
4
Qe lp(@2) () -2 (@s) 0202 1)) g
=1 - QD(CCQ ’ c_l) ’ ()02(:63 ’ c_l) et 90n_2(wn—1 ’ C_l) “ Ty ¢!

:Rcfl('%j) ~pR.1(x2) - ()02Rc*1 Tt @niQRcfl (mn—l) "R (l‘n)
:g(RCq (.%'1), Rcfl (.I‘Q), ey Rcf1 ({En))

Therefore R.-1 : (G, f) — (G,g) is a homomorphism. Since it is a
bijection, (G, f) = (G, g). Then also Aut(G, f) = Aut(G, g) and R, f)=
RE(a,g)- So it is sufficient to prove our theorem for (G, g).

The neutral element of (G, ) is an idempotent of (G, g). Thus the set
RE(G,g) 18 nonempty and RyR. = Ry for all R., Ry € Rp(q,4) because, by
(3), c-b is an idempotent. Thus R ¢4 is a subgroup of Aut(G, g) such that
(Rbﬂ)_loRCORbﬁ = R/g—l(c) for Ry € Aut(G,g) and R, € RE(G,g)' Since,

BHe) = Bhg(e,c.i0) = g(B7Hc), B7(e), ..., 7 (c)), by Corollary
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4.3, B~Y(c) is an idempotent of (G,g). Consequently, Rs-1(¢c) € RE(a,g);
which shows that Rp(g,q) is a normal subgroup of Aut(G,g). Moreover,
RE@,g N Aut(G, ) = {e}. So, Aut(G,g) = ReEg) X Aut(G, ). O

Corollary 4.6. If a precyclic n-group (G, f) = dery, o(G,-) has only one
idempotent, then

Aut(G, f) =2 Aut(G, )
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