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A new characterization of orthogonal

simple groups B2(2
4n)

Hamideh Hasanzadeh-Bashir, Behnam Ebrahimzadeh and Behnam Azizi

Abstract. We prove that orthogonal simple groups B2(q), where q = 24n and q2 + 1 is
a prime number can be uniquely determined by the order of the group and the number
of elements with the same order.

1. Introduction

Let G be a finite group, π(G) be the set of prime divisors of order of G and
πe(G) be the set of elements order in G. If k ∈ πe(G), then we denote the
set of the number of elements of order k in G by mk(G) and the set of the
number of elements with the same order in G by nse(G). In other words,
nse(G) = {mk(G)|k ∈ πe(G)}. Also, we denote a Sylow p-subgroup of G by
Gp and the number of Sylow p-subgroups of G by np(G). Throughout this
paper, we denote by φ the Euler’s totient function. The prime graph Γ(G)
of group G is a graph whose vertex set is π(G), and two distinct vertices u
and v are adjacent if and only if uv ∈ πe(G). Moreover, assume that Γ(G)
has t(G) connected components πi, for i = 1, 2, . . . , t(G). In the case where
G is of even order,we assume that 2 ∈ π1.

Characterization of groups by nse(G) is one of problems that related
to Thompson’s problem (see[17, Problem 12.37]). Next, in the way the au-
thors in ([6, 7, 8, 4, 5, 13, 12, 11, 14, 18, 20], proved that some of groups are
characterizable by the order of groups and the number of elements with the
same order. The groups, such as sporadic groups, Sp, where p is a prime,
suzuki groups, simple K4-groups, 2G2(q), where q±

√
3q+1 are prime num-

bers, L2(p), where p is a prime and L2(2
n) where 2n − 1 or 2n + 1 is prime

number, the symplectic group C2(3
n), where n = 2k (k > 0) and (3

2n+1
2 ) is
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a prime number and L3(q) where 0 < q = 5k ± 2, (k ∈ Z) and q2 + q + 1
is a prime number. In this paper, we prove that orthogonal simple groups
B2(q), where q = 24n and q2 + 1 is a prime number can be uniquely de-
termined by the order of group and the number of elements with the same
order. In fact, we prove the following main theorem. .

Main Theorem. Let G be a group with |G| = |B2(q)| and nse(G) =
nse(B2(q)), where q = 24n and p = q2 + 1 is a prime number. Then
G ∼= B2(q).

2. Notation and Preliminaries

Lemma 2.1. [10, Theorem10.3.1] Let G be a Frobenius group with kernel
K and complement H. Then

1, t(G) = 2, π(H) and π(K) are vertex sets of the connected components
of Γ(G);

2. |H| divides |K| − 1;

3. K is nilpotent.

Definition 2.2. A group G is called a 2-Frobenius group if there is a normal
series 1EHEKEG such that G/H andK are Frobenius groups with kernels
K/H and H respectively.

Lemma 2.3. [1, Theorem 2] Let G be a 2-Frobenius group of even order.
Then

1. t(G) = 2, π(H) ∪ π(G/K) = π1 and π(K/H) = π2;

2. G/K andK/H are cyclic groups satisfying |G/K| divides |Aut(K/H)|.

Lemma 2.4. [25, Theorem A] Let G be a finite group with t(G) > 2. Then
one of the following statements holds:

1. G is a Frobenius group;

2. G is a 2-Frobenius group;

3. G has a normal series 1 E H E K E G such that H and G/K are
π1-groups, K/H is a non-abelian simple group, H is a nilpotent group
and |G/K| divides |Out(K/H)|.
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Lemma 2.5. [9] Let G be a finite group and m be a positive integer dividing
|G|. If Lm(G) = PSLm(G) = {g ∈ G | gm = 1}, then m | |Lm(G)|.

Lemma 2.6. Let G be a finite group. Then for every i ∈ πe(G), ϕ(i)
divides mi(G), and i divides

∑
j|imj(G). Moreover, if i > 2, then mi(G)

is even.

Proof. By Lemma 2.5, the proof is straightforward.

Lemma 2.7. [26, Lemma 6(iii)] Let q, k, l be natural numbers. Then

1. (qk − 1, ql − 1) = q(k,l) − 1.

2. (qk + 1, ql + 1) =

{
q(k,l) + 1 if both k

(k,l) and l
(k,l) are odd,

(2, q + 1) otherwise.

3. (qk − 1, ql + 1) =

{
q(k,l) + 1 if k

(k,l) is even and l
(k,l) is odd,

(2, q + 1) otherwise.

In particular, for every q > 2 and k > 1, the inequality (qk − 1, qk + 1) 6 2
holds.

Lemma 2.8. Let G be a simple groups B2(q), where q = 24n and p =
q2 + 1 is a prime number. Then mp(G) = (p − 1)|G|/(4p) and for every
i ∈ πe(G)− {1, p}, p divides mi(G).

Proof. Since |Gp| = p, we deduce that Gp is a cyclic group of order p. Thus
mp(G) = ϕ(p)np(G) = (p−1)np(G). Now it is enough to show that np(G) =
|G|/(4p). By [16], p is an isolated vertex of Γ(G). Hence |CG(Gp)| = p and
|NG(Gp)| = αp for a natural number α. We know that NG(Gp)/CG(Gp)
embeds in Aut(Gp), which implies α | p − 1. Furthermore, by Sylow’s
Theorem, np(G) = |G : NG(Gp)| and np(G) ≡ 1 (mod p). Therefore p
divides |G|/(αp) − 1. Thus q2 + 1 divides q4(q4 − 1)(q2 − 1)/(αp) − 1.
It follows that q2 + 1 divides (q8 − 2q6 + q4 − α), hence q2 + 1 divides
(q2 + 1)(q6 − 3q4 + 4q2 − 4) + (4 − α), and since α | p − 1, we obtain that
α = 4. Let i ∈ πe(G) − {1, p}. Since p is an isolated vertex of Γ(G), we
conclude that p - i and pi /∈ πe(G). Thus Gp acts fixed point freely on the
set of elements of order i by conjugation and hence |Gp| | mi(G). So we
conclude that p | mi(G).
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3. Proof of the Main Theorem

In this section, we prove the main theorem by the following lemmas. We
denote the simple groups B2(2

4n), where (24n + 1) is a prime number by B
and prime number (24n + 1) by p. Recall that G is a group with |G| = |B|
and nse(G) = nse(B).

Lemma 3.1. m2(G) = m2(B), mp(G) = mp(B), np(G) = np(B), p is an
isolated vertex of Γ(G) and p | mk(G) for every k ∈ πe(G)− {1, p}.

Proof. By Lemma 2.6, for every 1 6= r ∈ πe(G), r = 2 if and only if mr(G)
is odd. Thus we deduce that m2(G) = m2(B). According to Lemma 2.6,
(mp(G), p) = 1. Thus p - mp(G) and also Lemma 2.8 implies that mp(G) ∈
{m1(B),m2(B),mp(B)}. Moreover, mp(G) is even, so we conclude that
mp(G) = mp(B). Since Gp and Bp are cyclic groups of order p andmp(G) =
mp(B), we deduce that mp(G) = ϕ(p)np(G) = ϕ(p)np(B) = mp(B), so
np(G) = np(B).

Now we prove that p is an isolated vertex of Γ(G). Assume the con-
trary. Then there is t ∈ π(G) − {p} such that tp ∈ πe(G). So mtp(G) =
ϕ(tp)np(G)k, where k is the number of cyclic subgroups of order t in CG(Gp)
and since np(G) = np(B), it follows that mtp(G) = (t− 1)(p− 1)|B|k/(4p).
If mtp(G) = mp(B), then t = 2 and k = 1. Furthermore, Lemma 2.5
yields p | m2(G) + m2p(G) and since m2(G) = m2(C) and p | m2(C),
we have p | m2p(G), which is a contradiction. So Lemma 2.8 implies that
p | mtp(G). Hence p | t−1 and sincemtp(G) < |G|, we deduce that t−1 < 5.
In conclusion we deduce that t ∈ {3, 4, 5}. Now since p - mtp(G), this is a
contradiction.

Let k ∈ πe(G) − {1, p}. Since p is an isolated vertex of Γ(G), p - k
and pk /∈ πe(G). Thus Gp acts fixed point freely on the set of elements
of order k by conjugation and hence |Gp| | mk(G). So, we conclude that
p | mk(G).

Lemma 3.2. The group G is neither a Frobenius group nor a 2-Frobenius
group.

Proof. Let G be a Frobenius group with kernelK and complementH. Then
by Lemma 2.1, t(G) = 2 and π(H) and π(K) are vertex sets of the connected
components of Γ(G) and |H| divides |K| − 1. Now by Lemma 3.1, p is an
isolated vertex of Γ(G). Thus we deduce that (i) |H| = p and |K| = |G|/p,
or (ii) |H| = |G|/p and |K| = p. Since |H| divides |K|−1, we conclude that
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the last case can not occur. So |H| = p and |K| = |G|/p, hence (q2 + 1) |
q4(q4−1)
(q2+1)

− 1. So we conclude that (q2 + 1) | ((q2 + 1)(q6− 3q4 + 4q2− 4) + 3.
Thus, q2 + 1 | 3, which is impossible.

We now show that G is not a 2-Frobenius group. Let G be a 2-Frobenius
group. Then, G has a normal series 1 EH EK EG such that G/H and K
are Frobenius groups by kernels K/H and H, respectively. Set |G/K| = x.
Since p is an isolated vertex of Γ(G), we have |K/H| = p and |H| =
|G|/(xp). By Lemma 2.3, |G/K| divides |Aut(K/H)|. Thus x | p − 1
and since, by Lemma 2.7, (p − 1, q − 1) = 1, we have (q2, q − 1) = 1.
Now since |G/K||(p − 1), we deduce that q − 1 | |H. The group H is
nilpotent. Therefore Ht o K/H is a Frobenius group with kernel Ht and
complement K/H, where t = q − 1. So |K/H| divides |Ht| − 1. It implies
that q2 + 1 6 q − 2, but this is a contradiction.

Lemma 3.3. The group G is isomorphic to the group B.

Proof. By Lemma 3.1, p is an isolated vertex of Γ(G). Thus t(G) > 1 and
G satisfies one of the cases of Lemma 2.4. Now Lemma 3.2 implies that G
is neither a Frobenius group nor a 2-Frobenius group. Thus only the case
(c) of Lemma 2.4 occurs. So G has a normal series 1 E H E K E G such
that H and G/K are π1-groups, K/H is a non-abelian simple group H is
nilpotent, and G/K divides |Out(K/H)|. Note that since p | |K/H| and p
is an isolated vertex of Γ(K/H), it follows that K/H is a simple Cpp-group
with p = 28n+1. Now by [3] we have thatK/H must be one of the following
(i) Alt(p′), Alt(p′ + 1), Alt(p′ + 2),
(ii) A1(r), r = 28n; pk; 2.pk ± 1 which is a prime, 8n > k = 1,
(iii) F4(2

2n),
(iv) 2D8n+1(2),
(v) 2Da/2(2

b); ab = 16n,
(vi) Ba(2b), ab = 8n; a > 2.

We go through all these cases.
Case (i). Suppose K/H is isomorphic to Alt(p′); Alt(p′+ 1), or Alt(p′+ 2).
Note that p | |K/H| | |G|, so we consider p = p′ it follows that 28n + 1 = p′

then 28n + 2 = p′+ 1, but 28n + 2 - |An| | |G|, we have a contradiction. Now
if p = p′ − 2, then 28n + 1 = p′ − 2. As a result 28n + 3 = p′, again we have
28n + 3 - |An| | |G|, so we have a contradiction.
Case (ii). Suppose that K/H is isomorphic to A1(r) with r = 28n

′ ; p;
2p ± 1, for these last two possibilities r must be a prime. First, note that
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|A1(2
8n′

)| = 28n
′
(216n

′ − 1). On the other hand we have p = r ± 1. So
28n + 1 = 28n

′ ± 1. First if 28n + 1 = 28n
′
+ 1, so n = n′. Now, we know

that |A1(r)| | |G|, so 28n(216n − 1) | 216n(216n − 1)(28n − 1). On the other
hand, we have 28n = |K/H|r ≤ |G|r ≤ 23n, which is a contradiction. For,
other cases we have a contradiction.
Case (iii). Suppose K/H is isomorphic to F4(q

′), where q′ = 22n
′ . So, we

consider p = q′4+1, q′4−q′2+1. Now if p = q′4+1, then have 28n+1 = q′4+1.
Thus 28n = 28n

′ , as a result n = n′. On the otherhand, we know |F4(q
′)| |

|G|, so q′24(q′12−1)(q′8−1)(q′6−1)(q′2−1) | q4(q4−1)(q2+1). It follows that
248n

′
(224n

′−1)(216n
′−1)(212n

′−1)(24n
′−1) | 216n′

(216n
′−1)(28n

′
+1), which

is a contradiction. Now, we consider p = q′4−q′2+1, so 28n+1 = q′4−q′2+1.
It follows that 2(28n−1) = q′2(q′2 − 1). Thus, q′2 − 1 = 2 and q′2 = 28n−1.
As a result 24n

′
= 3 and 24n

′
= 28n−1, which is a contradiction.

Case (iv). Suppose that K/H is isomorphic (iv) 2D8n′+1(2), so we consider
p = 28n

′+1 + 1. It follows that 28n + 1 = 28n
′+1 + 1. Thus, we deduce

8n = 8n′ + 1, but |2D8n(2)| - |G|, which is a contradiction.
Case (v). Suppose that K/H is isomorphic 2Da/2(2

b); ab = 16n. Now, we
consider a = 4, 8, 16 so we have the following possibilities.
(1). Let K/H ∼= 2D2(2

4n′
). So, we consider p = 28n + 1 = 28n

′
+ 1. It

follows that n = n′. On the other hand, |2D2(2
4n′

)| | |G|, so 28n
′
(28n

′−1)2 |
216n(216n−1)(28n+1). It follows that 28n(28n−1)2 | 216n(216n−1)(28n+1),
which is a contradiction.
(2). LetK/H ∼= 2D4(2

2n′
). So, we consider p = 28n+1 = 28n

′
+1. It follows

that n = n′. On the other hand,|2D4(2
2n′

)| | |G|, so 224n
′
(28n

′ − 1)(24n
′ −

1)(28n
′ − 1)(212n

′ − 1) | 216n(216n − 1)(28n + 1), which is a contradiction.
(3). LetK/H ∼= 2D8(2

2n′
). So, we consider p = 28n+1 = 216n

′
+1.It follows

that n = 2n′. On the other hand, |2D8(2
2n′

)| | |G|, so 2112n
′
(216n

′−1)(24n
′−

1)(28n
′ − 1)(212n

′ − 1)(216n
′ − 1)(220n

′ − 1)(224n
′ − 1)(228n

′ − 1)(232n
′ − 1) |

216n(216n − 1)(28n + 1), which is a contradiction.

Lemma 3.4. K/H ∼= Ba(2b), ab = 8n; a > 2.

Proof. We suppose a = 2, 4, 8. Let a = 4, so K/H ∼= B4(2
2n′

). Now, we
consider p = 28n

′
+ 1. It follows that 28n + 1 = 28n

′
+ 1, n = n′. On

the other hand, |B4(2
2n′

)| | |G|, but |B4(2
2n′

)| - |B2(2
4n)|, so we have a

contradiction. Now, we assume a = 8, thus we consider K/H ∼= B8(2
n′

).
Now, we have p = 28n

′
+ 1. It follows that 28n + 1 = 28n

′
+ 1, so n = n′.

On the other hand, |B8(2
n)| - |B2(2

4n)|, which is a contradiction. Hence,
a = 2 and K/H ∼= B2(2

4n). Thus,|K/H| = |B2(2
4n)|. On the other hand,
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we know that p ∈ π(K/H), so 28n + 1 = 28n
′
+ 1. It follows that n = n′.

Since G has a normal series 1EH EK EG that H = 1 and G = K. Thus,
G ∼= B, as required.
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