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Endomorphisms of precyclic n-groups

Sonia Dog and Nikolay A. Shchuchkin

Abstract. We characterize the sets of homomorphisms, endomorphisms and automor-
phisms of n-ary groups with cyclic retracts.

1. Introduction

Polyadic groups, called also n-ary groups or n-groups, are a generalization
of groups. Therefore, n-group theory is closely related to group theory. It
is known that for every n-group (G, f) there exists a group (G, ∗) and its
automorphism ϕ such that f(x1, . . . , xn) = x1 ∗ ϕ(x2) ∗ . . . ∗ ϕn−1(xn) ∗ b,
ϕn−1(x) ∗ b = b ∗ x and ϕ(b) = b for some element b ∈ G (see for example
[2]). Then we write (G, f) = derϕ,b(G, ∗). If in the n-group operation f
we fix all inner elements, we get the operation � that depends only on two
outer elements. The algebra (G, �) obtained in this way is a group called
the retract of (G, f). All retracts of an n-group (G, f) = derϕ,a(G, ∗) are
isomorphic to the group (G, ∗) (see [3]). Therefore, we can assume that
x � y = f(x, a, . . . , a, y). We then write (G, �) = reta(G, f). Moreover, for
each a ∈ G, the mapping ϕ(x) = f(a, x, a, . . . , a) is an automorphism of the
group (G, �) and (G, f) = derϕ,b(reta(G, f)) for b = f(a, . . . , a), where a is
such that f(a, . . . , a, a) = a (see [3]). An n-group with an abelian retract is
called semiabelian. In [5] it is shown that an n-group is semiabelian if and
only if it is medial (entropic). In this case ϕn−1 is the identity mapping.

An n-group with a cyclic retract is called precyclic (in Russian termi-
nology – semicyclic). An infinite precyclic n-group is isomorphic to the
n-group (Z, fl) = der1,l(Z,+), 0 6 l 6 n−1

2 , or to the n-group (Z, f(−1)) =
der−1,0(Z,+) (for odd n only) [6]. The first is type (∞, 1, l), the second
type (∞,−1, 0). A finite precyclic n-group of order m is isomorphic to the
n-group der1,l(Zm,+) with l|gcd(m,n− 1) or to the n-group derk,l(Zm,+),
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where k > 1, gcd(k,m) = 1, kn−1 = 1(modm), kl = l(modm) and
l|gcd(m,Sk), Sk = 1 + k + k2 + . . . + kn−2 = kn−1−1

k−1 . We say (cf. [6])
that the first is type (m, 1, l), the second is type (m, k, l).

First we will show that the set of all homomorphisms from a precyclic
n-group into a semiabelian n-group forms an n-group. Next we character-
ize (n, 2)-semirings of endomorphisms of precyclic n-groups. Some of our
results were inspired by theorems proved in [7] and [8]. We give them in a
more general, more useful version. We also provide new, simpler and shorter
proofs.

For simplicity, the sequence xi, xi+1, . . . , xj will be written as xji ; the

sequence x, x, . . . , x (k times) as
(k)
x . We also assume that n > 2.

2. Homomorphisms of precyclic n-groups

Using the mediality it is not difficult to see that the set Hom(G,G′) of all
homomorphisms of an n-group (G, f) into a semiabelian n-group (G′, f ′)
forms a semiabelian n-group with respect the n-ary operation F defined by

F (h1, h2, . . . , hn)(x) = f ′(h1(x), h2(x), . . . , hn(x)),

where the homomorphism skew to h is defined by h(x) = h(x).

Note that if an n-group (G′, f ′) has no dempotents, the set Hom(G,G′)
may be empty. This is the case, for example, with the 5-groups (Z6, f)
and (Z4, f

′) 1-derived from the additive groups Z6 an Z4, respectively. In-
deed, for any homomorphism h : (Z6, f) → (Z4, f

′) there will be h(0) = c,
h(1) = hf(0, 0, 0, 0, 0) = f ′(h(0), h(0), h(0), h(0), h(0)) = c + 1, h(2) =
hf(1, 0, 0, 0, 0) = h(1) + 4c + 1 = c + 2. So, h(k) = c + k(mod 4). But
then h(1) = hf(1, 4, 0, 0, 0) = h(1) + h(4) + 3c+ 1 = c+ 2(mod 4) which is
impossible.

Let’s start with lemmas that will be needed later. The first lemma is
obvious, the second is a modification of Theorem 3 from [4]

Lemma 2.1. Consider the diagram

(G, f) -
ψ

(H, f1)

?

λG
?

λH

(G′, f ′) -ψ′
(H ′, f ′1)
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where ψ and ψ′ are isomorphism of the corresponding n-groups. If λG, λH
are homomorphisms of n-groups, and n-groups (G′, f ′), (H ′, f ′) are semia-
belian, then Hom(G,G′) and Hom(H,H ′) form isomorphic n-groups. This
isomorphism acts according to the rule Φ(α) = ψ′αψ−1.

The converse is not true. This is the case, for example, when G′ has
only one element.

Lemma 2.2. A mapping h from an n-group derϕ,a(G, ∗) into a semiabelian
n-group derψ,d(G

′, ·) is an n-group homomorphism if and only if there exists
an element c ∈ G′ and a group homomorphism β : (G, ∗)→ (G′, ·) such that
βϕ = ψβ, h = Rcβ and β(a) = D(c) · d, where Rc(x) = x · c for all x ∈ G′
and D(c) = c · ψ(c) · ψ2(c) · . . . · ψn−2(c).

Proof. Let (G, f) = derϕ,a(G, ∗) and (G′, f ′) = derψ,d(G
′, ·) be two n-groups

and let (G′, f ′) be semiabelian.

If there exists a group homomorphism β : (G, ∗) → (G′, · ) such that
βϕ = ψβ and β(a) = D(c) · d for some fixed c ∈ G′, then for h(x) = β(x) · c
we have

h(f(xn1 )) = β(f(xn1 )) · c = β(x1 ∗ ϕ(x2) ∗ . . . ∗ ϕn−1(xn) ∗ a) · c
= β(x1) · βϕ(x2) · . . . · βϕn−1(xn) · β(a) · c
= β(x1) · ψβ(x2) · . . . · ψn−1β(xn) ·D(c) · d · c
= β(x1) · ψβ(x2) · . . . · ψn−1β(xn) · c · ψ(c) · . . . · ψn−2(c) · d · c
= (β(x1) · c) · ψ(β(x2) · c) · . . . · ·ψn−1(β(xn) · c) · d
= h(x1) · ψh(x2) · . . . · ψn−1h(xn) · d
= f ′(h(x1), h(x2), . . . , h(xn)).

Hence h : G→ G′ is an n-group homomorphism.

Conversely, let h : (G, f)→ (G′, f ′) be an n-group homomorphism and
(G, ◦) = reta(G, f), (G′, �) = retb(G

′, f ′). Then β : (G, ◦)→ (G′, �) defined

by β′(x) = f ′(h(x),
(n−2)
h(a) , a) is a homomorphism. Since a and b are neutral

elements of these groups, β′(a) = b.

Let a = h(g) for some g ∈ G. Then

β′(x) = f ′(h(x),
(n−2)
h(a) , a) = f ′(h(x),

(n−2)
h(a) , h(g)) = h(f(x,

(n−2)
a , g)) = h(x◦g).

Thus h(a) = h(g−1 ◦ g) = h(g−1).
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Now, denoting h(g−1) by c′, we obtain

h(x) = h(x ◦ g−1 ◦ g) = β′(x ◦ g−1) = β′(x) � β′(g−1) = β′(x) � c′.

All retracts of an n-group derϕ,b(G, ?) are isomorphic to (G, ?) (cf. [3]),
so (G, ◦) and (G, ∗), also (G′, �) and (G′, ·), are isomorphic. Thus, a group
homomorphism β′ corresponds to some homomorphism β : (G, ∗)→ (G, ·).
Hence h(x) = β(x) · c, i.e. h = Rcβ for some c ∈ G′.

Since h : (G, f)→ (G′, f ′) is a homomorphism of n-groups,

h(f(xn1 )) = f ′(h(x1), h(x2), . . . , h(xn))

implies
β(f(xn1 )) · c = f ′(β(x1) · c, β(x2) · c, . . . , β(xn) · c).

Consequently,

β(x1) · βϕ(x2) · βϕ2(x3) · . . . · βϕn−1(xn) · β(a) · c

= (β(x1) · c) · ψ(β(x2) · c) · ψ2(β(x3) · c) · . . . · ψn−1(β(xn) · c) · d.

From this, putting xi = a for all i = 1, 2, . . . , n, we obtain

β(a) · c = c · ψ(c) · ψ2(c) · . . . · ϕn−1(c) · b = D(c) · ψn−1(c) · d = D(c) · d · c,

which shows that β(a) = D(c) · d.

Putting in the previous identity x2 = x and xi = a for other xi we get

βϕ(x) · β(a) · c = c · ψβ(x) · ψ(c) · ψ2(c) · . . . · ϕn−1(c) · d
= ψβ(x) ·D(c) · d · c = ψβ(x) · β(a) · c.

Thus βϕ = ψβ, which completes the proof.

As a consequence of the above lemma we obtain

Corollary 2.3. A mapping h from an n-group derϕ,a(G, ∗) into a semia-
belian n-group derψ,d(G

′, ·) is an n-group homomorphism if and only if there
exists an element c ∈ G′ such that β = h · c−1 is a group homomorphism
from (G, ∗) into (G′, ·), βϕ = ψβ and β(a) = D(c) · d.

Let (G, f) = derϕ,a(G, ∗) and (G′, f ′) = derψ,d(G
′, ·). If (G′, f ′) is a

semiabelian n-group, then each homomorphism hi ∈ Hom(G,G′) has the
form hi = Rciβi, where βi and ci are as in the above lemma. Consequently,
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F (hn1 )(x) = f ′(h1(x), h2(x), . . . , hn−1(x), hn(x))

= f ′(β1(x) · c1, β2(x) · c2, . . . , βn−1(x) · cn−1, βn(x) · cn)

= (β1(x) · c1) · ψ(β2(x) · c2) · . . . · ψn−2(βn−1(x) · cn−1) · (βn(xn) · cn) · d
= β1(x) ·ψβ2(x) · . . . ·ψn−2βn−1(x) ·βn(x) ·c1 ·ψ(c2) · . . . ·ψn−2(cn−1) ·cn ·d
= β1(x) · ψβ2(x) · . . . · ψn−2βn−1(x) · βn(x) · f ′(cn1 ) = β(x) · f ′(cn1 ),

where β = β1 · ψβ2 · . . . · ψn−2βn−1 · βn = β1 · β2ϕ · . . . · βn−1ϕn−2 · βn is a
homomorphism from (G, ∗) to (G′, ·). Thus,

F (hn1 ) = Ruβ, where u = f ′(cn1 ), β = β1 · β2ϕ · . . . · βn−1ϕn−2 · βn. (1)

Let (G′, f ′) be a semiabelian n-group. Then (G′, ·) = reta(G
′, f ′) is an

abelian group (for any a ∈ G′) and (G′, f ′) = derψ,d(G
′, ·) for d = f ′(

(n)

a )

and ψ(x) = f ′(a, x,
(n−2)
a ). Moreover, D(x) = x · ψ(x) · ψ2(x) · · · · · ψn−2(x)

is an endomorphism of (G′, ·) such that ψ(d ·D(x)) = d ·D(x) = f ′(
(n−1)
x , a)

for every x ∈ G′.
We will use these facts to describe the set of homomorphisms of precyclic

n-groups. We’ll start with precyclic n-groups of type (∞, 1, l).

First, for (G′, f ′) = derψ,d(G
′, ·) and an arbitrary natural l we define

the set
G′(l,d) = {(z, c) |ψ(z) = z, zl = d ·D(c)} ⊆ G′ ×G′.

Using the mediality of (G′, f ′) and the above facts, we can see that G′(l,d)
with the operation

g′((z1, c1), (z2, c2), . . . , (zn, cn)) = (z1 ·z2 · . . . ·zn, f ′(cn1 )) (2)

is a semiabelian n-group.

Theorem 2.4. If the set of all homomorphisms from a precyclic n-group
(G, f) of type (∞, 1, l) into a semiabelian n-group (G′, f ′) = derψ,d(G

′, ·) is
nonempty, then it forms an n-group isomorphic to the n-group (G′(l,d), g

′).

Proof. Any precyclic n-group of type (∞, 1, l) is isomorphic to the n-group
(Z, fl) = der1,l(Z,+). Let h be a homomorphism from (Z, fl) into a semi-
abelian n-group (G′, f ′) = derψ,d(G

′, ·). Then, according to Lemma 2.2,
h = Rcβ for some homomorphism β from (Z,+) to (G′, ·), β(x) = ψ(β(x))
and β(l) = d · D(c) for some c ∈ G′. Any homomorphism β of a cyclic
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group is determined by the value of β on the generator of this group. So, if
β(1) = z, then z = β(1) = ψβ(1) = ψ(z) and zl = β(l) = d ·D(c). Hence,
any homomorphism h : (Z, fl)→ (G′, f ′) determines one pair (z, c) ∈ G′(l,d).

On the other side, for each pair (z, c) ∈ G′(l,d) there is only one homo-
morphism β : (Z,+)→ (G′, ·) such that β(1) = z. Hence β(k) = zk. Thus
ψβ(k) = ψ(zk) = ψ(z)k = zk = β(k) for every k ∈ Z. So, ψβ = β and
β(l) = zl = d ·D(c).

This shows that the pair (z, c) uniquely determines the homomorphism
h = Rcβ with β(1) = z. So, there is one-to-one correspondence between
elements of the set Hom(G,G′) and elements of the set G′(l,d). Denote this
correspondence by τ , i.e. τ(hi) = (zi, ci) for hi = Rciβi and zi = β1(1).
Then βi(k) = βi(k1) = βi(1)k = zki .

Since β(1) = (β1 · β2 · . . . · βn)(1) = z1 · z2 · . . . · zn,

τ(F (hn1 )) = (z1 ·z2 · . . . ·zn, f ′(cn1 )) = g((z1, c1), (z2, c2), . . . , (zn, cn))

= g(τ(h1), τ(h2), . . . , τ(hn)).

Hence τ is an isomorphism.

Since zk = β(k) = e for k ∈ Kerβ, the first coordinate of each pair
(z, c) ∈ G′(l,d) has finite order in the group (G′, ·).

All precyclic n-groups of type (∞,−1, 0) are idempotent and exist only
for odd n. All such n-groups can be identified with the n-group (Z, f(−1)) =
der−1,0(Z,+). The homomorphic image of the idempotent n-group is also
the n-idempotent group. This means that the homomorphism from (Z, f(−1))
into the n-group (G′, f ′) exists only if (G′, f ′) has at least one idemotent.
By Lemma 2.2, any such homomorphism has the form h = Rcβ, where
β(0) = D(c) · d and ψβ(x) = β(x)−1 for x ∈ Z. So, D(c) = d−1 and
ψ(z) = z−1 for z ∈ β(Z). Moreover, h(0) = Rcβ(0) = c. Consequently,

c = h(0) = hf(−1)(
(n)

0 ) = f ′(
(n)

h(0)) = f ′(
(n)
c ). Thus as a consequence of

Lemma 2.2 we obtain

Lemma 2.5. A mapping h from an n-group der−1,0(Z,+) into a semia-
belian n-group derψ,d(G

′, ·) is an n-group homomorphism if and only if there
exists an idempotent c ∈ G′ and a group homomorphism β : (Z,+)→ (G′, ·)
such that h = Rcβ, D(c) = d−1 and β(x)−1 = ψβ(x) for x ∈ Z.
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The proofs of the following theorems is very similar to the proof of
Theorem 2.4. So we skip them.

Theorem 2.6. If the set of all homomorphisms from a precyclic n-group
of type (∞,−1, 0) into a semiabelian n-group (G′, f ′) = derψ,d(G

′, ·) is
nonempty, then it forms an n-group isomorphic to the n-group (G′′d, g

′′),
where

G′′d = {(z, c) |ψ(z) = z−1, D(c) = d−1} ⊆ G′ ×G′ and

g′′((z1, c1), (z2, c2), . . . , (zn, cn)) = (z1 ·z−12 ·z3 ·z
−1
4 · . . . ·z

−1
n−1 ·zn, f ′(cn1 )).

Theorem 2.7. If the set of all homomorphisms from a precyclic n-group of
type (m, k, l) with k > 1, into a semiabelian n-group (G′, f ′) = derψ,d(G

′, ·)
is nonempty, then it forms an n-group isomorphic to the n-group (G′(l,d), g

′).

Example 2.8. Let us consider three 5-groups: (G1, f1) = der5,3(Z6,+),
(G2, f1) = der1,1(Z,+) and (G′, f ′) = der1,1(Z4,+). Then, as already
mentioned, the set Hom(G1, G

′) is empty. The set Hom(G1, G
′) contains

four homomorphisms. They are defined by hc(x) = r + c(mod 4), where
x = 4t + r, 0 6 r < 4 and c = 0, 1, 2, 3. Hom(G′, G′) also contains four
homomorphisms, namely hc(x) = x+ c(mod 4), c = 0, 1, 2, 3.

3. Endomoprhisms of precyclic n-groups

Recall that an (n, 2)-nearring (G, f, ·) is an n-group (G, f) with an associa-
tive multiplication such that

a · f(xn1 ) = f({a·xi}n1 ) and f(xn1 ) · a = f({xi ·a}n1 )

for all a, xn1 ∈ G. An (n, 2)-nearring (G, f, ·) with a semiabelian n-group
(G, f) is called an (n, 2)-semiring; with an abelian n-group – an (n, 2)-ring.

In [5] it is noted that the set End(G, f) of all endomorphisms of a semi-
abelian n-group (G, f) forms an (n, 2)-semiring with respect to the n-ary
operation F defined as for homomorphisms and an ordinary superposition
of endomorphisms. The set of all endomorphisms of an abelian n-group
forms an (n, 2)-ring with unity.

Based on the results of the previous section, we can characterize (n, 2)-
semirings of endomorphisms of precyclic n-groups. For this we will use the
following lemma which is a consequence of Lemma 2.2.
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Lemma 3.1. A mapping h : Z → Z is an endomorphism of an n-group
(Z, fl) of type (∞, 1, l) if and only if here exists an element c ∈ Z and an
endomorphism β of (Z,+) such that h = Rcβ and β(l) = (n− 1)c+ l.

Let h = Rcβ be an endomorphism of (Z, fl). Then h(0) = c. Hence,
if β(1) = m, then β(l) = β(l1) = lβ(1) = lm. So, lm = (n − 1)c + l,
i.e. for fixed m,n and l there is only one c satisfying this equation. This
means that each endomorphism of (Z, fl) depends only on m and has the
form hm(x) = xm + cm, where cm = hm(0) and ml = l(mod (n − 1)). So,
τ(hm) = m is a bijection from the set End(Z, fl) onto the set

Z(l,n) = {m |ml = l(mod (n− 1))} ⊆ Z.

This is an (n, 2)-semiring with respect to the operation

g′(m1,m2, . . . ,mn) = m1 +m2 + . . .+mn

and an ordinary multiplication of numbers.

Since lm = (n− 1)c+ l means that c = l(m−1)
n−1 , we have

F (hm1 , hm2 , . . . , hmn)(z) = fl(hm1(z), hm2(z), . . . , hmn(z))

= (zm1 + cm1) + (zm2 + cm2) + . . .+ (zmn + cmn) + l

= z(m1 +m2 + . . .+mn) + fl(cm1 , cm2 , . . . , cmn)

= z(m1 +m2 + . . .+mn) + l(m1+m2+...+mn−n)
n−1 + l

= z(m1 +m2 + . . .+mn) + l(m1+m2+...+mn−1)
n−1

= z(m1 +m2 + . . .+mn) + cm1+m2+...+mn = hm1+m2+...+mn(z).

Hence τ(F (hm1 , hm2 , . . . , hmn)) = g′(τ(hm1), τ(hm2), . . . , τ(hmn)).

Also τ(hm1 ◦ hm2) = τ(hm1) · τ(hm2).

So, τ is an isomorphism between (End(Z, fl), F, ◦) and (Z(l,n), g
′, ·).

Theorem 3.2. The set of endomorphisms of a precyclic n-group of type
(∞, 1, l) forms an (n, 2)-semiring isomorphic to (Z(l,n), g

′, ·).

Endomorphisms of precyclic n-groups of type (∞,−1, 0) are characteri-
zed by

Lemma 3.3. A mapping h : Z → Z is an endomorphism of a precyclic
n-group of type (∞,−1, 0) if and only if h(x) = mx+ c for some m, c ∈ Z.
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Using the same method as in the proof of Theorem 3.2 we obtain

Theorem 3.4.The set of all endomorphisms of a precyclic n-group (Z, f(−1))
of type (∞,−1, 0) forms an (n, 2)-semiring isomorphic to the (n, 2)-semiring
(Z× Z, g, ∗), where

g((m1, c1), (m2, c2), . . . , (mn, cn)) = (f(−1)(m
n
1 ), f(−1)(c

n
1 )) and

(m1, c1) ∗ (m2, c2) = (m1m2,m1c2 + c1).

For endomorphisms of precyclic n-groups of type (m, k, l) we have

Theorem 3.5. A mapping h : Zm → Zm is an endomorphism of an n-group
(Zm, f(k,l)) if and only if h(x) = tx+c(modm) and tl = Skc+ l(modm) for
some t, c ∈ Zm. Such endomorphisms forms an (n, 2)-semiring isomorphic
to the (n, 2)-semiring (Z(k,b)

m , g, ∗), where

Z(k,l)
m = {(t, c) | t, c ∈ Zm, tl = Skc+ l(modm)},

g((t1, c1), (t2, c2), . . . , (tn, cn)) = (f(k,0)(t
n
1 ), f(k,l)(c

n
1 )) and

(t1, c1) ∗ (t2, c2) = (t1t1, t1c2 + c1).

Proof. Each endomorphism of (Zm,+) has the form β(x) = tx(modm).
Hence, by Lemma 2.2, h : Zm → Zm is an endomorphism of an n-group
(Zm, f(k,l)) if and only if h(x) = β(x) + c = tx+ c(modm) for some c ∈ Zm
such that β(l) = D(c) + l. But D(c) = c + kc + k2c + . . . + kn−2c = Skc.
So, β(l) = tl = Skc + l(modm). In Zm there is only one c satisfying this
equation. Indeed, if β(l) = D(c) + l, then β(x) + d = h(x) = β(x) + c,
whence c = d(modm). Thus, τ(h) = (t, c) is a bijection between the set of
all endomorphism of (Zm, f(k,l)) and Z(k,l)

m .

Moreover, for all h1, . . . , hn ∈ End(Zm, f(k,l)) we have

F (hn1 )(x) = f(k,l)(h1(x), h2(x), . . . , hn(x))

= (t1x+c1)+k(t1+c1)+k2(t2x+c2)+. . .+kn−2(tn−1x+cn−1)+(tnx+cn)+l

= (t1 + kt2 + . . .+ kn−2tn−1 + tn)x+ (c1 + kc2 + . . .+ kn−2cn−1 + cn + l)

= f(k,0)(x) + f(k,l)(c
n
1 ) = hf(k,0) + f(k,l).

Hence

τ(F (hn1 )) = (f(k,0), f(k,b)) = g((t1, c1), (t2, c2), . . . , (tn, cn))

= g(τ(h1), τ(h2), . . . , τ(hn)),

which shows that τ is an isomorphism.
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Observe that in the above proof for fixed k and l the element c is uniquely
determined by t, so an endomorphism h = Rcβ of (Zm, f(k,l)) is uniquely
determined by the value of t = β(1). Thus, the the set Z(k,l)

m can be iden-
tified with the set P(k,l)

m = {t ∈ Zm | tb = Skc + l(modm)}. Consequently,
the (n, 2)-semiring (Z(k,l)

m , g, ∗) can be identified with the (n, 2)-semiring
(P(k.l)
m , f(k,0), ·), where · is an ordinary multiplication modulo m.

4. Automoprhisms of precyclic n-groups

A binary composition (superposition) of automorphisms of a fixed n-group
is an automorphism of this n-group. Thus for a given n-group (G, f) the set
Aut(G, f) of all its automorphisms is a group contained in the semigroup
End(G, f). Hence, as a consequence of the above results, we obtain

Proposition 4.1. A mapping h : G → G is an automorphism of a semia-
belian n-group (G, f) = derϕ,a(G, ·) if and only if there exists c ∈ G and an
automorphism β of (G, ·) such that βϕ = ϕβ, h = Rcβ and β(a) = D(c) ·a.

Theorem 3.10 in [1] implies the following characterization:

Proposition 4.2. A mapping h : G → G is an automorphism of a semia-
belian n-group (G, f) = derϕ,a(G, ·) if and only if h = Rcβ, where β is an
automorphism of (G, ·), β(a) = a and ϕ(c) = c = cn.

Corollary 4.3. Let (G, f) = derϕ,a(G, ·) be a precyclic n-group, c ∈ G and
β ∈ Aut(G, ·). Then h = Rcβ ∈ Aut(G, f) if and only if Rc ∈ Aut(G, f)
and β ∈ Aut(G, f).

Proof. If h = Rcβ is an automorphism of (G, f) = derϕ,a(G, ·), then, by the
above Propositions, βϕ = ϕβ and β(a) = a. Hence, as it is not difficult to
see, β is an automorphism of (G, f). Consequently, also Rc = hβ−1 is an
automorphism of (G, f). The converse statement is obvious.

The above fact also follows from the results proven in [1].

Theorem 4.4. If (G, f) = derϕ,a(G, ·) is a precyclic n-group, then

Aut(G, f) ∼= Rϕ(G, f) n Auta(G, ·),

where
Rϕ(G, f) = {Rc |ϕ(c) = c = cn} and

Auta(G, ·) = {β ∈ Aut(G, ·) |β(a) = a}.
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Proof. Rϕ(G, f) and Auta(G, ·) are subgroups of Aut(G, f) and Aut(G, ·),
respectively. (G, ·) is abelian, so Rϕ(G, f) is a normal subgroup. Moreover,
if ψ ∈ Rϕ(G, f) ∩ Auta(G, ·), then ϕ = Rc = β. Thus, Rc(a) = β(a) = a,
which gives c = e. Therefore, Rϕ(G, f) ∩ Auta(G, ·) = {ε}. Consequently,
Aut(G, f) ∼= Rϕ(G, f) n Auta(G, ·).

Theorem 4.5. If a precyclic n-group (G, f) = derϕ,a(G, ·) has at least one
idempotent, then

Aut(G, f) ∼= RE(G,f) n Aut(G, ·),

where RE(G,f) is a group of right translations of (G, ·) determined by idem-
potent elements.

Proof. Let (G, f) = derϕ,a(G, ·) be a precyclic n-group containing at least
one idempotent. We will show first that (G, f) is isomorphic to (G, g) =
derϕ(G, ·).

Let c be an idempotent of (G, f). Then

c = f(c, c, . . . , c) = c · ϕ(c) · ϕ2(c) · . . . · ϕn−2(c) · c · a. (3)

Thus,
a · c−1 = c−1 · ϕ(c−1) · ϕ2(c−1) · . . . · ϕn−2(c−1) · c−1. (4)

Hence
Rc−1f(xn1 ) = x1 · ϕ(x2) · ϕ2(x3) · . . . · ϕn−2(xn−1) · xn · a · c−1
(4)
= x1 ·c−1 ·ϕ(x2)·ϕ(c−1)·ϕ2(x3)·ϕ2(c−1)· . . . ·ϕn−2(xn−1)·ϕn−2(c−1)·xn ·c−1

=x1 · c−1 · ϕ(x2 · c−1) · ϕ2(x3 · c−1) · . . . · ϕn−2(xn−1 · c−1) · xn · c−1

=Rc−1(x1) · ϕRc−1(x2) · ϕ2Rc−1 · . . . · ϕn−2Rc−1(xn−1) ·Rc−1(xn)

=g(Rc−1(x1), Rc−1(x2), . . . , Rc−1(xn)).

Therefore Rc−1 : (G, f) → (G, g) is a homomorphism. Since it is a
bijection, (G, f) ∼= (G, g). Then also Aut(G, f) ∼= Aut(G, g) and RE(G,f)

∼=
RE(G,g). So it is sufficient to prove our theorem for (G, g).

The neutral element of (G, ·) is an idempotent of (G, g). Thus the set
RE(G,g) is nonempty and RbRc = Rc·b for all Rc, Rb ∈ RE(G,g) because, by
(3), c·b is an idempotent. ThusRE(G,g) is a subgroup of Aut(G, g) such that
(Rbβ)−1◦Rc◦Rbβ = Rβ−1(c) for Rbβ ∈ Aut(G, g) and Rc ∈ RE(G,g)

. Since,
β−1(c) = β−1g(c, c, . . . , c) = g(β−1(c), β−1(c), . . . , β−1(c)), by Corollary
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4.3, β−1(c) is an idempotent of (G, g). Consequently, Rβ−1(c) ∈ RE(G,g),
which shows that RE(G,g) is a normal subgroup of Aut(G, g). Moreover,
RE(G,g) ∩Aut(G, ·) = {ε}. So, Aut(G, g) ∼= RE(G,g) n Aut(G, ·).

Corollary 4.6. If a precyclic n-group (G, f) = derϕ,a(G, ·) has only one
idempotent, then

Aut(G, f) ∼= Aut(G, ·)
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