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Weak embeddability of the partial Menger algebra
of formulas

Thodsaporn Kumduang

Abstract. We consider the partial (n + 1)-operation of the set of all n-ary formulas of
arbitrary types and then prove that the superassociativity is satisfied as a weak identity.
Binary partial associative operations of formulas induced by the partial operation of type
(n+1) are proposed. We also prove that the partial unitary Menger algebra of formulas
is weak embeddable into the algebra of partial n-ary functions under which its selectors
correspond to projections.

1. Introduction and preliminaries

The fundamental fact that the compositon of functions is associative allows
us to consider the importance of associativity. In [17], K. Menger introduced
the concept of algebra consisting of a nonempty set G and one operation
o of type n defined on G such that the superassociativity or (C1) holds,
i.e., o(o(a, b1, ..., bn), c1, ..., cn) = o(x, o(b1, c1, ..., cn), ..., o(bn, c1, ..., cn)) for
all a, bj , cj ∈ G and j = 1, ..., n. Such algebra is called a Menger algebra
of rank n or a superassociative algebra. Evidently, the study of Menger
algebras is now studied in various aspects. For example, Menger algebras of
multiplace functions were deeply considered in the papers [5, 7, 8, 9, 10, 11,
13, 14]. K. Denecke and his descendants also investigated Menger algebras of
terms of various languages [2, 3]. If there are special elements in a Menger
algebra (G, o) such that o(e, a1, ..., an) = e and o(a, e1, ..., en) = a, then
(G, o) is called unitary. In this case, this algebra has the type (n+1, 0, ..., 0).
A comprehensive review of the theory of Menger algebras or algebras of
functions can be found in the monograph [6].
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Recall from [2, 15] that a term of type τ is a formal expression that
constructed from an alphabet Xn = {x1, ..., xn} whose elements are called
variables for all n in N+ := {1, 2, ...} and operation symbols {fi | i ∈ I} of
type τ indexed by the set I. The type is the sequence τ = (ni)i∈I of the
natural numbers which are arities of the operation symbols fi. In fact, the
set Wτ (Xn) of all n-ary term of type τ consists of the following elements:
Every variable xi ∈ Xn and fi(t1, ..., tni) where n-ary terms t1, ..., tni of type
τ are already known. The set of terms together with the superposition op-
eration, a mapping Sn : (Wτ (Xn))n+1 → Wτ (Xn) defined on the structure
of a term s ∈Wτ (Xn) by

(1) for s = xj , 1 6 j 6 n, Sn(xj , t1, ..., tn) := tj ,
(2) for s = fi(s1, ..., sni),

Sn(fi(s1, ..., sni), t1, ..., tn) :=fi(S
n(s1, t1, ..., tn), ..., Sn(sni , t1, ..., tn)),

forms the algebra

(Wτ (Xn), Sn, (xi)i6n,n∈N+)

which is called the clone of all n-ary terms of type τ . In this case, the
variables x1, ..., xn can be considered as the nullary operations. Clearly,
the algebra is a unitary Menger algebra of rank n because Sn satisfies the
superassociative law, i.e,

Sn(Sn(s, t1, ..., tn), u1, ..., un) = Sn(s, Sn(t1, u1, ..., un), ..., Sn(tn, u1, ..., un))

for all s, tj , uj ∈Wτ (Xn) and Sn(xj , t1, ..., tn) = tj and Sn(s, x1, ..., xn) = s
for all j = 1, ..., n. Among recent contributions are [3, 15, 19].

One of the outstanding structures generalizing any algebra of arbitrary
types is an algebraic system [16] denoted by A := (A, (fAi )i∈I , (γ

A
j )j∈J).

In each component, A is a nonempty set, (fAi )i∈I is a family of ni-ary
operations defined on A, and (γAj )j∈J is a family of nj-ary relations on A.
For the type (τ, τ ′) of an algebraic system, we mean τ = (ni)i∈I where ni
comes form fAi : Ani → A for each i ∈ I and τ ′ = (nj)j∈J where nj comes
form γAj ⊆ Anj for each j ∈ J . Notice that if a family of nj-ary relations on
A is not defined, this structure is reduced to an original algebra of type τ ,
i.e., A := (A, (fAi )i∈I). Clearly, any ordered semigroup is a basic example
of algebraic systems of type ((2), (2)).

To investigate properties of algebraic systems of type (τ, τ ′), the concept
of formulas is needed. Recall from [4, 18, 20] that for n ∈ N+, an n-ary
formula of type (τ, τ ′) is inductively defined in the following way:
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(1) the equation t1 ≈ t2 is an n-ary formula of type (τ, τ ′) if t1, t2 are
n-ary terms of type τ ,

(2) γj(t1, ..., tnj ) is an n-ary formula of type (τ, τ ′) if j ∈ J and t1, ..., tnj

are n-ary terms of type τ and γj is an nj-ary relation symbol,

(3) ¬F is an n-ary formula of type (τ, τ ′) if F is an n-ary formula of type
(τ, τ ′),

(4) F1 ∨ F2 is an n-ary formula of type (τ, τ ′) if F1 and F2 are n-ary
formulas of type (τ, τ ′),

(5) ∃xi(F ) is an n-ary formula of type (τ, τ ′) if F is an n-ary formula of
type (τ, τ ′) and xi ∈ Xn.

Let F(τ,τ ′)(Wτ (Xn)) be the set of all n-ary formulas of type (τ, τ ′). Particu-
larly, by an atomic formula, we refer to the formula of the form (1) and (2).
Note that the equation symbol ≈ in (1) differs from the relation symbol γj
in (2) for all j ∈ J .

Some concrete example is provided. Let (τ, τ ′) = ((3), (2)) be the type
with a ternary operation symbol f and a binary relation symbol γ. We
provide lists of some elements in F((3),(2))(W(3)(X3)). For this, some atomic
formulas are determined as follows:

x2 ≈ x3, x1 ≈ x1, f(x1, x2, x3) ≈ x3, f(x1, x1, x1) ≈ f(x2, x2, x3),

γ(x1, x2), γ(x3, x3), γ(x2, x3), γ(f(x3, x3, x2), f(x1, x3, x1)).

Apart form these are obtained by using the following three logical connec-
tors, say ¬,∃,∨.

The operation Rn : F(τ,τ ′)(Wτ (Xn)) × (Wτ (Xn))n → F(τ,τ ′)(Wτ (Xn))
on sets of formulas was defined in the following inductive way (cf. [4]):

(1) If t1 ≈ t2 ∈ F(τ,τ ′)(Wτ (Xn)), then Rn(t1 ≈ t2, s1, ..., sn) is the formula

Sn(t1, s1, ..., sn) ≈ Sn(t2, s1, ..., sn).

(2) If γj(t1, ..., tnj ) ∈ F(τ,τ ′)(Wτ (Xn)), then Rn(γj(t1, ..., tnj ), s1, ..., sn) is
the formula γj(Sn(t1, s1, ..., sn), ..., Sn(tnj , s1, ..., sn)).

(3) If F ∈ F(τ,τ ′)(Wτ (Xn)), then Rn(¬F, s1, ..., sn) is the formula

¬Rn(F, s1, ..., sn).
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(4) If F1, F2 ∈ F(τ,τ ′)(Wτ (Xn)), then Rn(F1∨F2, s1, ..., sn) is the formula

Rn(F1, s1, ..., sn) ∨Rn(F2, s1, ..., sn).

(5) If ∃xi(F ) ∈ F(τ,τ ′)(Wτ (Xn)), then Rn(∃xi(F ), s1, ..., sn) is the formula

∃xi(Rn(F, s1, ..., sn)).

This operation generates the algebra

(Wτ (Xn),F(τ,τ ′)(Wτ (Xn)), Rn, (xi)16i6n,n∈N+ ,

which is called the n-ary formula-term clone of type (τ, τ ′). It was men-
tioned in [4] that this algebra is a unitary Menger algebra.

Algebraic constructions of partial operations of terms were first deter-
mined in the paper [2]. Due to the fact that the set of all linear terms, terms
in which all variable do not appear more than one, is not closed under the
usual superposition Sn for all n, the partial algebea of such terms was con-
sidered in sense of the many-sorted set and many-sorted partial mappings.
Generally, the set F lin(τ,τ ′)(Xn) of all n-ary linear formulas induced by linear
terms is not closed under the operation Rn. As a result, the partial algebra
of linear formulas was established in [1].

In this paper, we aim to define the partial operation on the set of all n-
ary formulas of type (τ, τ ′) and then construct the partial Menger algebras
which satisfy the axiom of superassociativity. Some binary partial associa-
tive operations on the set of formulas derived from the partial operation
of type (n + 1) defined on formulas are given in Section 2. We continue
in Section 3 with discussing a partial representation of formulas by a weak
monomorphism which maps from the Menger algebras of formulas to the
Menger algebra of partial n-ary functions defined on some set.

2. Partial Menger algebras of formulas

This section begin with giving the partial operation of formulas and illus-
trating the process of computation. Now we let

WF(τ,τ ′)(Xn) := Wτ (Xn) ∪ F(τ,τ ′)(Wτ (Xn)).

The partial superposition operation of type (n+ 1) which is the partial
mapping
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R
n

: (WF(τ,τ ′)(Xn))n+1 (→WF(τ,τ ′)(Xn)

can be defined by

R
n
(a, b1, ..., bn) =


Sn(a, b1, ..., bn) if a, b1, ..., bn ∈Wτ (Xn),

Rn(a, b1, ..., bn) if a ∈ F(τ,τ ′)(Wτ (Xn)), bi ∈Wτ (Xn),

not defined otherwise.

Some examples that demonstrate the process of this partial operation
are now mentioned. Let |I| = 2, |J | = 1 and let (τ, τ ′) = ((2, 2), (2)) be a
type with the corresponding two operation symbols +, ∗ and one relation
symbol ∆. The setWF((2,2),(2))(X4) consists of all quaternary terms of type
(2) and all quaternary formulas of type ((2, 2), (2)). Prepare the following
tools:

a1 is a variable x1, a2 is a term +(x2, x4),
a3 is a term +(∗(x4, x1), x2), b1 is a formula ∗(x4, x1) ≈ x1,
b2 is a formula ∆(x3,+(x4, x2)), b3 is a formula ∆(x3, ∗(x4, x4)) ∨ ¬(+(x4, x1) ≈ x2),

d1 is a term ∗(x4, x3), d2 is a variable x4.

Obviously, a1, a2, a3, b1, b2, b3, d1, d2 are elements in WF((2,2),(2))(X4).
Furthermore, we have

R
4
(a1, d1, d2, a2, a3) = S4(a1, d1, d2, a2, a3) = d1 = ∗(x4, x3),
R

4
(a2, d1, d2, a2, a3) = S4(a2, d1, d2, a2, a3) = +(b2, a3) =

+(x4,+(∗(x4, x1), x2)),
R

4
(a4, d1, d2, a2, a3) = R4(a4, d1, d2, a2, a3) which equals to ∗(a3, d1) ≈ d1,

and thus ∗(+(∗(x4, x1), x2), ∗(x4, x3)) ≈ ∗(x4, x3),
R

4
(b2, d1, d2, a2, a3) = R4(b2, d1, d2, a2, a3) = ∆(a2,+(a3, d2)), which

equals to ∆(+(x2, x4),+(+(∗(x4, x1), x2), x4)).

On the other hand, R4
(b3, a1, a2, b1, b2) and R4

(d1, b1, b2, b3, a1) are not de-
fined.

As a result, we can form the following two partial algebras. The first
one is the partial algebra (WF(τ,τ ′)(Xn), R

n
) of type (n + 1). We aim to

show that (WF(τ,τ ′)(Xn), R
n
) satisfies (C1) as a weak identity. For this,

the concept of weak identities is required. Recall from [12] that an equation
s ≈ t is said to be a weak identity in an algebra A if one side is defined then
another side is also defined and both sides are equal. Similarly, the partial
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algebra (WF(τ,τ ′)(Xn), R
n
, (xj)j6n,n∈N+) of type (n+ 1, 0, ..., 0︸ ︷︷ ︸

n times

) is another

structure derived from the first one.

Theorem 2.1. (WF(τ,τ ′)(Xn), R
n
) is a partial superassociative algebra.

Proof. Assume that a, b1, ..., bn, d1, ..., dn are elements in WF(τ,τ ′)(Xn). We
aim to show that, Rn satisfies the superassociativity as a weak identity, i.e.,

R
n
(R

n
(a, b1, ..., bn), d1, ..., dn) ≈

R
n
(a,R

n
(b1, d1, ..., dn), ..., R

n
(bn, d1, ..., dn)).

Assume that the left-hand side of such identity is defined. Then we have the
following two cases: a, b1, ..., bn, d1, ..., dn are n-ary terms of type τ in the
first case and a is an n-ary formula of type (τ, τ ′) but b1, ..., bn, d1, ..., dn
are n-ary terms of type τ in the second case. In the first case when
a, b1, ..., bn, d1, ..., dn are n-ary terms of type τ , Rn(R

n
(a, b1, ..., bn), d1, ..., dn)

equals to Sn(Sn(a, b1, ..., bn), d1, ..., dn).
Moreover, for each j = 1, ..., n, Rn(bj , d1, ..., dn) is defined and equals

to Sn(bj , d1, ..., dn). This implies that the right-hand side is defined and
equals to Sn(a, Sn(b1, d1, ..., dn), ..., Sn(bn, d1, ..., dn)). The superposition
Sn satisfies the following equation:

Sn(Sn(a, b1, ..., bn), d1, ..., dn)=Sn(a, Sn(b1, d1, ..., dn), ..., Sn(bn, d1, ..., dn)).

We now consider the case when a is an n-ary formula and b1, ..., bn, d1, ..., dn
are n-ary terms of type τ .

It implies that the left-hand side R
n
(R

n
(a, b1, ..., bn), d1, ..., dn) equals to

Rn(Rn(a, b1, ..., bn), d1, ..., dn). For each j = 1, ..., n, Rn(bj , d1, ..., dn) is
also defined and equals to Rn(bj , d1, ..., dn). Since for each j = 1, ..., n,
Rn(bj , d1, ..., dn) belongs to the set Wτ (Xn), we obtain that the right-hand
side is defined and equals to Rn(a,Rn(b1, d1, ..., dn), ..., Rn(bn, d1, ..., dn)).
Finally, we prove that two formulas, i.e., Rn(Rn(a, b1, ..., bn), d1, ..., dn) and
Rn(a,Rn(b1, d1, ..., dn), ..., Rn(bn, d1, ..., dn)) are identical. For this, a proof
by a definition of a formula a is given. In fact, it was shown in [4] that
the operation Rn satisfies the superassociative law already. Consequently,
in this case, the partial operation Rn also satisfies the equation as a weak
identity.

Considering a variable from an alphabet Xn, the following theorem is
stated.
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Theorem 2.2. (WF(τ,τ ′)(Xn), R
n
, (xj)j6n,n∈N+) is a partial unitary Menger

algebra.

Proof. The proof of superassociativity follows from a direct verification of
Theorem 2.1. To prove that the equation Rn(xj , b1, ..., bn) ≈ bj is a weak
identity, suppose that the left-hand side of this equation is defined. We
have that b1, ..., bn are n-ary terms of type τ . Thus Rn(xj , b1, ..., bn) =
Sn(xj , b1, ..., bn) = bj . Therefore, our claimed is proved. Finally, we show
that the weak equation Rn(a, x1, ..., xn) ≈ a holds. It is not hard to see that
the left-hand side is defined and thus Rn(a, x1, ..., xn) = Rn(a, x1, ..., xn). If
a is an element in Wτ (Xn), we have Rn(a, x1, ..., xn) = Sn(a, x1, ..., xn) =
a. For a formula a, we give a proof by the following way: If a is an
equation s ≈ t, then Rn(s ≈ t, x1, ..., xn) is equal to Sn(s, x1, ..., xn) ≈
Sn(t, x1, ..., xn), subsequently, s ≈ t. If a has a form γj(t1, ..., tnj ), it
follows from [1] that we have Rn(γj(t1, ..., tnj ), x1, ..., xn) = γj(t1, ..., tnj ).
Assume that a is satisfied as a weak identity already. Then we obtain
Rn(¬a, x1, ..., xn) = ¬Rn(a, x1, ..., xn) = ¬a and Rn(∃xi(a), x1, ..., xn) =
∃xi(Rn(a, x1, ..., xn)) = ∃xi(a). Finally, suppose that F1 and F2 are satis-
fied. Then we have

Rn(F1∨F2, x1, ..., xn) = Rn(F1, x1, ..., xn)∨Rn(F2, x1, ..., xn) = F1∨F2.

The proof is finished.

Our next purposes are to define three partial binary operations on the
set WF(τ,τ ′)(Xn) and show that these operations are weak associative.

For every a and b in WF(τ,τ ′)(Xn), we define the partial operation

+F : (WF(τ,τ ′)(Xn))2 (→WF(τ,τ ′)(Xn)

by
a+F b = R

n
(a, b, ..., b︸ ︷︷ ︸

n times

).

Then we have the following result.

Theorem 2.3. (WF(τ,τ ′)(Xn),+F ) is a partial semigroup.

Proof. Let a, b, d ∈ WF(τ,τ ′)(Xn). We have to show that (a +F b) +F d =

a+F (b+F d) is a weak identity. Suppose first that (a+F b) +F d is defined.
It follows that a belongs to WF(τ,τ ′)(Xn) and both b, d are in Wτ (Xn).
As a result, a +F (b +F d) is also defined. To show that both sides are
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equal, we consider in a few cases. If a, b are terms in Wτ (Xn), then we have
(a +F b) +F d = Sn(a +F b, d, ..., d) = Sn(Sn(a, b, ..., b), d, ..., d) and a +F

(b+F d) = Sn(a, b+F d, ..., b+F d) = Sn(a, Sn(b, d, ..., d), ..., Sn(b, d, ..., d)).
Due to the fact that Sn satisfies (C1), we conclude that (a +F b) +F d =
a +F (b +F d). For the case when a is a formula of type (τ, τ ′) but b
is a term of type τ , from the definition of +F , we obtain (a +F b) +F

d = Rn(a +F b, d, ..., d) = Rn(Rn(a, b, ..., b), d, ..., d) and a +F (b +F d) =
Rn(a, b+F d, ..., b +F d) = Rn(a,Rn(b, d, ..., d), ..., Rn(b, d, ..., d)). Since we
already known that the operation Rn is superassociative, as a result, it
implies that the equation (a+F b) +F d = a+F (b+F d) holds.

We call the semigroup defined in Theorem 2.4 the partial diagonal semi-
group derived from the partial unitary Menger algebra

Mu = (WF(τ,τ ′)(Xn), R
n
, (xj)j6n,n∈N+).

For each i = 1, ..., n, the binary partial operation

·Fxi : (WF(τ,τ ′)(Xn))2 (→WF(τ,τ ′)(Xn)

is defined by
a ·Fxi b = R

n
(a, x1, ..., xi−1, b, xi+1, ..., xn)

for all a, b ∈WF(τ,τ ′)(Xn).

Applying the fact that the partial operation Rn is partial superassocia-
tive over the set WF(τ,τ ′)(Xn), we prove the following theorem.

Theorem 2.4. (WF(τ,τ ′)(Xn), ·Fxi) is a partial semigroup.

Proof. Let a, b and d be in WF(τ,τ ′)(Xn). To prove that (WF(τ,τ ′)(Xn), ·Fxi)
is a partial semigroup, we need to show that the equation (a ·Fxi b) ·

F
xi d =

a ·Fxi (b ·Fxi d) is a weak identity for all i = 1, ..., n. For this, assume that
(a ·Fxi b) ·

F
xi d is defined. Then we have that a belongs to the setWF(τ,τ ′)(Xn)

but b is an n-ary term of type τ . It follows directly from our hypothesis
that another side, i.e., a ·Fxi (b ·Fxi d) is also defined. Finally, we show that
both sides are identical. We begin in the case when both a and b are terms
of type τ . In fact,
(a·Fxib)·

F
xid = Sn(Sn(a, x1, ..., xi−1, b, xi+1, ..., xn), x1, ..., xi−1, d, xi+1, ..., xn)

and
a·Fxi(b·

F
xid) = Sn(a, x1, ..., xi−1, S

n(b, x1, ..., xi−1, d, xi+1, ..., xn), xi+1, ..., xn).
By the satisfaction of (C1) of Sn over Wτ (Xn), the equation (a ·Fxi b) ·

F
xi d =

a ·Fxi (b ·Fxi d) is true. Otherwise, we obtain
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(a ·Fxi b) ·
F
xi d = Rn(a, x1, ..., xi−1, b, xi+1, ..., xn) ·Fxi d =

Rn(Rn(a, x1, ..., xi−1, b, xi+1, ..., xn), x1, ..., xi−1, d, xi+1, ..., xn) and

a·Fxi (b·
F
xid)=Rn(a, x1, ..., xi−1, S

n(b, x1, ..., xi−1, d, xi+1, ..., xn), xi+1, ..., xn).
Because Rn satisfies (C1), in this case, we obtain that (a ·Fxi b) ·

F
xi d =

a ·Fxi (b ·Fxi d).

The partial semigroup (WF(τ,τ ′)(Xn), ·Fxi) is said to be the z-product
semigroup derived from the partial unitary Menger algebra Mu. By the
symbol (aj)

n
j=1, we denote (a1, ..., an). On the product (WF(τ,τ ′)(Xn))n of

WF(τ,τ ′)(Xn), we define the partial mapping

∗F : (WF(τ,τ ′)(Xn))n × (WF(τ,τ ′)(Xn))n (→ (WF(τ,τ ′)(Xn))n

by
(aj)

n
j=1 ∗F (bj)

n
j=1 = (R

n
(aj , b1, ..., bn))nj=1

for every (aj)
n
j=1, (bj)

n
j=1 ∈ (WF(τ,τ ′)(Xn))n.

The following theorem shows that the partial binary operation ∗F is
associative over the Cartesian product (WF(τ,τ ′)(Xn))n.

Theorem 2.5. ((WF(τ,τ ′)(Xn))n, ∗F ) is a partial semigroup.

Proof. Let (aj)
n
j=1, (bj)

n
j=1 and (dj)

n
j=1 be n-tuples in (WF(τ,τ ′)(Xn))n. We

aim to show that the equation

((aj)
n
j=1 ∗F (bj)

n
j=1) ∗F (dj)

n
j=1 = (aj)

n
j=1 ∗F ((bj)

n
j=1 ∗F (dj)

n
j=1) (1)

holds as a weak identity. Assume that the left-hand side of the equation
(1) is defined. Then we have that a tuple (aj)

n
j=1 is in (WF(τ,τ ′)(Xn))n but

(bj)
n
j=1 and (dj)

n
j=1 are in (Wτ (Xn))n. Furthermore, the right-hand side

of (1) is defined. To show that both sides of the equation (1) coincide, we
separate into three cases. If all (aj)

n
j=1, (bj)

n
j=1) and (dj)

n
j=1 belong to the

Cartesian product (Wτ (Xn))n, we obtain

((aj)
n
j=1 ∗F (bj)

n
j=1) ∗F(dj)

n
j=1=(Sn(Sn(aj , b1, ..., bn), d1, ..., dn))nj=1

and (aj)
n
j=1∗F((bj)

n
j=1∗F(dj)

n
j=1)=(Sn(aj , S

n(b1, d1, ..., dn), ..., Sn(bn, d1, ..., dn)))nj=1.

By the fact that Sn is superassociative over the set Wτ (Xn), we have that
(1) is valid. If (aj)

n
j=1 is an n-tuple of formulas of type (τ, τ ′) and both

(bj)
n
j=1, (dj)

n
j=1 are n-tuples of n-ary terms of type τ , we obtain

((aj)
n
j=1 ∗F(bj)

n
j=1) ∗F(dj)

n
j=1 = (Rn(Rn(aj , b1, ..., bn), d1, ..., dn))nj=1
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and (aj)
n
j=1∗F((bj)

n
j=1∗F(dj)

n
j=1)=(Rn(aj , R

n(b1, d1, ..., dn), ..., Rn(bn, d1, ..., dn)))nj=1.

From the fact that the operation Rn satisfies (C1), we have that (1) is ob-
tained as a weak identity.

In the case when there is a partition P = {{i1, ..., ik}, {i′1, ..., i′k}} on
a set {1, ..., n} such that ail belongs to Wτ (Xn) and ai′l is a formula in
F(τ,τ ′)(Wτ (Xn)) and both (bj)

n
j=1, (dj)

n
j=1 are n-tuples in (Wτ (Xn))n, we

have that ((aj)
n
j=1 ∗F (bj)

n
j=1) ∗F (dj)

n
j=1 equals to(ej)

n
j=1 ∗F (dj)

n
j=1 where

eil = Sn(ail , b1, ..., bn) and ei′l = Rn(ai′l , b1, ..., bn) for all l = 1, ..., k, sub-
sequently, (pj)

n
j=1 where pil = Sn(Sn(ail , b1, ..., bn), d1, ..., dn) and pi′l =

Rn(Rn(ai′l , b1, ..., bn), d1, ..., dn) for all l = 1, ..., k. On the other hand, we get
(aj)

n
j=1∗F((bj)nj=1∗F(dj)nj=1) is equal to (aj)

n
j=1∗F(Sn(bj , d1, ..., dn))nj=1, sub-

sequently, (pj)
n
j=1 where pil = Sn(ail , S

n(b1, d1, ..., dn), ..., Sn(bn, d1, ..., dn))
and
pi′l

= Rn(ai′l , S
n(b1, d1, ..., dn), ..., Sn(bn, d1, ..., dn)) for all l = 1, ..., k. As a

consequence, we have
((pj)

n
j=1) = (pj)

n
j=1

where pil = pil and pi′l = pi′l
for all l = 1, ..., k. This shows that the equation

(1) holds as a weak identity.

The partial semigroup ((WF(τ,τ ′)(Xn))n, ∗F ) in Theorem 2.5 is called
the binary partial comitant of the partial algebra Mu. More advanced
topics in the binary comitanat induced by any Menger algebra, we refer the
readers to the monograph [6].

Recall from [1, 12] that the concept of homomorphism for partial alge-
bras is different from a total algebra. In fact, if A,B are partial algebras
of the same type with indexed sets {fAi | i ∈ I} and {fBi | i ∈ I} of par-
tial operations on A and B, respectively, then by a weak homomorphism
we mean a mapping φ : A → B satisfying: if (a1, ..., ani) ∈ domfAi , then
(φ(a1), ..., φ(ani)) ∈ domfBi and then, for all i ∈ I,

φ(fAi (a1, ..., ani)) = fBi (φ(a1), ..., φ(ani)).

If a weak homomorphism φ is injective, we call φ a weak monomorphism.
In this case, we say that A is weak embeddable into B.

Theorem 2.6. The partial diagonal semigroup (WF(τ,τ ′)(Xn),+F ) is weak
embeddable into the binary partial comitant ((WF(τ,τ ′)(Xn))n, ∗F ).

Proof. For any a in the partial semigroup (WF(τ,τ ′)(Xn),+F ), we define the
mapping fromWF(τ,τ ′)(Xn) to the Cartesian set (WF(τ,τ ′)(Xn))n by ϕ(a) =
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(a, ..., a). To show that ϕ is a weak monomorphism, suppose that (y1, y2) ∈
dom+F . It follows that y1 ∈ WF(τ,τ ′)(Xn) and y2 ∈ Wτ (Xn). Then by
the definition of ϕ, we have (ϕ(y1), ϕ(y2)) = ((y1, ..., y1), (y2, ..., y2)) ∈
dom ∗F . From this, we obtain two cases: y1, y2 ∈ Wτ (Xn) and y1 ∈
F(τ,τ ′)(Wτ (Xn)), y2 ∈ Wτ (Xn). If y1, y2 are terms in Wτ (Xn), we have
ϕ(y1 +F y2) = ϕ(Sn(y1, y2, ..., y2)) = (Sn(y1, y2, ..., y2), ..., S

n(y1, y2, ..., y2))
= (y1, ..., y1) ∗F (y2, ..., y2) = ϕ(y1) ∗F ϕ(y2). If y1 is an n-ary formula of
type (τ, τ ′) and y2 is an n-ary term of type τ , we obtain ϕ(y1 +F y2) =
ϕ(Rn(y1, y2, ..., y2)).

On the other hand, we have ϕ(y1)∗F ϕ(y2) = (y1, ..., y1)∗F (y2, ..., y2) =
(Rn(y1, y2, ..., y2), ..., R

n(y1, y2, ..., y2)). In this case, we get ϕ(y1 +F y2) =
ϕ(y1) ∗F ϕ(y2). Clearly, ϕ is injective. Therefore, the partial semigroup
(WF(τ,τ ′)(Xn),+F ) is weak embeddable into ((WF(τ,τ ′)(Xn))n, ∗F ).

3. Weak monomorphisms of formulas

Let A be a nonempty set and I a nonempty set of positive integers. On the
set Fn(A) of all n-ary partial functions on A, an (n+ 1)-ary operation (also
called composition of partial functions) O can be defined by the following
way:

If f, g1, ..., gn ∈ Fn(A) and (a1, ..., an) ∈ An, then by O(f, g1, ..., gn) we
denote the partial function

O : (Fn(A))n+1 (→ Fn(A)

defined by

dom (O) = {(a1, ..., an) ∈ An|(a1, ..., an) ∈
⋂n
i=1 dom(gi)}

and (g1(a1, ..., an), ..., gn(a1, ..., an)) ∈ dom(f)
and O(f, g1, ..., gn)(a1, ..., an) = f(g1(a1, ..., an), ..., gn(a1, ..., an)).

It is clear that this composition satisfies the superassociativity, i.e., for
any n ∈ I, f, g1, ..., gn, h1, ..., hn ∈ Fn(A), we have

O(O(f, g1, ..., gn), h1, ..., hn) = O(f,O(g1, h1, ..., hn), ...,O(gn, h1, ..., hn)).

The algebra (Fn(A),O) is called the Menger algebra of rank n of partial
n-ary functions. Obviously, a semigroup of partial transformations is a
particular case of this algebra if n = 1.

The solution to the problem "Can the partial unitary Menger algebra
(WF(τ,τ ′)(Xn), R

n
, (xj)j6n,n∈N+) be weak embeddable into the algebra of

functions defined on some set?" is now proposed.
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Theorem 3.1. The partial unitary Menger algebraMu of type (n+1, 0, ..., 0)
is weak embeddable into unitary Menger algebra of the same type of partial
n-ary functions such that its selectors correspond to the projection opera-
tions of this set.

Proof. We begin the proof of this theorem by constructing the partial n-
ary function with respect to each element of the partial algebra Mu of type
(n + 1, 0, ..., 0). For each n ∈ N+ and each element a ∈ WF(τ,τ ′)(Xn), the
partial n-ary function

λa : (WF(τ,τ ′)(Xn))n (→WF(τ,τ ′)(Xn)

can be defined by

λa(b1, ..., bn) = R
n
(a, b1, ..., bn)

for all b1, ..., bn ∈WF(τ,τ ′)(Xn).
It is clear that the set Fn(WF(τ,τ ′)(Xn)) = {λa | a ∈ WF(τ,τ ′)(Xn)}

is closed with respect to the partial composition of functions. Hence the
algebra

(Fn(WF(τ,τ ′)(Xn)),O, (prni )i6n,n∈N+)

of type (n + 1, 0, ..., 0) is obtained where prni is the projection operation
defined by prni (b1, ..., bn) = bi for all i = 1, ..., n.

Since (WF(τ,τ ′)(Xn), R
n
, (xj)j6n,n∈N+) is a partial algebra, we actually

have to consider the mapping

φ : WF(τ,τ ′)(Xn)→ Fn(WF(τ,τ ′)(Xn)),

defined by
φ(a) = λa

for all a ∈WF(τ,τ ′)(Xn).
We now show that the mapping φ is a weak homomorphism from the

partial Menger algebraMu to (Fn(WF(τ,τ ′)(Xn)),O, (prni )i6n,n∈N+). Indeed, for
all a, b1, ..., bn ∈WF(τ,τ ′)(Xn), we prove that the equation

φ(R
n
(a, b1, ..., bn)) = O(φ(a), φ(b1), ..., φ(bn))

is satisfied as a weak identity. To do this, assume that (a, b1, ..., bn) ∈
dom(R

n
). This implies that a belongs to WF(τ,τ ′)(Xn) and b1, ..., bn belong
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toWτ (Xn). Applying the definition of φ, we obtain (φ(a), φ(b1), ..., φ(bn)) ∈
dom(O). Thus the above equation is equivalent to

λRn
(a,b1,...,bn)

= O(λa, λb1 , ..., λbn).

In order to prove that this equality is satisfied, we suppose that (y1, ..., yn)
are elements in (WF(τ,τ ′)(Xn))n. If an n-tuple (y1, ..., yn) comes from the
Cartesian product (Wτ (Xn))n, then λRn

(a,b1,...,bn)
(y1, ..., yn) is defined and

equals to Rn(R
n
(a, b1, ..., bn), y1, ..., yn). Since we known from Theorem 2.1

that the partial operation satisfies the superassociativity as a weak identity,
by the definition of O, we have

λRn
(a,b1,...,bn)

(y1, ..., yn) = R
n
(R

n
(a, b1, ..., bn), y1, ..., yn)

= R
n
(a,R

n
(b1, y1, ..., yn), ..., R

n
(bn, y1, ..., yn))

= λa(R
n
(b1, y1, ..., yn), ..., R

n
(bn, y1, ..., yn))

= λa(λb1(y1, ..., yn), ..., λbn(y1, ..., yn))
= O(λa, λb1 , ..., λbn)(y1, ..., yn).

Furthermore, it is also an injection. In fact, assume that λa1 = λa2 for some
a1, a2 ∈WF(τ,τ ′)(Xn), n ∈ N+. Then

λa1(y1, ..., yn) = λa2(y1, ..., yn).

Thus, in particular, we have

R
n
(a1, y1, ..., yn) = R

n
(a2, y1, ..., yn).

Replacing each element yj in this equation by variables xj in Wτ (Xn) for
all j = 1, ..., n, we obtain

R
n
(a1, x1, ..., xn) = R

n
(a2, x1, ..., xn).

According to Theorem 2.2, we conclude a1 = a2. This shows that φ is a
weak monomorphism.

Finally, for each 1 6 i 6 n, n ∈ N, and xi ∈WF(τ,τ ′)(Xn), we have

λxi(y1, ..., yn) = Rn(xi, y1, ..., yn) = yi

for all (y1, ..., yn) ∈ (Wτ (Xn))n. Thus λxi = prni , which means that selectors
are transformed into projection operations. Thus, the proof is finished.
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With out variables x1, ..., xn acting as the nullary operations, we have
the following theorem.

Theorem 3.2. The partial Menger algebra (WF(τ,τ ′)(Xn),R
n
) of type (n+1)

is weak embeddable into a Menger algebra of the same type of partial n-ary
functions.

Proof. let e, c be constant elements not belong to WF(τ,τ ′)(Xn) and e 6= c.
We extend a set WF(τ,τ ′)(Xn) to WF(τ,τ ′)(Xn) := WF(τ,τ ′)(Xn) ∪ {e, c}.
For each a in WF(τ,τ ′)(Xn), an n-ary partial function on WF(τ,τ ′)(Xn) can
be defined by the following

λ′a(b1, ..., bn) :=


R
n
(a, b1, ..., bn) if bj ∈WF(τ,τ ′)(Xn) for all j = 1, ..., n,

e if bj = e for all j = 1, ..., n,

c otherwise.

We prove that
λ′
R

n
(a,b1,...,bn)

= O(λ′a, λ
′
b1 , ..., λ

′
bn)

is a weak identity for any a, b1, ..., bn ∈WF(τ,τ ′)(Xn).
Let y1, ..., yn ∈WF(τ,τ ′)(Xn). It follows immediately from Theorem 3.1

that
λ′
R

n
(a,b1,...,bn)

(y1, ..., yn) = O(λ′a, λ
′
b1 , ..., λ

′
bn)(y1, ..., yn).

If y1, ..., yn ∈ {e}, then by the definition, we have

λ′
R

n
(a,b1,...,bn)

(e, ..., e) = R
n
(a, b1, ..., bn)

and O(λ′a, λ
′
b1
, ..., λ′bn)(e, ..., e) = λ′a(λ

′
b1

(e, ..., e), ..., λ′bn(e, ..., e)) = λ′a(b1, ..., b1)

= R
n
(a, b1, ..., bn), which implies

λ′
R

n
(a,b1,...,bn)

(e, ..., e) = O(λ′a, λ
′
b1 , ..., λ

′
bn)(e, ..., e).

In all other cases, we have

λ′
R

n
(a,b1,...,bn)

(y1, ..., yn) = c = O(λ′a, λ
′
b1 , ..., λ

′
bn)(y1, ..., yn).

This finishes the proof of a weak homomorphism. Assume that λ′a1 = λ′a2 .
Due to the existence of e in WF(τ,τ ′)(Xn), it implies that λ′a1(e, ..., e) =
λ′a2(e, ..., e), as a result a1 = a2. Thus, the mapping ϕ : a 7→ λ′a is a
weak monomorphism from the partial Menger algebra (WF(τ,τ ′)(Xn), R

n
)

to some algebra of partial n-ary functions.
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4. Conclusions

In this work, the partial operation of type (n + 1) defined on the set of
terms and formulas which satisfies the superassociative law as a weak iden-
tity is seeked. The main result shows that the set WF(τ,τ ′)(Xn) equipped
with one partial operation Rn and n elements of nullary operations forms
a unitary Menger algebra. Three binary operations, +F , ·Fxi and ∗

F defined
on WF(τ,τ ′)(Xn) and derived from R

n, are weak associative and their cor-
responding partial structures are obtained. Finally, we show that there is a
weak monomorphism from the partial algebraMu into the algebra of par-
tial functions. Another direction of the future research in this line should
be devoted to the study of partial superassociative operations on formula
languages.
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