https://doi.org/10.56415/qrs.v31.17

Endomorphisms of precyclic *n*-groups

Sonia Dog and Nikolay A. Shchuchkin

Abstract. We characterize the sets of homomorphisms, endomorphisms and automorphisms of *n*-ary groups with cyclic retracts.

1. Introduction

Polyadic groups, called also *n*-ary groups or *n*-groups, are a generalization of groups. Therefore, *n*-group theory is closely related to group theory. It is known that for every n-group (G, f) there exists a group (G, *) and its automorphism φ such that $f(x_1, \ldots, x_n) = x_1 * \varphi(x_2) * \ldots * \varphi^{n-1}(x_n) * b$, $\varphi^{n-1}(x) * b = b * x$ and $\varphi(b) = b$ for some element $b \in G$ (see for example [2]). Then we write $(G, f) = \operatorname{der}_{\varphi, b}(G, *)$. If in the *n*-group operation f we fix all inner elements, we get the operation \diamond that depends only on two outer elements. The algebra (G, \diamond) obtained in this way is a group called the retract of (G, f). All retracts of an n-group $(G, f) = \operatorname{der}_{\varphi,a}(G, *)$ are isomorphic to the group (G, *) (see [3]). Therefore, we can assume that $x \diamond y = f(x, a, \dots, a, y)$. We then write $(G, \diamond) = \operatorname{ret}_a(G, f)$. Moreover, for each $a \in G$, the mapping $\varphi(x) = f(\overline{a}, x, a, \dots, a)$ is an automorphism of the group (G, \diamond) and $(G, f) = \operatorname{der}_{\omega, b}(\operatorname{ret}_a(G, f))$ for $b = f(\overline{a}, \ldots, \overline{a})$, where \overline{a} is such that $f(a, \ldots, a, \overline{a}) = a$ (see [3]). An *n*-group with an abelian retract is called *semiabelian*. In [5] it is shown that an n-group is semiabelian if and only if it is medial (entropic). In this case φ^{n-1} is the identity mapping.

An *n*-group with a cyclic retract is called *precyclic* (in Russian terminology – *semicyclic*). An infinite precyclic *n*-group is isomorphic to the *n*-group (\mathbb{Z}, f_l) = der_{1,l}($\mathbb{Z}, +$), $0 \leq l \leq \frac{n-1}{2}$, or to the *n*-group ($\mathbb{Z}, f_{(-1)}$) = der_{-1,0}($\mathbb{Z}, +$) (for odd *n* only) [6]. The first is type ($\infty, 1, l$), the second type ($\infty, -1, 0$). A finite precyclic *n*-group of order *m* is isomorphic to the *n*-group der_{1,l}($\mathbb{Z}_m, +$) with l|gcd(m, n-1) or to the *n*-group der_{k,l}($\mathbb{Z}_m, +$),

²⁰¹⁰ Mathematics Subject Classification: 20N15.

Keywords: Semiabelian $n\mbox{-}{\rm group},$ precyclic $n\mbox{-}{\rm group},$ endomorphism, automorphism, $(n,2)\mbox{-}{\rm semiring}.$

where k > 1, gcd(k,m) = 1, $k^{n-1} = 1 \pmod{m}$, $kl = l \pmod{m}$ and $l|gcd(m, S_k)$, $S_k = 1 + k + k^2 + \ldots + k^{n-2} = \frac{k^{n-1}-1}{k-1}$. We say (cf. [6]) that the first is type (m, 1, l), the second is type (m, k, l).

First we will show that the set of all homomorphisms from a precyclic n-group into a semiabelian n-group forms an n-group. Next we characterize (n, 2)-semirings of endomorphisms of precyclic n-groups. Some of our results were inspired by theorems proved in [7] and [8]. We give them in a more general, more useful version. We also provide new, simpler and shorter proofs.

For simplicity, the sequence $x_i, x_{i+1}, \ldots, x_j$ will be written as x_i^j ; the sequence x, x, \ldots, x (k times) as $x_i^{(k)}$. We also assume that n > 2.

2. Homomorphisms of precyclic *n*-groups

Using the mediality it is not difficult to see that the set Hom(G, G') of all homomorphisms of an *n*-group (G, f) into a semiabelian *n*-group (G', f')forms a semiabelian *n*-group with respect the *n*-ary operation *F* defined by

$$F(h_1, h_2, \dots, h_n)(x) = f'(h_1(x), h_2(x), \dots, h_n(x)),$$

where the homomorphism skew to h is defined by $\overline{h}(x) = \overline{h(x)}$.

Note that if an *n*-group (G', f') has no dempotents, the set Hom(G, G')may be empty. This is the case, for example, with the 5-groups (\mathbb{Z}_6, f) and (\mathbb{Z}_4, f') 1-derived from the additive groups \mathbb{Z}_6 an \mathbb{Z}_4 , respectively. Indeed, for any homomorphism $h: (\mathbb{Z}_6, f) \to (\mathbb{Z}_4, f')$ there will be h(0) = c, h(1) = hf(0, 0, 0, 0, 0) = f'(h(0), h(0), h(0), h(0), h(0)) = c + 1, h(2) =hf(1, 0, 0, 0, 0) = h(1) + 4c + 1 = c + 2. So, $h(k) = c + k \pmod{4}$. But then $h(1) = hf(1, 4, 0, 0, 0) = h(1) + h(4) + 3c + 1 = c + 2 \pmod{4}$ which is impossible.

Let's start with lemmas that will be needed later. The first lemma is obvious, the second is a modification of Theorem 3 from [4]

Lemma 2.1. Consider the diagram

$$(G, f) \xrightarrow{\psi} (H, f_1)$$

$$\downarrow \lambda_G \qquad \qquad \downarrow \lambda_H$$

$$(G', f') \xrightarrow{\psi'} (H', f'_1)$$

where ψ and ψ' are isomorphism of the corresponding n-groups. If λ_G , λ_H are homomorphisms of n-groups, and n-groups (G', f'), (H', f') are semiabelian, then $\operatorname{Hom}(G, G')$ and $\operatorname{Hom}(H, H')$ form isomorphic n-groups. This isomorphism acts according to the rule $\Phi(\alpha) = \psi' \alpha \psi^{-1}$.

The converse is not true. This is the case, for example, when G' has only one element.

Lemma 2.2. A mapping h from an n-group der_{φ,a}(G, *) into a semiabelian n-group der_{ψ,d}(G', ·) is an n-group homomorphism if and only if there exists an element $c \in G'$ and a group homomorphism $\beta : (G, *) \to (G', \cdot)$ such that $\beta \varphi = \psi \beta$, $h = R_c \beta$ and $\beta(a) = D(c) \cdot d$, where $R_c(x) = x \cdot c$ for all $x \in G'$ and $D(c) = c \cdot \psi(c) \cdot \psi^2(c) \cdot \ldots \cdot \psi^{n-2}(c)$.

Proof. Let $(G, f) = \operatorname{der}_{\varphi, a}(G, *)$ and $(G', f') = \operatorname{der}_{\psi, d}(G', \cdot)$ be two *n*-groups and let (G', f') be semiabelian.

If there exists a group homomorphism $\beta : (G, *) \to (G', \cdot)$ such that $\beta \varphi = \psi \beta$ and $\beta(a) = D(c) \cdot d$ for some fixed $c \in G'$, then for $h(x) = \beta(x) \cdot c$ we have

$$\begin{split} h(f(x_1^n)) &= \beta(f(x_1^n)) \cdot c = \beta(x_1 * \varphi(x_2) * \dots * \varphi^{n-1}(x_n) * a) \cdot c \\ &= \beta(x_1) \cdot \beta\varphi(x_2) \cdot \dots \cdot \beta\varphi^{n-1}(x_n) \cdot \beta(a) \cdot c \\ &= \beta(x_1) \cdot \psi\beta(x_2) \cdot \dots \cdot \psi^{n-1}\beta(x_n) \cdot D(c) \cdot d \cdot c \\ &= \beta(x_1) \cdot \psi\beta(x_2) \cdot \dots \cdot \psi^{n-1}\beta(x_n) \cdot c \cdot \psi(c) \cdot \dots \cdot \psi^{n-2}(c) \cdot d \cdot c \\ &= (\beta(x_1) \cdot c) \cdot \psi(\beta(x_2) \cdot c) \cdot \dots \cdot \psi^{n-1}(\beta(x_n) \cdot c) \cdot d \\ &= h(x_1) \cdot \psi h(x_2) \cdot \dots \cdot \psi^{n-1}h(x_n) \cdot d \\ &= f'(h(x_1), h(x_2), \dots, h(x_n)). \end{split}$$

Hence $h: G \to G'$ is an *n*-group homomorphism.

Conversely, let $h: (G, f) \to (G', f')$ be an *n*-group homomorphism and $(G, \circ) = \operatorname{ret}_a(G, f), (G', \diamond) = \operatorname{ret}_b(G', f')$. Then $\beta: (G, \circ) \to (G', \diamond)$ defined by $\beta'(x) = f'(h(x), h(a), \overline{a})$ is a homomorphism. Since \overline{a} and \overline{b} are neutral elements of these groups, $\beta'(\overline{a}) = \overline{b}$.

Let
$$\overline{a} = h(g)$$
 for some $g \in G$. Then
 $\beta'(x) = f'(h(x), h(a), \overline{a}) = f'(h(x), h(a), h(g)) = h(f(x, a^{(n-2)}, g)) = h(x \circ g).$
Thus $h(\overline{a}) = h(g^{-1} \circ g) = h(g^{-1}).$

Now, denoting $h(g^{-1})$ by c', we obtain

$$h(x)=h(x\circ g^{-1}\circ g)=\beta'(x\circ g^{-1})=\beta'(x)\diamond\beta'(g^{-1})=\beta'(x)\diamond c'.$$

All retracts of an *n*-group der_{φ,b}(G, \star) are isomorphic to (G, \star) (cf. [3]), so (G, \circ) and (G, \star) , also (G', \diamond) and (G', \cdot) , are isomorphic. Thus, a group homomorphism β' corresponds to some homomorphism $\beta : (G, \star) \to (G, \cdot)$. Hence $h(x) = \beta(x) \cdot c$, i.e. $h = R_c\beta$ for some $c \in G'$.

Since $h: (G, f) \to (G', f')$ is a homomorphism of *n*-groups,

$$h(f(x_1^n)) = f'(h(x_1), h(x_2), \dots, h(x_n))$$

implies

$$\beta(f(x_1^n)) \cdot c = f'(\beta(x_1) \cdot c, \beta(x_2) \cdot c, \dots, \beta(x_n) \cdot c).$$

Consequently,

$$\beta(x_1) \cdot \beta \varphi(x_2) \cdot \beta \varphi^2(x_3) \cdot \ldots \cdot \beta \varphi^{n-1}(x_n) \cdot \beta(a) \cdot c$$

= $(\beta(x_1) \cdot c) \cdot \psi(\beta(x_2) \cdot c) \cdot \psi^2(\beta(x_3) \cdot c) \cdot \ldots \cdot \psi^{n-1}(\beta(x_n) \cdot c) \cdot d.$

From this, putting $x_i = \overline{a}$ for all i = 1, 2, ..., n, we obtain

 $\beta(a) \cdot c = c \cdot \psi(c) \cdot \psi^2(c) \cdot \ldots \cdot \varphi^{n-1}(c) \cdot b = D(c) \cdot \psi^{n-1}(c) \cdot d = D(c) \cdot d \cdot c,$ which shows that $\beta(a) = D(c) \cdot d$.

Putting in the previous identity $x_2 = x$ and $x_i = \overline{a}$ for other x_i we get

$$\beta\varphi(x)\cdot\beta(a)\cdot c = c\cdot\psi\beta(x)\cdot\psi(c)\cdot\psi^2(c)\cdot\ldots\cdot\varphi^{n-1}(c)\cdot d$$
$$=\psi\beta(x)\cdot D(c)\cdot d\cdot c = \psi\beta(x)\cdot\beta(a)\cdot c.$$

Thus $\beta \varphi = \psi \beta$, which completes the proof.

As a consequence of the above lemma we obtain

Corollary 2.3. A mapping h from an n-group der_{φ,a}(G,*) into a semiabelian n-group der_{ψ,d}(G', ·) is an n-group homomorphism if and only if there exists an element $c \in G'$ such that $\beta = h \cdot c^{-1}$ is a group homomorphism from (G,*) into (G', ·), $\beta \varphi = \psi \beta$ and $\beta(a) = D(c) \cdot d$.

Let $(G, f) = \operatorname{der}_{\varphi,a}(G, *)$ and $(G', f') = \operatorname{der}_{\psi,d}(G', \cdot)$. If (G', f') is a semiabelian *n*-group, then each homomorphism $h_i \in \operatorname{Hom}(G, G')$ has the form $h_i = R_{c_i}\beta_i$, where β_i and c_i are as in the above lemma. Consequently,

$$F(h_{1}^{n})(x) = f'(h_{1}(x), h_{2}(x), \dots, h_{n-1}(x), h_{n}(x))$$

= $f'(\beta_{1}(x) \cdot c_{1}, \beta_{2}(x) \cdot c_{2}, \dots, \beta_{n-1}(x) \cdot c_{n-1}, \beta_{n}(x) \cdot c_{n})$
= $(\beta_{1}(x) \cdot c_{1}) \cdot \psi(\beta_{2}(x) \cdot c_{2}) \cdot \dots \cdot \psi^{n-2}(\beta_{n-1}(x) \cdot c_{n-1}) \cdot (\beta_{n}(x_{n}) \cdot c_{n}) \cdot d$
= $\beta_{1}(x) \cdot \psi\beta_{2}(x) \cdot \dots \cdot \psi^{n-2}\beta_{n-1}(x) \cdot \beta_{n}(x) \cdot c_{1} \cdot \psi(c_{2}) \cdot \dots \cdot \psi^{n-2}(c_{n-1}) \cdot c_{n} \cdot d$
= $\beta_{1}(x) \cdot \psi\beta_{2}(x) \cdot \dots \cdot \psi^{n-2}\beta_{n-1}(x) \cdot \beta_{n}(x) \cdot f'(c_{1}^{n}) = \beta(x) \cdot f'(c_{1}^{n}),$

where $\beta = \beta_1 \cdot \psi \beta_2 \cdot \ldots \cdot \psi^{n-2} \beta_{n-1} \cdot \beta_n = \beta_1 \cdot \beta_2 \varphi \cdot \ldots \cdot \beta_{n-1} \varphi^{n-2} \cdot \beta_n$ is a homomorphism from (G, *) to (G', \cdot) . Thus,

$$F(h_1^n) = R_u\beta$$
, where $u = f'(c_1^n)$, $\beta = \beta_1 \cdot \beta_2 \varphi \cdot \ldots \cdot \beta_{n-1} \varphi^{n-2} \cdot \beta_n$. (1)

Let (G', f') be a semiabelian *n*-group. Then $(G', \cdot) = \operatorname{ret}_a(G', f')$ is an abelian group (for any $a \in G'$) and $(G', f') = \operatorname{der}_{\psi,d}(G', \cdot)$ for $d = f'(\overline{a})$ and $\psi(x) = f'(\overline{a}, x, \overset{(n-2)}{a})$. Moreover, $D(x) = x \cdot \psi(x) \cdot \psi^2(x) \cdots \psi^{n-2}(x)$ is an endomorphism of (G', \cdot) such that $\psi(d \cdot D(x)) = d \cdot D(x) = f'(\overset{(n-1)}{x}, \overline{a})$ for every $x \in G'$.

We will use these facts to describe the set of homomorphisms of precyclic *n*-groups. We'll start with precyclic *n*-groups of type $(\infty, 1, l)$.

First, for $(G', f') = \operatorname{der}_{\psi, d}(G', \cdot)$ and an arbitrary natural l we define the set

$$G'_{(l,d)} = \{(z,c) | \psi(z) = z, \ z^l = d \cdot D(c)\} \subseteq G' \times G'.$$

Using the mediality of (G', f') and the above facts, we can see that $G'_{(l,d)}$ with the operation

$$g'((z_1, c_1), (z_2, c_2), \dots, (z_n, c_n)) = (z_1 \cdot z_2 \cdot \dots \cdot z_n, f'(c_1^n))$$
(2)

is a semiabelian n-group.

Theorem 2.4. If the set of all homomorphisms from a precyclic n-group (G, f) of type $(\infty, 1, l)$ into a semiabelian n-group $(G', f') = \operatorname{der}_{\psi,d}(G', \cdot)$ is nonempty, then it forms an n-group isomorphic to the n-group $(G'_{l,d}, g')$.

Proof. Any precyclic *n*-group of type $(\infty, 1, l)$ is isomorphic to the *n*-group $(\mathbb{Z}, f_l) = \det_{1,l}(\mathbb{Z}, +)$. Let *h* be a homomorphism from (\mathbb{Z}, f_l) into a semiabelian *n*-group $(G', f') = \det_{\psi,d}(G', \cdot)$. Then, according to Lemma 2.2, $h = R_c\beta$ for some homomorphism β from $(\mathbb{Z}, +)$ to (G', \cdot) , $\beta(x) = \psi(\beta(x))$ and $\beta(l) = d \cdot D(c)$ for some $c \in G'$. Any homomorphism β of a cyclic group is determined by the value of β on the generator of this group. So, if $\beta(1) = z$, then $z = \beta(1) = \psi\beta(1) = \psi(z)$ and $z^l = \beta(l) = d \cdot D(c)$. Hence, any homomorphism $h : (\mathbb{Z}, f_l) \to (G', f')$ determines one pair $(z, c) \in G'_{(l,d)}$.

On the other side, for each pair $(z,c) \in G'_{(l,d)}$ there is only one homomorphism $\beta : (\mathbb{Z}, +) \to (G', \cdot)$ such that $\beta(1) = z$. Hence $\beta(k) = z^k$. Thus $\psi\beta(k) = \psi(z^k) = \psi(z)^k = z^k = \beta(k)$ for every $k \in \mathbb{Z}$. So, $\psi\beta = \beta$ and $\beta(l) = z^l = d \cdot D(c)$.

This shows that the pair (z, c) uniquely determines the homomorphism $h = R_c\beta$ with $\beta(1) = z$. So, there is one-to-one correspondence between elements of the set Hom(G, G') and elements of the set $G'_{(l,d)}$. Denote this correspondence by τ , i.e. $\tau(h_i) = (z_i, c_i)$ for $h_i = R_{c_i}\beta_i$ and $z_i = \beta_1(1)$. Then $\beta_i(k) = \beta_i(k1) = \beta_i(1)^k = z_i^k$.

Since
$$\beta(1) = (\beta_1 \cdot \beta_2 \cdot \ldots \cdot \beta_n)(1) = z_1 \cdot z_2 \cdot \ldots \cdot z_n,$$

 $\tau(F(h_1^n)) = (z_1 \cdot z_2 \cdot \ldots \cdot z_n, f'(c_1^n)) = g((z_1, c_1), (z_2, c_2), \ldots, (z_n, c_n))$
 $= g(\tau(h_1), \tau(h_2), \ldots, \tau(h_n)).$

Hence τ is an isomorphism.

Since $z^k = \beta(k) = e$ for $k \in \operatorname{Ker} \beta$, the first coordinate of each pair $(z,c) \in G'_{(l,d)}$ has finite order in the group (G', \cdot) .

All precyclic *n*-groups of type $(\infty, -1, 0)$ are idempotent and exist only for odd *n*. All such *n*-groups can be identified with the *n*-group $(\mathbb{Z}, f_{(-1)}) =$ $der_{-1,0}(\mathbb{Z}, +)$. The homomorphic image of the idempotent *n*-group is also the *n*-idempotent group. This means that the homomorphism from $(\mathbb{Z}, f_{(-1)})$ into the *n*-group (G', f') exists only if (G', f') has at least one idemotent. By Lemma 2.2, any such homomorphism has the form $h = R_c\beta$, where $\beta(0) = D(c) \cdot d$ and $\psi\beta(x) = \beta(x)^{-1}$ for $x \in \mathbb{Z}$. So, $D(c) = d^{-1}$ and $\psi(z) = z^{-1}$ for $z \in \beta(\mathbb{Z})$. Moreover, $h(0) = R_c\beta(0) = c$. Consequently, $c = h(0) = hf_{(-1)}({0 \atop 0}) = f'({n \atop 0}) = f'({c \atop 0})$. Thus as a consequence of Lemma 2.2 we obtain

Lemma 2.5. A mapping h from an n-group der_{-1,0}(\mathbb{Z} , +) into a semiabelian n-group der_{ψ,d}(G', \cdot) is an n-group homomorphism if and only if there exists an idempotent $c \in G'$ and a group homomorphism $\beta : (\mathbb{Z}, +) \to (G', \cdot)$ such that $h = R_c\beta$, $D(c) = d^{-1}$ and $\beta(x)^{-1} = \psi\beta(x)$ for $x \in \mathbb{Z}$.

The proofs of the following theorems is very similar to the proof of Theorem 2.4. So we skip them.

Theorem 2.6. If the set of all homomorphisms from a precyclic n-group of type $(\infty, -1, 0)$ into a semiabelian n-group $(G', f') = \operatorname{der}_{\psi,d}(G', \cdot)$ is nonempty, then it forms an n-group isomorphic to the n-group (G''_d, g'') , where

$$G''_d = \{(z,c) \mid \psi(z) = z^{-1}, \ D(c) = d^{-1}\} \subseteq G' \times G' \quad and$$
$$g''((z_1,c_1),(z_2,c_2),\dots,(z_n,c_n)) = (z_1 \cdot z_2^{-1} \cdot z_3 \cdot z_4^{-1} \cdot \dots \cdot z_{n-1}^{-1} \cdot z_n, f'(c_1^n)).$$

Theorem 2.7. If the set of all homomorphisms from a precyclic n-group of type (m, k, l) with $k \ge 1$, into a semiabelian n-group $(G', f') = \operatorname{der}_{\psi,d}(G', \cdot)$ is nonempty, then it forms an n-group isomorphic to the n-group $(G'_{(l,d)}, g')$.

Example 2.8. Let us consider three 5-groups: $(G_1, f_1) = \text{der}_{5,3}(\mathbb{Z}_6, +),$ $(G_2, f_1) = \text{der}_{1,1}(\mathbb{Z}, +)$ and $(G', f') = \text{der}_{1,1}(\mathbb{Z}_4, +)$. Then, as already mentioned, the set $\text{Hom}(G_1, G')$ is empty. The set $\text{Hom}(G_1, G')$ contains four homomorphisms. They are defined by $h_c(x) = r + c \pmod{4}$, where $x = 4t + r, 0 \leq r < 4$ and c = 0, 1, 2, 3. Hom(G', G') also contains four homomorphisms, namely $h_c(x) = x + c \pmod{4}, c = 0, 1, 2, 3$.

3. Endomoprhisms of precyclic *n*-groups

Recall that an (n, 2)-nearring (G, f, \cdot) is an n-group (G, f) with an associative multiplication such that

$$a \cdot f(x_1^n) = f(\{a \cdot x_i\}_1^n)$$
 and $f(x_1^n) \cdot a = f(\{x_i \cdot a\}_1^n)$

for all $a, x_1^n \in G$. An (n, 2)-nearring (G, f, \cdot) with a semiabelian *n*-group (G, f) is called an (n, 2)-semiring; with an abelian *n*-group – an (n, 2)-ring.

In [5] it is noted that the set $\operatorname{End}(G, f)$ of all endomorphisms of a semiabelian *n*-group (G, f) forms an (n, 2)-semiring with respect to the *n*-ary operation F defined as for homomorphisms and an ordinary superposition of endomorphisms. The set of all endomorphisms of an abelian *n*-group forms an (n, 2)-ring with unity.

Based on the results of the previous section, we can characterize (n, 2)-semirings of endomorphisms of precyclic *n*-groups. For this we will use the following lemma which is a consequence of Lemma 2.2.

Lemma 3.1. A mapping $h : \mathbb{Z} \to \mathbb{Z}$ is an endomorphism of an n-group (\mathbb{Z}, f_l) of type $(\infty, 1, l)$ if and only if here exists an element $c \in \mathbb{Z}$ and an endomorphism β of $(\mathbb{Z}, +)$ such that $h = R_c\beta$ and $\beta(l) = (n-1)c + l$.

Let $h = R_c\beta$ be an endomorphism of (\mathbb{Z}, f_l) . Then h(0) = c. Hence, if $\beta(1) = m$, then $\beta(l) = \beta(l1) = l\beta(1) = lm$. So, lm = (n-1)c + l, i.e. for fixed m, n and l there is only one c satisfying this equation. This means that each endomorphism of (\mathbb{Z}, f_l) depends only on m and has the form $h_m(x) = xm + c_m$, where $c_m = h_m(0)$ and ml = l(mod (n-1)). So, $\tau(h_m) = m$ is a bijection from the set $End(\mathbb{Z}, f_l)$ onto the set

$$\mathbb{Z}_{(l,n)} = \{m \mid ml = l(\text{mod}(n-1))\} \subseteq \mathbb{Z}.$$

This is an (n, 2)-semiring with respect to the operation

$$g'(m_1, m_2, \ldots, m_n) = m_1 + m_2 + \ldots + m_n$$

and an ordinary multiplication of numbers.

Since lm = (n-1)c + l means that $c = \frac{l(m-1)}{n-1}$, we have $F(h_{m_1}, h_{m_2}, \dots, h_{m_n})(z) = f_l(h_{m_1}(z), h_{m_2}(z), \dots, h_{m_n}(z))$ $= (zm_1 + c_{m_1}) + (zm_2 + c_{m_2}) + \dots + (zm_n + c_{m_n}) + l$ $= z(m_1 + m_2 + \dots + m_n) + f_l(c_{m_1}, c_{m_2}, \dots, c_{m_n})$ $= z(m_1 + m_2 + \dots + m_n) + \frac{l(m_1 + m_2 + \dots + m_n - n)}{n-1} + l$ $= z(m_1 + m_2 + \dots + m_n) + \frac{l(m_1 + m_2 + \dots + m_n - 1)}{n-1}$ $= z(m_1 + m_2 + \dots + m_n) + c_{m_1 + m_2 + \dots + m_n} = h_{m_1 + m_2 + \dots + m_n}(z).$

Hence $\tau(F(h_{m_1}, h_{m_2}, \dots, h_{m_n})) = g'(\tau(h_{m_1}), \tau(h_{m_2}), \dots, \tau(h_{m_n})).$

Also $\tau(h_{m_1} \circ h_{m_2}) = \tau(h_{m_1}) \cdot \tau(h_{m_2}).$

So, τ is an isomorphism between $(\text{End}(\mathbb{Z}, f_l), F, \circ)$ and $(\mathbb{Z}_{(l,n)}, g', \cdot)$.

Theorem 3.2. The set of endomorphisms of a precyclic n-group of type $(\infty, 1, l)$ forms an (n, 2)-semiring isomorphic to $(\mathbb{Z}_{(l,n)}, g', \cdot)$.

Endomorphisms of precyclic *n*-groups of type $(\infty, -1, 0)$ are characterized by

Lemma 3.3. A mapping $h : \mathbb{Z} \to \mathbb{Z}$ is an endomorphism of a precyclic *n*-group of type $(\infty, -1, 0)$ if and only if h(x) = mx + c for some $m, c \in \mathbb{Z}$.

Using the same method as in the proof of Theorem 3.2 we obtain

Theorem 3.4. The set of all endomorphisms of a precyclic n-group $(\mathbb{Z}, f_{(-1)})$ of type $(\infty, -1, 0)$ forms an (n, 2)-semiring isomorphic to the (n, 2)-semiring $(\mathbb{Z} \times \mathbb{Z}, g, *)$, where

 $g((m_1, c_1), (m_2, c_2), \dots, (m_n, c_n)) = (f_{(-1)}(m_1^n), f_{(-1)}(c_1^n)) \text{ and}$ $(m_1, c_1) * (m_2, c_2) = (m_1 m_2, m_1 c_2 + c_1).$

For endomorphisms of precyclic *n*-groups of type (m, k, l) we have

Theorem 3.5. A mapping $h: \mathbb{Z}_m \to \mathbb{Z}_m$ is an endomorphism of an n-group $(\mathbb{Z}_m, f_{(k,l)})$ if and only if $h(x) = tx + c \pmod{m}$ and $tl = S_k c + l \pmod{m}$ for some $t, c \in \mathbb{Z}_m$. Such endomorphisms forms an (n, 2)-semiring isomorphic to the (n, 2)-semiring $(\mathbb{Z}_m^{(k,b)}, g, *)$, where

$$\mathbb{Z}_m^{(k,l)} = \{(t,c) \mid t, c \in \mathbb{Z}_m, \ tl = S_k c + l(\text{mod } m)\},\$$

$$g((t_1,c_1), (t_2,c_2), \dots, (t_n,c_n)) = (f_{(k,0)}(t_1^n), f_{(k,l)}(c_1^n)) \text{ and }\$$

$$(t_1,c_1) * (t_2,c_2) = (t_1t_1, t_1c_2 + c_1).$$

Proof. Each endomorphism of $(\mathbb{Z}_m, +)$ has the form $\beta(x) = tx \pmod{m}$. Hence, by Lemma 2.2, $h: \mathbb{Z}_m \to \mathbb{Z}_m$ is an endomorphism of an *n*-group $(\mathbb{Z}_m, f_{(k,l)})$ if and only if $h(x) = \beta(x) + c = tx + c \pmod{m}$ for some $c \in \mathbb{Z}_m$ such that $\beta(l) = D(c) + l$. But $D(c) = c + kc + k^2c + \ldots + k^{n-2}c = S_kc$. So, $\beta(l) = tl = S_kc + l \pmod{m}$. In \mathbb{Z}_m there is only one c satisfying this equation. Indeed, if $\beta(l) = D(c) + l$, then $\beta(x) + d = h(x) = \beta(x) + c$, whence $c = d \pmod{m}$. Thus, $\tau(h) = (t, c)$ is a bijection between the set of all endomorphism of $(\mathbb{Z}_m, f_{(k,l)})$ and $\mathbb{Z}_m^{(k,l)}$.

Moreover, for all $h_1, \ldots, h_n \in \operatorname{End}(\mathbb{Z}_m, f_{(k,l)})$ we have

$$F(h_1^n)(x) = f_{(k,l)}(h_1(x), h_2(x), \dots, h_n(x))$$

= $(t_1x+c_1)+k(t_1+c_1)+k^2(t_2x+c_2)+\dots+k^{n-2}(t_{n-1}x+c_{n-1})+(t_nx+c_n)+l$
= $(t_1+kt_2+\dots+k^{n-2}t_{n-1}+t_n)x+(c_1+kc_2+\dots+k^{n-2}c_{n-1}+c_n+l)$
= $f_{(k,0)}(x)+f_{(k,l)}(c_1^n) = h_{f_{(k,0)}}+f_{(k,l)}.$
Hence
 $\tau(F(h_1^n)) = (f_{(k,0)}, f_{(k,b)}) = g((t_1,c_1), (t_2,c_2), \dots, (t_n,c_n))$
= $g(\tau(h_1), \tau(h_2), \dots, \tau(h_n)),$

which shows that τ is an isomorphism.

Observe that in the above proof for fixed k and l the element c is uniquely determined by t, so an endomorphism $h = R_c\beta$ of $(\mathbb{Z}_m, f_{(k,l)})$ is uniquely determined by the value of $t = \beta(1)$. Thus, the the set $\mathbb{Z}_m^{(k,l)}$ can be identified with the set $\mathbb{P}_m^{(k,l)} = \{t \in \mathbb{Z}_m \mid tb = S_kc + l \pmod{m}\}$. Consequently, the (n, 2)-semiring $(\mathbb{Z}_m^{(k,l)}, g, *)$ can be identified with the (n, 2)-semiring $(\mathbb{P}_m^{(k,l)}, f_{(k,0)}, \cdot)$, where \cdot is an ordinary multiplication modulo m.

4. Automorphisms of precyclic *n*-groups

A binary composition (superposition) of automorphisms of a fixed *n*-group is an automorphism of this *n*-group. Thus for a given *n*-group (G, f) the set $\operatorname{Aut}(G, f)$ of all its automorphisms is a group contained in the semigroup $\operatorname{End}(G, f)$. Hence, as a consequence of the above results, we obtain

Proposition 4.1. A mapping $h: G \to G$ is an automorphism of a semiabelian n-group $(G, f) = \text{der}_{\varphi, a}(G, \cdot)$ if and only if there exists $c \in G$ and an automorphism β of (G, \cdot) such that $\beta \varphi = \varphi \beta$, $h = R_c \beta$ and $\beta(a) = D(c) \cdot a$.

Theorem 3.10 in [1] implies the following characterization:

Proposition 4.2. A mapping $h: G \to G$ is an automorphism of a semiabelian n-group $(G, f) = \operatorname{der}_{\varphi, a}(G, \cdot)$ if and only if $h = R_c\beta$, where β is an automorphism of (G, \cdot) , $\beta(a) = a$ and $\varphi(c) = c = c^n$.

Corollary 4.3. Let $(G, f) = \text{der}_{\varphi, a}(G, \cdot)$ be a precyclic n-group, $c \in G$ and $\beta \in \text{Aut}(G, \cdot)$. Then $h = R_c \beta \in \text{Aut}(G, f)$ if and only if $R_c \in \text{Aut}(G, f)$ and $\beta \in \text{Aut}(G, f)$.

Proof. If $h = R_c\beta$ is an automorphism of $(G, f) = \text{der}_{\varphi,a}(G, \cdot)$, then, by the above Propositions, $\beta\varphi = \varphi\beta$ and $\beta(a) = a$. Hence, as it is not difficult to see, β is an automorphism of (G, f). Consequently, also $R_c = h\beta^{-1}$ is an automorphism of (G, f). The converse statement is obvious.

The above fact also follows from the results proven in [1].

Theorem 4.4. If $(G, f) = der_{\varphi,a}(G, \cdot)$ is a precyclic n-group, then

 $\operatorname{Aut}(G, f) \cong \mathcal{R}_{\varphi}(G, f) \ltimes \operatorname{Aut}_{a}(G, \cdot),$

where

$$\mathcal{R}_{\varphi}(G, f) = \{ R_c \, | \, \varphi(c) = c = c^n \} \text{ and}$$
$$\operatorname{Aut}_a(G, \cdot) = \{ \beta \in \operatorname{Aut}(G, \cdot) \, | \, \beta(a) = a \}.$$

Proof. $\mathcal{R}_{\varphi}(G, f)$ and $\operatorname{Aut}_{a}(G, \cdot)$ are subgroups of $\operatorname{Aut}(G, f)$ and $\operatorname{Aut}(G, \cdot)$, respectively. (G, \cdot) is abelian, so $\mathcal{R}_{\varphi}(G, f)$ is a normal subgroup. Moreover, if $\psi \in \mathcal{R}_{\varphi}(G, f) \cap \operatorname{Aut}_{a}(G, \cdot)$, then $\varphi = R_{c} = \beta$. Thus, $R_{c}(a) = \beta(a) = a$, which gives c = e. Therefore, $\mathcal{R}_{\varphi}(G, f) \cap \operatorname{Aut}_{a}(G, \cdot) = \{\varepsilon\}$. Consequently, $\operatorname{Aut}(G, f) \cong \mathcal{R}_{\varphi}(G, f) \ltimes \operatorname{Aut}_{a}(G, \cdot)$. \Box

Theorem 4.5. If a precyclic n-group $(G, f) = der_{\varphi,a}(G, \cdot)$ has at least one idempotent, then

$$\operatorname{Aut}(G, f) \cong \mathcal{R}_{E(G, f)} \ltimes \operatorname{Aut}(G, \cdot),$$

where $\mathcal{R}_{E(G,f)}$ is a group of right translations of (G, \cdot) determined by idempotent elements.

Proof. Let $(G, f) = \operatorname{der}_{\varphi, a}(G, \cdot)$ be a precyclic *n*-group containing at least one idempotent. We will show first that (G, f) is isomorphic to $(G, g) = \operatorname{der}_{\varphi}(G, \cdot)$.

Let c be an idempotent of (G, f). Then

$$c = f(c, c, \dots, c) = c \cdot \varphi(c) \cdot \varphi^2(c) \cdot \dots \cdot \varphi^{n-2}(c) \cdot c \cdot a.$$
(3)

Thus,

$$a \cdot c^{-1} = c^{-1} \cdot \varphi(c^{-1}) \cdot \varphi^2(c^{-1}) \cdot \ldots \cdot \varphi^{n-2}(c^{-1}) \cdot c^{-1}.$$
 (4)

Hence

$$\begin{aligned} R_{c^{-1}}f(x_1^n) &= x_1 \cdot \varphi(x_2) \cdot \varphi^2(x_3) \cdot \ldots \cdot \varphi^{n-2}(x_{n-1}) \cdot x_n \cdot a \cdot c^{-1} \\ \stackrel{(4)}{=} x_1 \cdot c^{-1} \cdot \varphi(x_2) \cdot \varphi(c^{-1}) \cdot \varphi^2(x_3) \cdot \varphi^2(c^{-1}) \cdot \ldots \cdot \varphi^{n-2}(x_{n-1}) \cdot \varphi^{n-2}(c^{-1}) \cdot x_n \cdot c^{-1} \\ &= x_1 \cdot c^{-1} \cdot \varphi(x_2 \cdot c^{-1}) \cdot \varphi^2(x_3 \cdot c^{-1}) \cdot \ldots \cdot \varphi^{n-2}(x_{n-1} \cdot c^{-1}) \cdot x_n \cdot c^{-1} \\ &= R_{c^{-1}}(x_1) \cdot \varphi R_{c^{-1}}(x_2) \cdot \varphi^2 R_{c^{-1}} \cdot \ldots \cdot \varphi^{n-2} R_{c^{-1}}(x_{n-1}) \cdot R_{c^{-1}}(x_n) \\ &= g(R_{c^{-1}}(x_1), R_{c^{-1}}(x_2), \ldots, R_{c^{-1}}(x_n)). \end{aligned}$$

Therefore $R_{c^{-1}}$: $(G, f) \to (G, g)$ is a homomorphism. Since it is a bijection, $(G, f) \cong (G, g)$. Then also $\operatorname{Aut}(G, f) \cong \operatorname{Aut}(G, g)$ and $\mathcal{R}_{E(G,f)} \cong \mathcal{R}_{E(G,g)}$. So it is sufficient to prove our theorem for (G, g).

The neutral element of (G, \cdot) is an idempotent of (G, g). Thus the set $\mathcal{R}_{E(G,g)}$ is nonempty and $R_bR_c = R_{c\cdot b}$ for all $R_c, R_b \in \mathcal{R}_{E(G,g)}$ because, by (3), $c \cdot b$ is an idempotent. Thus $\mathcal{R}_{E(G,g)}$ is a subgroup of $\operatorname{Aut}(G,g)$ such that $(R_b\beta)^{-1} \circ R_c \circ R_b\beta = R_{\beta^{-1}(c)}$ for $R_b\beta \in \operatorname{Aut}(G,g)$ and $R_c \in \mathcal{R}_{E(G,g)}$. Since, $\beta^{-1}(c) = \beta^{-1}g(c, c, \ldots, c) = g(\beta^{-1}(c), \beta^{-1}(c), \ldots, \beta^{-1}(c))$, by Corollary

4.3, $\beta^{-1}(c)$ is an idempotent of (G,g). Consequently, $R_{\beta^{-1}(c)} \in \mathcal{R}_{E(G,g)}$, which shows that $\mathcal{R}_{E(G,g)}$ is a normal subgroup of $\operatorname{Aut}(G,g)$. Moreover, $\mathcal{R}_{E(G,g)} \cap \operatorname{Aut}(G, \cdot) = \{\varepsilon\}$. So, $\operatorname{Aut}(G,g) \cong \mathcal{R}_{E(G,g)} \ltimes \operatorname{Aut}(G, \cdot)$. \Box

Corollary 4.6. If a precyclic n-group $(G, f) = der_{\varphi,a}(G, \cdot)$ has only one idempotent, then

$$\operatorname{Aut}(G, f) \cong \operatorname{Aut}(G, \cdot)$$

References

- W.A. Dudek, Automorphisms of n-ary groups, Results Math. 77 (2022), paper no. 46.
- [2] W.A. Dudek, K. Głazek, Around the Hosszú-Gluskin Theorem for n-ary groups, Discrete Math. 308 (2008), 4861 – 4876.
- [3] W.A. Dudek, J. Michalski, On a generalization of Hosszú theorem, Demonstratio Math. 15 (1982), 783 – 805.
- W.A. Dudek, J. Michalski, On retracts of polyadic groups, Demonstratio Math. 17 (1984), 281 – 301.
- [5] K. Głazek, B. Gleichgewicht, Abelian n-groups, Coll. Math. Soc. J. Bolyai, 29. Universal Algebra, Esztergom (Hungary) 1977, 321 – 329.
- [6] N.A. Shchuchkin, Semicyclic n-ary groups, (Russian), Izv. F. Skaryna Univ., Gomel, 3 (2009), 186 - 194.
- [7] N.A. Shchuchkin, Homomorphisms from infinite semilcyclic n-groups to a semiabelian n-group, (Russian), Chebyshevskiĭ Sb. 22 (2021), 340 – 352.
- [8] N.A. Shchuchkin, Endomorphisms of semicyclic n-groups, (Russian), Chebyshevskiĭ Sb. 22 (2021), 353 – 369.

Received August 24, 2023

S. Dog

22 Pervomayskaya str, 39600 Kremenchuk, Ukraine Temporary address: WSB Merito University, Wroclaw, Poland

Email: soniadog2@gmail.com

N.A. Shchuchkin

Volgograd State Pedagogical University, Lenina prosp., 27, 400131 Volgograd, Russia Email: nikolaj shchuchkin@mail.ru