Endomorphisms of precyclic n-groups

Sonia Dog and Nikolay A. Shchuchkin

Abstract

We characterize the sets of homomorphisms, endomorphisms and automorphisms of n-ary groups with cyclic retracts.

1. Introduction

Polyadic groups, called also n-ary groups or n-groups, are a generalization of groups. Therefore, n-group theory is closely related to group theory. It is known that for every n-group (G, f) there exists a group $(G, *)$ and its automorphism φ such that $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} * \varphi\left(x_{2}\right) * \ldots * \varphi^{n-1}\left(x_{n}\right) * b$, $\varphi^{n-1}(x) * b=b * x$ and $\varphi(b)=b$ for some element $b \in G$ (see for example [2]). Then we write $(G, f)=\operatorname{der}_{\varphi, b}(G, *)$. If in the n-group operation f we fix all inner elements, we get the operation \diamond that depends only on two outer elements. The algebra (G, \diamond) obtained in this way is a group called the retract of (G, f). All retracts of an n-group $(G, f)=\operatorname{der}_{\varphi, a}(G, *)$ are isomorphic to the group $(G, *)$ (see [3]). Therefore, we can assume that $x \diamond y=f(x, a, \ldots, a, y)$. We then write $(G, \diamond)=\operatorname{ret}_{a}(G, f)$. Moreover, for each $a \in G$, the mapping $\varphi(x)=f(\bar{a}, x, a, \ldots, a)$ is an automorphism of the group (G, \diamond) and $(G, f)=\operatorname{der}_{\varphi, b}\left(\operatorname{ret}_{a}(G, f)\right)$ for $b=f(\bar{a}, \ldots, \bar{a})$, where \bar{a} is such that $f(a, \ldots, a, \bar{a})=a$ (see [3]). An n-group with an abelian retract is called semiabelian. In [5] it is shown that an n-group is semiabelian if and only if it is medial (entropic). In this case φ^{n-1} is the identity mapping.

An n-group with a cyclic retract is called precyclic (in Russian terminology - semicyclic). An infinite precyclic n-group is isomorphic to the n-group $\left(\mathbb{Z}, f_{l}\right)=\operatorname{der}_{1, l}(\mathbb{Z},+), 0 \leqslant l \leqslant \frac{n-1}{2}$, or to the n-group $\left(\mathbb{Z}, f_{(-1)}\right)=$ $\operatorname{der}_{-1,0}(\mathbb{Z},+)$ (for odd n only) [6]. The first is type ($\infty, 1, l$), the second type ($\infty,-1,0$). A finite precyclic n-group of order m is isomorphic to the n-group $\operatorname{der}_{1, l}\left(\mathbb{Z}_{m},+\right)$ with $l \mid g c d(m, n-1)$ or to the n-group $\operatorname{der}_{k, l}\left(\mathbb{Z}_{m},+\right)$,

[^0]where $k>1, \operatorname{gcd}(k, m)=1, k^{n-1}=1(\bmod m), k l=l(\bmod m)$ and $l \mid \operatorname{gcd}\left(m, S_{k}\right), S_{k}=1+k+k^{2}+\ldots+k^{n-2}=\frac{k^{n-1}-1}{k-1}$. We say (cf. [6]) that the first is type ($m, 1, l$), the second is type (m, k, l).

First we will show that the set of all homomorphisms from a precyclic n-group into a semiabelian n-group forms an n-group. Next we characterize ($n, 2$)-semirings of endomorphisms of precyclic n-groups. Some of our results were inspired by theorems proved in [7] and [8]. We give them in a more general, more useful version. We also provide new, simpler and shorter proofs.

For simplicity, the sequence $x_{i}, x_{i+1}, \ldots, x_{j}$ will be written as x_{i}^{j}; the sequence x, x, \ldots, x (k times) as $\stackrel{(k)}{x}$. We also assume that $n>2$.

2. Homomorphisms of precyclic n-groups

Using the mediality it is not difficult to see that the set $\operatorname{Hom}\left(G, G^{\prime}\right)$ of all homomorphisms of an n-group (G, f) into a semiabelian n-group (G^{\prime}, f^{\prime}) forms a semiabelian n-group with respect the n-ary operation F defined by

$$
F\left(h_{1}, h_{2}, \ldots, h_{n}\right)(x)=f^{\prime}\left(h_{1}(x), h_{2}(x), \ldots, h_{n}(x)\right),
$$

where the homomorphism skew to h is defined by $\bar{h}(x)=\overline{h(x)}$.
Note that if an n-group $\left(G^{\prime}, f^{\prime}\right)$ has no dempotents, the set $\operatorname{Hom}\left(G, G^{\prime}\right)$ may be empty. This is the case, for example, with the 5 -groups $\left(\mathbb{Z}_{6}, f\right)$ and ($\left.\mathbb{Z}_{4}, f^{\prime}\right) 1$-derived from the additive groups \mathbb{Z}_{6} an \mathbb{Z}_{4}, respectively. Indeed, for any homomorphism $h:\left(\mathbb{Z}_{6}, f\right) \rightarrow\left(\mathbb{Z}_{4}, f^{\prime}\right)$ there will be $h(0)=c$, $h(1)=h f(0,0,0,0,0)=f^{\prime}(h(0), h(0), h(0), h(0), h(0))=c+1, h(2)=$ $h f(1,0,0,0,0)=h(1)+4 c+1=c+2$. So, $h(k)=c+k(\bmod 4)$. But then $h(1)=h f(1,4,0,0,0)=h(1)+h(4)+3 c+1=c+2(\bmod 4)$ which is impossible.

Let's start with lemmas that will be needed later. The first lemma is obvious, the second is a modification of Theorem 3 from [4]

Lemma 2.1. Consider the diagram

where ψ and ψ^{\prime} are isomorphism of the corresponding n-groups. If λ_{G}, λ_{H} are homomorphisms of n-groups, and n-groups $\left(G^{\prime}, f^{\prime}\right),\left(H^{\prime}, f^{\prime}\right)$ are semiabelian, then $\operatorname{Hom}\left(G, G^{\prime}\right)$ and $\operatorname{Hom}\left(H, H^{\prime}\right)$ form isomorphic n-groups. This isomorphism acts according to the rule $\Phi(\alpha)=\psi^{\prime} \alpha \psi^{-1}$.

The converse is not true. This is the case, for example, when G^{\prime} has only one element.

Lemma 2.2. A mapping h from an n-group $\operatorname{der}_{\varphi, a}(G, *)$ into a semiabelian n-group $\operatorname{der}_{\psi, d}\left(G^{\prime}, \cdot\right)$ is an n-group homomorphism if and only if there exists an element $c \in G^{\prime}$ and a group homomorphism $\beta:(G, *) \rightarrow\left(G^{\prime}, \cdot\right)$ such that $\beta \varphi=\psi \beta, h=R_{c} \beta$ and $\beta(a)=D(c) \cdot d$, where $R_{c}(x)=x \cdot c$ for all $x \in G^{\prime}$ and $D(c)=c \cdot \psi(c) \cdot \psi^{2}(c) \cdot \ldots \cdot \psi^{n-2}(c)$.

Proof. Let $(G, f)=\operatorname{der}_{\varphi, a}(G, *)$ and $\left(G^{\prime}, f^{\prime}\right)=\operatorname{der}_{\psi, d}\left(G^{\prime}, \cdot\right)$ be two n-groups and let (G^{\prime}, f^{\prime}) be semiabelian.

If there exists a group homomorphism $\beta:(G, *) \rightarrow\left(G^{\prime}, \cdot\right)$ such that $\beta \varphi=\psi \beta$ and $\beta(a)=D(c) \cdot d$ for some fixed $c \in G^{\prime}$, then for $h(x)=\beta(x) \cdot c$ we have

$$
\begin{aligned}
h\left(f\left(x_{1}^{n}\right)\right) & =\beta\left(f\left(x_{1}^{n}\right)\right) \cdot c=\beta\left(x_{1} * \varphi\left(x_{2}\right) * \ldots * \varphi^{n-1}\left(x_{n}\right) * a\right) \cdot c \\
& =\beta\left(x_{1}\right) \cdot \beta \varphi\left(x_{2}\right) \cdot \ldots \cdot \beta \varphi^{n-1}\left(x_{n}\right) \cdot \beta(a) \cdot c \\
& =\beta\left(x_{1}\right) \cdot \psi \beta\left(x_{2}\right) \cdot \ldots \cdot \psi^{n-1} \beta\left(x_{n}\right) \cdot D(c) \cdot d \cdot c \\
& =\beta\left(x_{1}\right) \cdot \psi \beta\left(x_{2}\right) \cdot \ldots \cdot \psi^{n-1} \beta\left(x_{n}\right) \cdot c \cdot \psi(c) \cdot \ldots \cdot \psi^{n-2}(c) \cdot d \cdot c \\
& =\left(\beta\left(x_{1}\right) \cdot c\right) \cdot \psi\left(\beta\left(x_{2}\right) \cdot c\right) \cdot \ldots \cdot \psi^{n-1}\left(\beta\left(x_{n}\right) \cdot c\right) \cdot d \\
& =h\left(x_{1}\right) \cdot \psi h\left(x_{2}\right) \cdot \ldots \cdot \psi^{n-1} h\left(x_{n}\right) \cdot d \\
& =f^{\prime}\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots, h\left(x_{n}\right)\right) .
\end{aligned}
$$

Hence $h: G \rightarrow G^{\prime}$ is an n-group homomorphism.
Conversely, let $h:(G, f) \rightarrow\left(G^{\prime}, f^{\prime}\right)$ be an n-group homomorphism and $(G, \circ)=\operatorname{ret}_{a}(G, f),\left(G^{\prime}, \diamond\right)=\operatorname{ret}_{b}\left(G^{\prime}, f^{\prime}\right)$. Then $\beta:(G, \circ) \rightarrow\left(G^{\prime}, \diamond\right)$ defined by $\beta^{\prime}(x)=f^{\prime}(h(x), \stackrel{(n-2)}{h(a)}, \bar{a})$ is a homomorphism. Since \bar{a} and \bar{b} are neutral elements of these groups, $\beta^{\prime}(\bar{a})=\bar{b}$.

Let $\bar{a}=h(g)$ for some $g \in G$. Then
$\beta^{\prime}(x)=f^{\prime}(h(x), \stackrel{(n-2)}{h(a)}, \bar{a})=f^{\prime}(h(x), \stackrel{(n-2)}{h(a)}, h(g))=h(f(x, \stackrel{(n-2)}{a}, g))=h(x \circ g)$.
Thus $h(\bar{a})=h\left(g^{-1} \circ g\right)=h\left(g^{-1}\right)$.

Now, denoting $h\left(g^{-1}\right)$ by c^{\prime}, we obtain

$$
h(x)=h\left(x \circ g^{-1} \circ g\right)=\beta^{\prime}\left(x \circ g^{-1}\right)=\beta^{\prime}(x) \diamond \beta^{\prime}\left(g^{-1}\right)=\beta^{\prime}(x) \diamond c^{\prime}
$$

All retracts of an n-group $\operatorname{der}_{\varphi, b}(G, \star)$ are isomorphic to (G, \star) (cf. [3]), so (G, \circ) and $(G, *)$, also $\left(G^{\prime}, \diamond\right)$ and $\left(G^{\prime}, \cdot\right)$, are isomorphic. Thus, a group homomorphism β^{\prime} corresponds to some homomorphism $\beta:(G, *) \rightarrow(G, \cdot)$. Hence $h(x)=\beta(x) \cdot c$, i.e. $h=R_{c} \beta$ for some $c \in G^{\prime}$.

Since $h:(G, f) \rightarrow\left(G^{\prime}, f^{\prime}\right)$ is a homomorphism of n-groups,

$$
h\left(f\left(x_{1}^{n}\right)\right)=f^{\prime}\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots, h\left(x_{n}\right)\right)
$$

implies

$$
\beta\left(f\left(x_{1}^{n}\right)\right) \cdot c=f^{\prime}\left(\beta\left(x_{1}\right) \cdot c, \beta\left(x_{2}\right) \cdot c, \ldots, \beta\left(x_{n}\right) \cdot c\right) .
$$

Consequently,

$$
\begin{aligned}
& \beta\left(x_{1}\right) \cdot \beta \varphi\left(x_{2}\right) \cdot \beta \varphi^{2}\left(x_{3}\right) \cdot \ldots \cdot \beta \varphi^{n-1}\left(x_{n}\right) \cdot \beta(a) \cdot c \\
& =\left(\beta\left(x_{1}\right) \cdot c\right) \cdot \psi\left(\beta\left(x_{2}\right) \cdot c\right) \cdot \psi^{2}\left(\beta\left(x_{3}\right) \cdot c\right) \cdot \ldots \cdot \psi^{n-1}\left(\beta\left(x_{n}\right) \cdot c\right) \cdot d
\end{aligned}
$$

From this, putting $x_{i}=\bar{a}$ for all $i=1,2, \ldots, n$, we obtain
$\beta(a) \cdot c=c \cdot \psi(c) \cdot \psi^{2}(c) \cdot \ldots \cdot \varphi^{n-1}(c) \cdot b=D(c) \cdot \psi^{n-1}(c) \cdot d=D(c) \cdot d \cdot c$, which shows that $\beta(a)=D(c) \cdot d$.

Putting in the previous identity $x_{2}=x$ and $x_{i}=\bar{a}$ for other x_{i} we get

$$
\begin{aligned}
\beta \varphi(x) \cdot \beta(a) \cdot c & =c \cdot \psi \beta(x) \cdot \psi(c) \cdot \psi^{2}(c) \cdot \ldots \cdot \varphi^{n-1}(c) \cdot d \\
& =\psi \beta(x) \cdot D(c) \cdot d \cdot c=\psi \beta(x) \cdot \beta(a) \cdot c .
\end{aligned}
$$

Thus $\beta \varphi=\psi \beta$, which completes the proof.
As a consequence of the above lemma we obtain
Corollary 2.3. A mapping h from an n-group $\operatorname{der}_{\varphi, a}(G, *)$ into a semiabelian n-group $\operatorname{der}_{\psi, d}\left(G^{\prime}, \cdot\right)$ is an n-group homomorphism if and only if there exists an element $c \in G^{\prime}$ such that $\beta=h \cdot c^{-1}$ is a group homomorphism from $(G, *)$ into $\left(G^{\prime}, \cdot\right), \beta \varphi=\psi \beta$ and $\beta(a)=D(c) \cdot d$.

Let $(G, f)=\operatorname{der}_{\varphi, a}(G, *)$ and $\left(G^{\prime}, f^{\prime}\right)=\operatorname{der}_{\psi, d}\left(G^{\prime}, \cdot\right)$. If $\left(G^{\prime}, f^{\prime}\right)$ is a semiabelian n-group, then each homomorphism $h_{i} \in \operatorname{Hom}\left(G, G^{\prime}\right)$ has the form $h_{i}=R_{c_{i}} \beta_{i}$, where β_{i} and c_{i} are as in the above lemma. Consequently,

$$
\begin{aligned}
F(& \left.h_{1}^{n}\right)(x)=f^{\prime}\left(h_{1}(x), h_{2}(x), \ldots, h_{n-1}(x), h_{n}(x)\right) \\
& =f^{\prime}\left(\beta_{1}(x) \cdot c_{1}, \beta_{2}(x) \cdot c_{2}, \ldots, \beta_{n-1}(x) \cdot c_{n-1}, \beta_{n}(x) \cdot c_{n}\right) \\
& =\left(\beta_{1}(x) \cdot c_{1}\right) \cdot \psi\left(\beta_{2}(x) \cdot c_{2}\right) \cdot \ldots \cdot \psi^{n-2}\left(\beta_{n-1}(x) \cdot c_{n-1}\right) \cdot\left(\beta_{n}\left(x_{n}\right) \cdot c_{n}\right) \cdot d \\
& =\beta_{1}(x) \cdot \psi \beta_{2}(x) \cdot \ldots \cdot \psi^{n-2} \beta_{n-1}(x) \cdot \beta_{n}(x) \cdot c_{1} \cdot \psi\left(c_{2}\right) \cdot \ldots \cdot \psi^{n-2}\left(c_{n-1}\right) \cdot c_{n} \cdot d \\
& =\beta_{1}(x) \cdot \psi \beta_{2}(x) \cdot \ldots \cdot \psi^{n-2} \beta_{n-1}(x) \cdot \beta_{n}(x) \cdot f^{\prime}\left(c_{1}^{n}\right)=\beta(x) \cdot f^{\prime}\left(c_{1}^{n}\right),
\end{aligned}
$$

where $\beta=\beta_{1} \cdot \psi \beta_{2} \cdot \ldots \cdot \psi^{n-2} \beta_{n-1} \cdot \beta_{n}=\beta_{1} \cdot \beta_{2} \varphi \cdot \ldots \cdot \beta_{n-1} \varphi^{n-2} \cdot \beta_{n}$ is a homomorphism from $(G, *)$ to $\left(G^{\prime}, \cdot\right)$. Thus,

$$
\begin{equation*}
F\left(h_{1}^{n}\right)=R_{u} \beta, \quad \text { where } u=f^{\prime}\left(c_{1}^{n}\right), \quad \beta=\beta_{1} \cdot \beta_{2} \varphi \cdot \ldots \cdot \beta_{n-1} \varphi^{n-2} \cdot \beta_{n} \tag{1}
\end{equation*}
$$

Let $\left(G^{\prime}, f^{\prime}\right)$ be a semiabelian n-group. Then $\left(G^{\prime}, \cdot\right)=\operatorname{ret}_{a}\left(G^{\prime}, f^{\prime}\right)$ is an abelian group (for any $\left.a \in G^{\prime}\right)$ and $\left(G^{\prime}, f^{\prime}\right)=\operatorname{der}_{\psi, d}\left(G^{\prime}, \cdot\right)$ for $d=f^{\prime}\left(\frac{(n)}{a}\right)$ and $\psi(x)=f^{\prime}(\bar{a}, x, \stackrel{(n-2)}{a})$. Moreover, $D(x)=x \cdot \psi(x) \cdot \psi^{2}(x) \cdots \cdot \psi^{n-2}(x)$ is an endomorphism of $\left(G^{\prime}, \cdot\right)$ such that $\psi(d \cdot D(x))=d \cdot D(x)=f^{\prime}\left({ }_{(n-1)}^{x}, \bar{a}\right)$ for every $x \in G^{\prime}$.

We will use these facts to describe the set of homomorphisms of precyclic n-groups. We'll start with precyclic n-groups of type $(\infty, 1, l)$.

First, for $\left(G^{\prime}, f^{\prime}\right)=\operatorname{der}_{\psi, d}\left(G^{\prime}, \cdot\right)$ and an arbitrary natural l we define the set

$$
G_{(l, d)}^{\prime}=\left\{(z, c) \mid \psi(z)=z, z^{l}=d \cdot D(c)\right\} \subseteq G^{\prime} \times G^{\prime}
$$

Using the mediality of $\left(G^{\prime}, f^{\prime}\right)$ and the above facts, we can see that $G_{(l, d)}^{\prime}$ with the operation

$$
\begin{equation*}
g^{\prime}\left(\left(z_{1}, c_{1}\right),\left(z_{2}, c_{2}\right), \ldots,\left(z_{n}, c_{n}\right)\right)=\left(z_{1} \cdot z_{2} \cdot \ldots \cdot z_{n}, f^{\prime}\left(c_{1}^{n}\right)\right) \tag{2}
\end{equation*}
$$

is a semiabelian n-group.
Theorem 2.4. If the set of all homomorphisms from a precyclic n-group (G, f) of type $(\infty, 1, l)$ into a semiabelian n-group $\left(G^{\prime}, f^{\prime}\right)=\operatorname{der}_{\psi, d}\left(G^{\prime}, \cdot\right)$ is nonempty, then it forms an n-group isomorphic to the n-group $\left(G_{(l, d)}^{\prime}, g^{\prime}\right)$.

Proof. Any precyclic n-group of type $(\infty, 1, l)$ is isomorphic to the n-group $\left(\mathbb{Z}, f_{l}\right)=\operatorname{der}_{1, l}(\mathbb{Z},+)$. Let h be a homomorphism from $\left(\mathbb{Z}, f_{l}\right)$ into a semiabelian n-group $\left(G^{\prime}, f^{\prime}\right)=\operatorname{der}_{\psi, d}\left(G^{\prime}, \cdot\right)$. Then, according to Lemma 2.2, $h=R_{c} \beta$ for some homomorphism β from $(\mathbb{Z},+)$ to $\left(G^{\prime}, \cdot\right), \beta(x)=\psi(\beta(x))$ and $\beta(l)=d \cdot D(c)$ for some $c \in G^{\prime}$. Any homomorphism β of a cyclic
group is determined by the value of β on the generator of this group. So, if $\beta(1)=z$, then $z=\beta(1)=\psi \beta(1)=\psi(z)$ and $z^{l}=\beta(l)=d \cdot D(c)$. Hence, any homomorphism $h:\left(\mathbb{Z}, f_{l}\right) \rightarrow\left(G^{\prime}, f^{\prime}\right)$ determines one pair $(z, c) \in G_{(l, d)}^{\prime}$.

On the other side, for each pair $(z, c) \in G_{(l, d)}^{\prime}$ there is only one homomorphism $\beta:(\mathbb{Z},+) \rightarrow\left(G^{\prime}, \cdot\right)$ such that $\beta(1)=z$. Hence $\beta(k)=z^{k}$. Thus $\psi \beta(k)=\psi\left(z^{k}\right)=\psi(z)^{k}=z^{k}=\beta(k)$ for every $k \in \mathbb{Z} . \quad$ So, $\psi \beta=\beta$ and $\beta(l)=z^{l}=d \cdot D(c)$.

This shows that the pair (z, c) uniquely determines the homomorphism $h=R_{c} \beta$ with $\beta(1)=z$. So, there is one-to-one correspondence between elements of the set $\operatorname{Hom}\left(G, G^{\prime}\right)$ and elements of the set $G_{(l, d)}^{\prime}$. Denote this correspondence by τ, i.e. $\tau\left(h_{i}\right)=\left(z_{i}, c_{i}\right)$ for $h_{i}=R_{c_{i}} \beta_{i}$ and $z_{i}=\beta_{1}(1)$. Then $\beta_{i}(k)=\beta_{i}(k 1)=\beta_{i}(1)^{k}=z_{i}^{k}$.

Since $\beta(1)=\left(\beta_{1} \cdot \beta_{2} \cdot \ldots \cdot \beta_{n}\right)(1)=z_{1} \cdot z_{2} \cdot \ldots \cdot z_{n}$,

$$
\begin{aligned}
\tau\left(F\left(h_{1}^{n}\right)\right) & =\left(z_{1} \cdot z_{2} \cdot \ldots \cdot z_{n}, f^{\prime}\left(c_{1}^{n}\right)\right)=g\left(\left(z_{1}, c_{1}\right),\left(z_{2}, c_{2}\right), \ldots,\left(z_{n}, c_{n}\right)\right) \\
& =g\left(\tau\left(h_{1}\right), \tau\left(h_{2}\right), \ldots, \tau\left(h_{n}\right)\right) .
\end{aligned}
$$

Hence τ is an isomorphism.
Since $z^{k}=\beta(k)=e$ for $k \in \operatorname{Ker} \beta$, the first coordinate of each pair $(z, c) \in G_{(l, d)}^{\prime}$ has finite order in the group $\left(G^{\prime}, \cdot\right)$.

All precyclic n-groups of type $(\infty,-1,0)$ are idempotent and exist only for odd n. All such n-groups can be identified with the n-group $\left(\mathbb{Z}, f_{(-1)}\right)=$ $\operatorname{der}_{-1,0}(\mathbb{Z},+)$. The homomorphic image of the idempotent n-group is also the n-idempotent group. This means that the homomorphism from $\left(\mathbb{Z}, f_{(-1)}\right)$ into the n-group (G^{\prime}, f^{\prime}) exists only if (G^{\prime}, f^{\prime}) has at least one idemotent. By Lemma 2.2, any such homomorphism has the form $h=R_{c} \beta$, where $\beta(0)=D(c) \cdot d$ and $\psi \beta(x)=\beta(x)^{-1}$ for $x \in \mathbb{Z}$. So, $D(c)=d^{-1}$ and $\psi(z)=z^{-1}$ for $z \in \beta(\mathbb{Z})$. Moreover, $h(0)=R_{c} \beta(0)=c$. Consequently, $c=h(0)=h f_{(-1)}\binom{(n)}{0}=f^{\prime}\binom{(n)}{(0)}=f^{\prime}\binom{(n)}{c}$. Thus as a consequence of Lemma 2.2 we obtain

Lemma 2.5. A mapping h from an n-group $\operatorname{der}_{-1,0}(\mathbb{Z},+)$ into a semiabelian n-group $\operatorname{der}_{\psi, d}\left(G^{\prime}, \cdot\right)$ is an n-group homomorphism if and only if there exists an idempotent $c \in G^{\prime}$ and a group homomorphism $\beta:(\mathbb{Z},+) \rightarrow\left(G^{\prime}, \cdot\right)$ such that $h=R_{c} \beta, D(c)=d^{-1}$ and $\beta(x)^{-1}=\psi \beta(x)$ for $x \in \mathbb{Z}$.

The proofs of the following theorems is very similar to the proof of Theorem 2.4. So we skip them.

Theorem 2.6. If the set of all homomorphisms from a precyclic n-group of type $(\infty,-1,0)$ into a semiabelian n-group $\left(G^{\prime}, f^{\prime}\right)=\operatorname{der}_{\psi, d}\left(G^{\prime}, \cdot\right)$ is nonempty, then it forms an n-group isomorphic to the n-group $\left(G_{d}^{\prime \prime}, g^{\prime \prime}\right)$, where

$$
\begin{aligned}
& G_{d}^{\prime \prime}=\left\{(z, c) \mid \psi(z)=z^{-1}, D(c)=d^{-1}\right\} \subseteq G^{\prime} \times G^{\prime} \quad \text { and } \\
& g^{\prime \prime}\left(\left(z_{1}, c_{1}\right),\left(z_{2}, c_{2}\right), \ldots,\left(z_{n}, c_{n}\right)\right)=\left(z_{1} \cdot z_{2}^{-1} \cdot z_{3} \cdot z_{4}^{-1} \ldots . z_{n-1}^{-1} \cdot z_{n}, f^{\prime}\left(c_{1}^{n}\right)\right) .
\end{aligned}
$$

Theorem 2.7. If the set of all homomorphisms from a precyclic n-group of type (m, k, l) with $k \geqslant 1$, into a semiabelian n-group $\left(G^{\prime}, f^{\prime}\right)=\operatorname{der}_{\psi, d}\left(G^{\prime}, \cdot\right)$ is nonempty, then it forms an n-group isomorphic to the n-group $\left(G_{(l, d)}^{\prime}, g^{\prime}\right)$.

Example 2.8. Let us consider three 5 -groups: $\left(G_{1}, f_{1}\right)=\operatorname{der}_{5,3}\left(\mathbb{Z}_{6},+\right)$, $\left(G_{2}, f_{1}\right)=\operatorname{der}_{1,1}(\mathbb{Z},+)$ and $\left(G^{\prime}, f^{\prime}\right)=\operatorname{der}_{1,1}\left(\mathbb{Z}_{4},+\right)$. Then, as already mentioned, the set $\operatorname{Hom}\left(G_{1}, G^{\prime}\right)$ is empty. The set $\operatorname{Hom}\left(G_{1}, G^{\prime}\right)$ contains four homomorphisms. They are defined by $h_{c}(x)=r+c(\bmod 4)$, where $x=4 t+r, 0 \leqslant r<4$ and $c=0,1,2,3$. $\operatorname{Hom}\left(G^{\prime}, G^{\prime}\right)$ also contains four homomorphisms, namely $h_{c}(x)=x+c(\bmod 4), c=0,1,2,3$.

3. Endomoprhisms of precyclic n-groups

Recall that an ($n, 2$)-nearring (G, f, \cdot) is an n-group (G, f) with an associative multiplication such that

$$
a \cdot f\left(x_{1}^{n}\right)=f\left(\left\{a \cdot x_{i}\right\}_{1}^{n}\right) \quad \text { and } \quad f\left(x_{1}^{n}\right) \cdot a=f\left(\left\{x_{i} \cdot a\right\}_{1}^{n}\right)
$$

for all $a, x_{1}^{n} \in G$. An $(n, 2)$-nearring ($\left.G, f, \cdot\right)$ with a semiabelian n-group (G, f) is called an ($n, 2$)-semiring; with an abelian n-group - an ($n, 2$)-ring.

In [5] it is noted that the set $\operatorname{End}(G, f)$ of all endomorphisms of a semiabelian n-group (G, f) forms an $(n, 2)$-semiring with respect to the n-ary operation F defined as for homomorphisms and an ordinary superposition of endomorphisms. The set of all endomorphisms of an abelian n-group forms an ($n, 2$)-ring with unity.

Based on the results of the previous section, we can characterize $(n, 2)$ semirings of endomorphisms of precyclic n-groups. For this we will use the following lemma which is a consequence of Lemma 2.2.

Lemma 3.1. A mapping $h: \mathbb{Z} \rightarrow \mathbb{Z}$ is an endomorphism of an n-group $\left(\mathbb{Z}, f_{l}\right)$ of type $(\infty, 1, l)$ if and only if here exists an element $c \in \mathbb{Z}$ and an endomorphism β of $(\mathbb{Z},+)$ such that $h=R_{c} \beta$ and $\beta(l)=(n-1) c+l$.

Let $h=R_{c} \beta$ be an endomorphism of $\left(\mathbb{Z}, f_{l}\right)$. Then $h(0)=c$. Hence, if $\beta(1)=m$, then $\beta(l)=\beta(l 1)=l \beta(1)=l m$. So, $l m=(n-1) c+l$, i.e. for fixed m, n and l there is only one c satisfying this equation. This means that each endomorphism of $\left(\mathbb{Z}, f_{l}\right)$ depends only on m and has the form $h_{m}(x)=x m+c_{m}$, where $c_{m}=h_{m}(0)$ and $m l=l(\bmod (n-1))$. So, $\tau\left(h_{m}\right)=m$ is a bijection from the set $\operatorname{End}\left(\mathbb{Z}, f_{l}\right)$ onto the set

$$
\mathbb{Z}_{(l, n)}=\{m \mid m l=l(\bmod (n-1))\} \subseteq \mathbb{Z}
$$

This is an ($n, 2$)-semiring with respect to the operation

$$
g^{\prime}\left(m_{1}, m_{2}, \ldots, m_{n}\right)=m_{1}+m_{2}+\ldots+m_{n}
$$

and an ordinary multiplication of numbers.
Since $l m=(n-1) c+l$ means that $c=\frac{l(m-1)}{n-1}$, we have

$$
\begin{aligned}
& F\left(h_{m_{1}}, h_{m_{2}}, \ldots, h_{m_{n}}\right)(z)=f_{l}\left(h_{m_{1}}(z), h_{m_{2}}(z), \ldots, h_{m_{n}}(z)\right) \\
& =\left(z m_{1}+c_{m_{1}}\right)+\left(z m_{2}+c_{m_{2}}\right)+\ldots+\left(z m_{n}+c_{m_{n}}\right)+l \\
& =z\left(m_{1}+m_{2}+\ldots+m_{n}\right)+f_{l}\left(c_{m_{1}}, c_{m_{2}}, \ldots, c_{m_{n}}\right) \\
& =z\left(m_{1}+m_{2}+\ldots+m_{n}\right)+\frac{l\left(m_{1}+m_{2}+\ldots+m_{n}-n\right)}{n-1}+l \\
& =z\left(m_{1}+m_{2}+\ldots+m_{n}\right)+\frac{l\left(m_{1}+m_{2}+\ldots+m_{n}-1\right)}{n-1} \\
& =z\left(m_{1}+m_{2}+\ldots+m_{n}\right)+c_{m_{1}+m_{2}+\ldots+m_{n}}=h_{m_{1}+m_{2}+\ldots+m_{n}}(z) .
\end{aligned}
$$

Hence $\tau\left(F\left(h_{m_{1}}, h_{m_{2}}, \ldots, h_{m_{n}}\right)\right)=g^{\prime}\left(\tau\left(h_{m_{1}}\right), \tau\left(h_{m_{2}}\right), \ldots, \tau\left(h_{m_{n}}\right)\right)$.
Also $\tau\left(h_{m_{1}} \circ h_{m_{2}}\right)=\tau\left(h_{m_{1}}\right) \cdot \tau\left(h_{m_{2}}\right)$.
So, τ is an isomorphism between $\left(\operatorname{End}\left(\mathbb{Z}, f_{l}\right), F, \circ\right)$ and $\left(\mathbb{Z}_{(l, n)}, g^{\prime}, \cdot\right)$.
Theorem 3.2. The set of endomorphisms of a precyclic n-group of type $(\infty, 1, l)$ forms an ($n, 2$)-semiring isomorphic to $\left(\mathbb{Z}_{(l, n)}, g^{\prime}, \cdot\right)$.

Endomorphisms of precyclic n-groups of type $(\infty,-1,0)$ are characterized by

Lemma 3.3. A mapping $h: \mathbb{Z} \rightarrow \mathbb{Z}$ is an endomorphism of a precyclic n-group of type $(\infty,-1,0)$ if and only if $h(x)=m x+c$ for some $m, c \in \mathbb{Z}$.

Using the same method as in the proof of Theorem 3.2 we obtain
Theorem 3.4. The set of all endomorphisms of a precyclic n-group $\left(\mathbb{Z}, f_{(-1)}\right)$ of type $(\infty,-1,0)$ forms an ($n, 2$)-semiring isomorphic to the ($n, 2$)-semiring $(\mathbb{Z} \times \mathbb{Z}, g, *)$, where

$$
\begin{aligned}
& g\left(\left(m_{1}, c_{1}\right),\left(m_{2}, c_{2}\right), \ldots,\left(m_{n}, c_{n}\right)\right)=\left(f_{(-1)}\left(m_{1}^{n}\right), f_{(-1)}\left(c_{1}^{n}\right)\right) \quad \text { and } \\
& \left(m_{1}, c_{1}\right) *\left(m_{2}, c_{2}\right)=\left(m_{1} m_{2}, m_{1} c_{2}+c_{1}\right)
\end{aligned}
$$

For endomorphisms of precyclic n-groups of type (m, k, l) we have
Theorem 3.5. A mapping $h: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{m}$ is an endomorphism of an n-group $\left(\mathbb{Z}_{m}, f_{(k, l)}\right)$ if and only if $h(x)=t x+c(\bmod m)$ and $t l=S_{k} c+l(\bmod m)$ for some $t, c \in \mathbb{Z}_{m}$. Such endomorphisms forms an ($n, 2$)-semiring isomorphic to the ($n, 2$)-semiring $\left(\mathbb{Z}_{m}^{(k, b)}, g, *\right)$, where

$$
\begin{aligned}
& \mathbb{Z}_{m}^{(k, l)}=\left\{(t, c) \mid t, c \in \mathbb{Z}_{m}, t l=S_{k} c+l(\bmod m)\right\} \\
& g\left(\left(t_{1}, c_{1}\right),\left(t_{2}, c_{2}\right), \ldots,\left(t_{n}, c_{n}\right)\right)=\left(f_{(k, 0)}\left(t_{1}^{n}\right), f_{(k, l)}\left(c_{1}^{n}\right)\right) \text { and } \\
& \left(t_{1}, c_{1}\right) *\left(t_{2}, c_{2}\right)=\left(t_{1} t_{1}, t_{1} c_{2}+c_{1}\right)
\end{aligned}
$$

Proof. Each endomorphism of $\left(\mathbb{Z}_{m},+\right)$ has the form $\beta(x)=t x(\bmod m)$. Hence, by Lemma 2.2, $h: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{m}$ is an endomorphism of an n-group $\left(\mathbb{Z}_{m}, f_{(k, l)}\right)$ if and only if $h(x)=\beta(x)+c=t x+c(\bmod m)$ for some $c \in \mathbb{Z}_{m}$ such that $\beta(l)=D(c)+l$. But $D(c)=c+k c+k^{2} c+\ldots+k^{n-2} c=S_{k} c$. So, $\beta(l)=t l=S_{k} c+l(\bmod m)$. In \mathbb{Z}_{m} there is only one c satisfying this equation. Indeed, if $\beta(l)=D(c)+l$, then $\beta(x)+d=h(x)=\beta(x)+c$, whence $c=d(\bmod m)$. Thus, $\tau(h)=(t, c)$ is a bijection between the set of all endomorphism of $\left(\mathbb{Z}_{m}, f_{(k, l)}\right)$ and $\mathbb{Z}_{m}^{(k, l)}$.

Moreover, for all $h_{1}, \ldots, h_{n} \in \operatorname{End}\left(\mathbb{Z}_{m}, f_{(k, l)}\right)$ we have
$F\left(h_{1}^{n}\right)(x)=f_{(k, l)}\left(h_{1}(x), h_{2}(x), \ldots, h_{n}(x)\right)$
$=\left(t_{1} x+c_{1}\right)+k\left(t_{1}+c_{1}\right)+k^{2}\left(t_{2} x+c_{2}\right)+\ldots+k^{n-2}\left(t_{n-1} x+c_{n-1}\right)+\left(t_{n} x+c_{n}\right)+l$
$=\left(t_{1}+k t_{2}+\ldots+k^{n-2} t_{n-1}+t_{n}\right) x+\left(c_{1}+k c_{2}+\ldots+k^{n-2} c_{n-1}+c_{n}+l\right)$
$=f_{(k, 0)}(x)+f_{(k, l)}\left(c_{1}^{n}\right)=h_{f_{(k, 0)}}+f_{(k, l)}$.
Hence

$$
\begin{aligned}
\tau\left(F\left(h_{1}^{n}\right)\right) & =\left(f_{(k, 0)}, f_{(k, b)}\right)=g\left(\left(t_{1}, c_{1}\right),\left(t_{2}, c_{2}\right), \ldots,\left(t_{n}, c_{n}\right)\right) \\
& =g\left(\tau\left(h_{1}\right), \tau\left(h_{2}\right), \ldots, \tau\left(h_{n}\right)\right)
\end{aligned}
$$

which shows that τ is an isomorphism.

Observe that in the above proof for fixed k and l the element c is uniquely determined by t, so an endomorphism $h=R_{c} \beta$ of $\left(\mathbb{Z}_{m}, f_{(k, l)}\right)$ is uniquely determined by the value of $t=\beta(1)$. Thus, the the set $\mathbb{Z}_{m}^{(k, l)}$ can be identified with the set $\mathbb{P}_{m}^{(k, l)}=\left\{t \in \mathbb{Z}_{m} \mid t b=S_{k} c+l(\bmod m)\right\}$. Consequently, the ($n, 2$)-semiring ($\left.\mathbb{Z}_{m}^{(k, l)}, g, *\right)$ can be identified with the ($n, 2$)-semiring $\left(\mathbb{P}_{m}^{(k . l)}, f_{(k, 0)}, \cdot\right)$, where \cdot is an ordinary multiplication modulo m.

4. Automoprhisms of precyclic n-groups

A binary composition (superposition) of automorphisms of a fixed n-group is an automorphism of this n-group. Thus for a given n-group (G, f) the set $\operatorname{Aut}(G, f)$ of all its automorphisms is a group contained in the semigroup $\operatorname{End}(G, f)$. Hence, as a consequence of the above results, we obtain
Proposition 4.1. A mapping $h: G \rightarrow G$ is an automorphism of a semiabelian n-group $(G, f)=\operatorname{der}_{\varphi, a}(G, \cdot)$ if and only if there exists $c \in G$ and an automorphism β of (G, \cdot) such that $\beta \varphi=\varphi \beta, h=R_{c} \beta$ and $\beta(a)=D(c) \cdot a$.

Theorem 3.10 in [1] implies the following characterization:
Proposition 4.2. A mapping $h: G \rightarrow G$ is an automorphism of a semiabelian n-group $(G, f)=\operatorname{der}_{\varphi, a}(G, \cdot)$ if and only if $h=R_{c} \beta$, where β is an automorphism of $(G, \cdot), \beta(a)=a$ and $\varphi(c)=c=c^{n}$.

Corollary 4.3. Let $(G, f)=\operatorname{der}_{\varphi, a}(G, \cdot)$ be a precyclic n-group, $c \in G$ and $\beta \in \operatorname{Aut}(G, \cdot)$. Then $h=R_{c} \beta \in \operatorname{Aut}(G, f)$ if and only if $R_{c} \in \operatorname{Aut}(G, f)$ and $\beta \in \operatorname{Aut}(G, f)$.

Proof. If $h=R_{c} \beta$ is an automorphism of $(G, f)=\operatorname{der}_{\varphi, a}(G, \cdot)$, then, by the above Propositions, $\beta \varphi=\varphi \beta$ and $\beta(a)=a$. Hence, as it is not difficult to see, β is an automorphism of (G, f). Consequently, also $R_{c}=h \beta^{-1}$ is an automorphism of (G, f). The converse statement is obvious.

The above fact also follows from the results proven in [1].
Theorem 4.4. If $(G, f)=\operatorname{der}_{\varphi, a}(G, \cdot)$ is a precyclic n-group, then

$$
\operatorname{Aut}(G, f) \cong \mathcal{R}_{\varphi}(G, f) \ltimes \operatorname{Aut}_{a}(G, \cdot),
$$

where

$$
\begin{aligned}
\mathcal{R}_{\varphi}(G, f) & =\left\{R_{c} \mid \varphi(c)=c=c^{n}\right\} \text { and } \\
\operatorname{Aut}_{a}(G, \cdot) & =\{\beta \in \operatorname{Aut}(G, \cdot) \mid \beta(a)=a\} .
\end{aligned}
$$

Proof. $\mathcal{R}_{\varphi}(G, f)$ and $\operatorname{Aut}_{a}(G, \cdot)$ are subgroups of $\operatorname{Aut}(G, f)$ and $\operatorname{Aut}(G, \cdot)$, respectively. (G, \cdot) is abelian, so $\mathcal{R}_{\varphi}(G, f)$ is a normal subgroup. Moreover, if $\psi \in \mathcal{R}_{\varphi}(G, f) \cap \operatorname{Aut}_{a}(G, \cdot)$, then $\varphi=R_{c}=\beta$. Thus, $R_{c}(a)=\beta(a)=a$, which gives $c=e$. Therefore, $\mathcal{R}_{\varphi}(G, f) \cap \operatorname{Aut}_{a}(G, \cdot)=\{\varepsilon\}$. Consequently, $\operatorname{Aut}(G, f) \cong \mathcal{R}_{\varphi}(G, f) \ltimes \operatorname{Aut}_{a}(G, \cdot)$.

Theorem 4.5. If a precyclic n-group $(G, f)=\operatorname{der}_{\varphi, a}(G, \cdot)$ has at least one idempotent, then

$$
\operatorname{Aut}(G, f) \cong \mathcal{R}_{E(G, f)} \ltimes \operatorname{Aut}(G, \cdot)
$$

where $\mathcal{R}_{E(G, f)}$ is a group of right translations of (G, \cdot) determined by idempotent elements.

Proof. Let $(G, f)=\operatorname{der}_{\varphi, a}(G, \cdot)$ be a precyclic n-group containing at least one idempotent. We will show first that (G, f) is isomorphic to $(G, g)=$ $\operatorname{der}_{\varphi}(G, \cdot)$.

Let c be an idempotent of (G, f). Then

$$
\begin{equation*}
c=f(c, c, \ldots, c)=c \cdot \varphi(c) \cdot \varphi^{2}(c) \cdot \ldots \cdot \varphi^{n-2}(c) \cdot c \cdot a \tag{3}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
a \cdot c^{-1}=c^{-1} \cdot \varphi\left(c^{-1}\right) \cdot \varphi^{2}\left(c^{-1}\right) \cdot \ldots \cdot \varphi^{n-2}\left(c^{-1}\right) \cdot c^{-1} \tag{4}
\end{equation*}
$$

Hence

$$
\begin{aligned}
& R_{c^{-1}} f\left(x_{1}^{n}\right)=x_{1} \cdot \varphi\left(x_{2}\right) \cdot \varphi^{2}\left(x_{3}\right) \cdot \ldots \cdot \varphi^{n-2}\left(x_{n-1}\right) \cdot x_{n} \cdot a \cdot c^{-1} \\
& \stackrel{(4)}{=} x_{1} \cdot c^{-1} \cdot \varphi\left(x_{2}\right) \cdot \varphi\left(c^{-1}\right) \cdot \varphi^{2}\left(x_{3}\right) \cdot \varphi^{2}\left(c^{-1}\right) \cdot \ldots \cdot \varphi^{n-2}\left(x_{n-1}\right) \cdot \varphi^{n-2}\left(c^{-1}\right) \cdot x_{n} \cdot c^{-1} \\
& =x_{1} \cdot c^{-1} \cdot \varphi\left(x_{2} \cdot c^{-1}\right) \cdot \varphi^{2}\left(x_{3} \cdot c^{-1}\right) \cdot \ldots \cdot \varphi^{n-2}\left(x_{n-1} \cdot c^{-1}\right) \cdot x_{n} \cdot c^{-1} \\
& =R_{c^{-1}}\left(x_{1}\right) \cdot \varphi R_{c^{-1}}\left(x_{2}\right) \cdot \varphi^{2} R_{c^{-1}} \cdot \ldots \cdot \varphi^{n-2} R_{c^{-1}}\left(x_{n-1}\right) \cdot R_{c^{-1}}\left(x_{n}\right) \\
& =g\left(R_{c^{-1}}\left(x_{1}\right), R_{c^{-1}}\left(x_{2}\right), \ldots, R_{c^{-1}}\left(x_{n}\right)\right) .
\end{aligned}
$$

Therefore $R_{c^{-1}}:(G, f) \rightarrow(G, g)$ is a homomorphism. Since it is a bijection, $(G, f) \cong(G, g)$. Then also $\operatorname{Aut}(G, f) \cong \operatorname{Aut}(G, g)$ and $\mathcal{R}_{E(G, f)} \cong$ $\mathcal{R}_{E(G, g)}$. So it is sufficient to prove our theorem for (G, g).

The neutral element of (G, \cdot) is an idempotent of (G, g). Thus the set $\mathcal{R}_{E(G, g)}$ is nonempty and $R_{b} R_{c}=R_{c \cdot b}$ for all $R_{c}, R_{b} \in \mathcal{R}_{E(G, g)}$ because, by (3), $c \cdot b$ is an idempotent. Thus $\mathcal{R}_{E(G, g)}$ is a subgroup of $\operatorname{Aut}(G, g)$ such that $\left(R_{b} \beta\right)^{-1} \circ R_{c} \circ R_{b} \beta=R_{\beta^{-1}(c)}$ for $R_{b} \beta \in \operatorname{Aut}(G, g)$ and $R_{c} \in \mathcal{R}_{E_{(G, g)}}$. Since, $\beta^{-1}(c)=\beta^{-1} g(c, c, \ldots, c)=g\left(\beta^{-1}(c), \beta^{-1}(c), \ldots, \beta^{-1}(c)\right)$, by Corollary
4.3, $\beta^{-1}(c)$ is an idempotent of (G, g). Consequently, $R_{\beta^{-1}(c)} \in \mathcal{R}_{E(G, g)}$, which shows that $\mathcal{R}_{E(G, g)}$ is a normal subgroup of $\operatorname{Aut}(G, g)$. Moreover, $\mathcal{R}_{E(G, g)} \cap \operatorname{Aut}(G, \cdot)=\{\varepsilon\} . \operatorname{So}, \operatorname{Aut}(G, g) \cong \mathcal{R}_{E(G, g)} \ltimes \operatorname{Aut}(G, \cdot)$.

Corollary 4.6. If a precyclic n-group $(G, f)=\operatorname{der}_{\varphi, a}(G, \cdot)$ has only one idempotent, then

$$
\operatorname{Aut}(G, f) \cong \operatorname{Aut}(G, \cdot)
$$

References

[1] W.A. Dudek, Automorphisms of n-ary groups, Results Math. 77 (2022), paper no. 46.
[2] W.A. Dudek, K. Głazek, Around the Hosszú-Gluskin Theorem for n-ary groups, Discrete Math. 308 (2008), 4861 - 4876.
[3] W.A. Dudek, J. Michalski, On a generalization of Hosszú theorem, Demonstratio Math. 15 (1982), $783-805$.
[4] W.A. Dudek, J. Michalski, On retracts of polyadic groups, Demonstratio Math. 17 (1984), 281 - 301.
[5] K. Głazek, B. Gleichgewicht, Abelian n-groups, Coll. Math. Soc. J. Bolyai, 29. Universal Algebra, Esztergom (Hungary) 1977, 321 - 329.
[6] N.A. Shchuchkin, Semicyclic n-ary groups, (Russian), Izv. F. Skaryna Univ., Gomel, 3 (2009), 186 - 194.
[7] N.A. Shchuchkin, Homomorphisms from infinite semilcyclic n-groups to a semiabelian n-group, (Russian), Chebyshevskiŭ Sb. 22 (2021), 340 - 352.
[8] N.A. Shchuchkin, Endomorphisms of semicyclic n-groups, (Russian), Chebyshevskiĭ Sb. 22 (2021), 353-369.

Received August 24, 2023
S. Dog

22 Pervomayskaya str, 39600 Kremenchuk, Ukraine
Temporary address: WSB Merito University, Wroclaw, Poland
Email: soniadog2@gmail.com
N.A. Shchuchkin

Volgograd State Pedagogical University, Lenina prosp., 27, 400131 Volgograd, Russia
Email: nikolaj_shchuchkin@mail.ru

[^0]: 2010 Mathematics Subject Classification: 20N15.
 Keywords: Semiabelian n-group, precyclic n-group, endomorphism, automorphism, ($n, 2$)-semiring.

