https://doi.org/10.56415/qrs.v31.22

Weakly $g(x)$-invo-clean rings

Fatemeh Rashedi

Abstract

An associative ring R with identity is a weakly $g(x)$-invo-clean ring if every $r \in R$ can be written as $r=v+s$ or $r=v-s$, where $v^{2}=1$ and s is a root of $g(x) \in C(R)[x]$. It is proved that an associtive ring R is weakly invo-clean and $2^{2}=1$ if and only if R is weakly $\left(x^{2}-2 x\right)$-invo-clean if and only if R is weakly $\left(x^{2}+2 x\right)$-invo-clean.

1. Introduction

Let R be an associative ring with identity. An element v of R is said to be an involution if $v^{2}=1$ and a quasi-involution if either v or $1-v$ is an involution [14]. Let $U(R), \operatorname{Id}(R), \operatorname{Nil}(R), C(R)$ and $\operatorname{Inv}(R)$ will denote respectively the set of units, the set of idempotents, the set of nilpotents, the set of centrals and the set of involutions of R.

The ring R is said to be

- clean if each $r \in R$ can be expressed as $r=u+e$, where $u \in U(R)$ and $e \in \operatorname{Id}(R)[3,15]$,
- weakly clean if each $r \in R$ can be expressed as $r=u+e$ or $r=u-e$, where $u \in U(R)$ and $e \in \operatorname{Id}(R)[1,6,7,13]$.
- $g(x)$-clean if each its element is $g(x)$-clean, i.e. it can be written as the sum of an unit and a root of $g(x) \in C(R)[x][12]$,
- $g(x)$-clean if each element is weakly $g(x)$-clean, i.e. it can be written as s either the sum or difference of an unit and a root of $g(x)$ [4],
- invo-clean if for each $r \in R$ there exist $v \in \operatorname{Inv}(R)$ and $e \in \operatorname{Id}(R)$ such that $r=v+e[8,10]$,
- $g(x)$-invo-clean if for each $r \in R$ there exist $v \in \operatorname{Inv}(R)$ and a root s of $g(x)$ such that $r=v+s$ [11],
- weakly invo-clean if for each $r \in R$ there exist $v \in \operatorname{Inv}(R)$ and $e \in \operatorname{Id}(R)$ such that $r=v+e$ or $r=v-e[9]$.
- weakly $g(x)$-invo-clean if for every $r \in R$ exist $v \in \operatorname{Inv}(R)$ and a root s of $g(x)$ such that $r=v+s$ or $r=v-s$.

We study various properties of weakly $g(x)$-invo-clean rings as a proper generalization of invo-clean rings and a proper subclass of $g(x)$-invo-clean rings.

2. Main results

Simple examples of invo-clean rings that could be plainly verified are these: $\mathbb{Z}_{2}, \mathbb{Z}_{3}$ and \mathbb{Z}_{4}. Oppositely, \mathbb{Z}_{5} is not invo-clean but however they are clean being finite [8].

It is evident that invo-clean rings are weakly invo-clean as this implication is extremely non-reversible by looking quickly at the field \mathbb{Z}_{5}.

Let $R=\mathbb{Z}_{5}$ and $g(x)=x^{5}+4 x \in C(R)[x]$. Then R is $g(x)$-invo-clean.
It is clear that the $\left(x^{2}-x\right)$-weakly invo-clean rings are precisely the weakly invo-clean rings. Obviously, $g(x)$-invo-clean rings are weakly $g(x)$ -invo-clean and also if $g(-x)=-g(x)$ or $g(-x)=g(x)$, then the concepts $g(x)$-invo-clean and weakly $g(x)$-invo-clean coincide.

Every $g(x)$-invo-clean ring is weakly $g(x)$-invo-clean. The following example shows that a weakly $g(x)$-invo-clean ring is neither $g(x)$-invo-clean nor invo-clean ring, in general.

Example 2.1. (i) Let $R=\mathbb{Z}_{5}$ and $g(x)=x^{5}+4 x \in C(R)[x]$. Then $\operatorname{Inv}(R)=\{1,4\}$, and $\operatorname{Root}(g(x))=\{0,2,3,4\}$ and $\operatorname{Id}(R)=\{0,1\}$. Hence \mathbb{Z}_{5} is a weakly $g(x)$-invo-clean ring which is not invo-clean.
(ii) Let $R=\mathbb{Z}_{5}$ and $g(x)=x^{2}-x \in C(R)[x]$. Since R is weakly invo-clean but not invo-clean, R is weakly $g(x)$-invo-clean but not $g(x)$ -invo-clean.
(iii) Let $R=\mathbb{Z}_{7}$ and $g(x)=x^{7}+6 x \in C(R)[x]$. Then $\operatorname{Inv}\left(\mathbb{Z}_{7}\right)=\{0,1,6\}$ and $\operatorname{Root}(g(x))=\{0,2,3,5,6\}, \operatorname{Id}\left(\mathbb{Z}_{7}\right)=\{0,1\}$. Hence \mathbb{Z}_{7} is a weakly $g(x)$ -invo-clean which is not weakly invo-clean.

Proposition 2.2. Let R be a Boolean ring, $|R|>2, c \in R \backslash\{0,1\}$ and $g(x)=(x+1)(x+c)$. Then R is not weakly $g(x)$-invo-clean.

Proof. Suppose that R is not weakly $g(x)$-invo-clean. Hence $c=v+s$ or $c=v-s$ such that $v \in \operatorname{Inv}(R)$ and $g(s)=0$. Since $v \in \operatorname{Inv}(R)$ and R is a Boolean ring, $v=1$. So $s=c-1$ or $s=1-c$. But $g(c-1) \neq 0$ and $g(1-c) \neq 0$. a contradiction. Then R is not weakly $g(x)$-invo-clean.

Let R and S be two rings. Suppose $\phi: C(R) \rightarrow C(S)$ is a ring homomorphism with $\phi\left(1_{R}\right)=1_{S}$. If $g(x)=\sum_{i=0}^{n} r_{i} x^{i} \in C(R)[x]$, we let $g_{\phi}(x):=\sum_{i=0}^{n} \phi\left(r_{i}\right) x^{i} \in C(S)[x]$.

Lemma 2.3. Let R and S be two rings, $\phi: R \rightarrow S$ be a ring epimorphism and $g(x)=\sum_{i=0}^{n} r_{i} x^{i} \in C(R)[x]$. If R is weakly $g(x)$-invo-clean, then S is weakly $g_{\phi}(x)$-invo-clean.

Proof. Suppose that $t \in S$. Since ϕ is a ring epimorphism, there exists $r \in R$ such that $t=\phi(r)$. Since R is weakly $g(x)$-invo-clean, $r=v+s$ or $r=v-s$ such that $v \in \operatorname{Inv}(R)$ and $g(s)=0$. Hence $t=\phi(r)=\phi(v)+\phi(s)$ or $t=\phi(r)=\phi(v)-\phi(s)$. Since $v \in \operatorname{Inv}(R), v^{2}=1$. Hence $(\phi(v))^{2}=1_{S}$, and so $\phi(v) \in \operatorname{Inv}(S)$. Since $g(s)=0, g_{\phi}(\phi(s))=0$. Therefore S is weakly $g_{\phi}(x)$-invo-clean.

Definition 2.4. Let R and S be two rings such that R is weakly $g(x)$-invoclean. If there is an epimorphism $\phi: R \rightarrow S$, then S is called a weakly $\bar{g}(x)$-invo-clean.

Corollary 2.5. Let R and S be two rings. Then the following statements hold.
(i) Let I be an ideal of a weakly $g(x)$-invo-clean ring R. Then R / I is weakly $\bar{g}(x)$-invo-clean.
(ii) Let the upper triangular matrix ring $T_{n}(R)$ is weakly $g(x)$-invo-clean. Then R is weakly $\bar{g}(x)$-invo-clean.

Proof. (i). Suppose that R is weakly $g(x)$-invo-clean. Since $\phi: R \rightarrow R / I$ is an epimorphism, R / I is weakly $\bar{g}(x)$-invo-clean, by Lemma 2.3.
(ii). Let the upper triangular matrix ring $T_{n}(R)$ is weakly $g(x)$-invoclean. Since there exists an epimorphism $\phi: T_{n}(R) \rightarrow R, R$ is weakly $\bar{g}(x)$-invo-clean, by Lemma 2.3.

Lemma 2.6. Let $\left\{R_{i}\right\}_{i=1}^{n}$ be rings, $R=\prod_{i=1}^{n} R_{i}$ and $g(x) \in \mathbb{Z}[x]$. Then R is weakly $g(x)$-invo-clean if and only if there exist $1 \leqslant l \leqslant n$ such that R_{l} is weakly $g(x)$-invo-clean and R_{j} is $g(x)$-invo-clean for all $j \neq l$.

Proof. Suppose that $i \in\{1,2, \ldots, n\}$. Hence R_{i} is weakly $g(x)$-invo-clean, by Lemma 2.3. Assume that neither R_{1} nor R_{2} are $g(x)$-invo-clean. Hence there exist $r_{1} \in R_{1}$ and $r_{2} \in R_{2}$ such that r_{1} is not a sum of an involution
and a root of $g(x)$ and r_{2} is not a difference of an involution and a root of $g(x)$. Then $\left(r_{1}, r_{2}\right) \in R_{1} \times R_{2}$ is not weakly $g(x)$-invo-clean, a contradiction.

Conversely, Suppose that there exist $1 \leqslant l \leqslant n$ such that R_{l} is weakly $g(x)$-invo-clean and R_{j} is $g(x)$-invo-clean for all $j \neq l$. Let $r=\left(r_{i}\right) \in R$. Then there exist $v_{l} \in \operatorname{Inv}(R)$ and a root s_{l} of $g(x)$ such that $r_{l}=v_{l}+s_{l}$ or $r_{l}=v_{l}-s_{l}$. If $r_{l}=v_{l}+s_{l}$, then for each $i \neq l, r_{i}=v_{i}+s_{i}$ such that $v_{i} \in \operatorname{Inv}(R)$ and $g\left(s_{i}\right)=0$. Then $r=\left(v_{i}\right)+\left(s_{i}\right)$ such that $\left(v_{i}\right) \in \operatorname{Inv}(R)$ and $g\left(\left(s_{i}\right)\right)=0$. If $r_{l}=v_{l}-s_{l}$, then for each $i \neq l, r_{i}=v_{i}-s_{i}$ such that $v_{i} \in \operatorname{Inv}(R)$ and $g\left(s_{i}\right)=0$. Then $r=\left(v_{i}\right)-\left(s_{i}\right)$ such that $\left(v_{i}\right) \in \operatorname{Inv}(R)$ and $g\left(\left(s_{i}\right)\right)=0$. Therefore R is weakly $g(x)$-invo-clean.

Let R be a ring with an identity and S be a ring which is an R - R bimodule such that $\left(s_{1} s_{2}\right) r=s_{1}\left(s_{2} r\right),\left(s_{1} r\right) s_{2}=s_{1}\left(r s_{2}\right)$ and $\left(r s_{1}\right) s_{2}=$ $r\left(s_{1} s_{2}\right)$ hold for all $s_{1}, s_{2} \in S$ and $r \in R$. The ideal extension of R by S is defined to be the additive abelian group $I(R, S)=R \oplus S$ with multiplication $\left(r, s_{1}\right)\left(r^{\prime}, s_{2}\right)=\left(r r^{\prime}, r s_{2}+s_{1} r^{\prime}+s_{1} s_{2}\right)$. If $g(x)=\left(r_{0}, s_{0}\right)+\left(r_{1}, s_{1}\right) x+\cdots+$ $\left(r_{n}, s_{n}\right) x^{n} \in C(I(R, S))[x]$, then $g_{R}(x)=r_{0}+r_{1} x+\cdots+r_{n} x^{n} \in C(R)[x]$.

Lemma 2.7. Let R be a ring with an identity and S be a ring which is an R - R-bimodule. If $I(R, S)$ is weakly $g(x)$-invo-clean, then R is weakly $g_{R}(x)$-invo-clean.

Proof. Suppose that $\phi_{R}: I(R, S) \rightarrow R$ by $\phi_{R}(r, s)=r$. Since ϕ_{R} is a ring epimorphism, R is weakly $g_{R}(x)$-invo-clean by Lemma 2.3.

Let R be a ring and $\alpha: R \longrightarrow R$ be a ring endomorphism. The ring $R[[x, \alpha]]$ of skew formal power series over R; that is all formal power series in x with coefficients from R with multiplication defined by $x r=\alpha\left(r_{x}\right)$ for all $r \in R$. It is clear that $R[[x]]=R\left[\left[x, 1_{R}\right]\right]$ and $R[[x, \alpha]] \cong I(R,\langle x\rangle)$ where $\langle x\rangle$ is the ideal generated by x.

Proposition 2.8. Let R be a ring and $\alpha: R \rightarrow R$ be a ring endomorphism. If $R[[x, \alpha]]$ is weakly $g(x)$-invo-clean, then R is weakly $g_{\phi}(x)$-invo-clean such that $\phi: R[[x, \alpha]] \rightarrow R$ is defined by $\phi(f)=f(0)$.

Proof. Suppose that the skew formal power series $R[[x, \alpha]]$ over R is weakly $g(x)$-invo-clean. Since $\phi: R[[x, \alpha]] \longrightarrow R$ is defined by $\phi(f)=f(0)$ is an epimorphism, R is weakly $\bar{g}(x)$-invo-clean, by Lemma 2.3.

Theorem 2.9. Let R be a ring, k be an even positive integer and $a, b \in R$. Then R is weakly $\left(a x^{k}-b x\right)$-invo-clean if and only if R is weakly $\left(a x^{k}+b x\right)$ -invo-clean.

Proof. Assume taht R is weakly $\left(a x^{k}-b x\right)$-invo-clean and $r \in R$. Hence $-r=v \pm s$ where $v \in \operatorname{Inv}(R)$ and $a s^{k}-b s=0$. Then $r=(-v) \pm(-s)$ where $-v \in \operatorname{Inv}(R)$ and $a(-s)^{k}+b(-s)=0$. Therefore R is weakly $\left(a x^{k}+b x\right)-$ invo-clean.

Conversely, assume that R is weakly ($a x^{k}+b x$)-invo-clean and $r \in R$. Hence $-r=v \pm s$ where $v \in \operatorname{Inv}(R)$ and $a s^{k}+b s=0$. Then $r=(-v) \pm(-s)$ where $-v \in \operatorname{Inv}(R)$ and $a(-s)^{k}-b s=0$. Therefore R is weakly $\left(a x^{k}-b x\right)$ -invo-clean.

Theorem 2.9 does not hold for odd powers.
Example 2.10. Let $R=\mathbb{Z}_{5}$. Since $\operatorname{Inv}\left(\mathbb{Z}_{5}\right)=\{1,2\}, \operatorname{Root}\left(x^{5}+4 x\right)=$ $\{0,2,3,4\}$ and $\operatorname{Root}\left(x^{5}-4 x\right)=\{0,2,3,4\}$. Then the ring \mathbb{Z}_{5} is a weakly $\left(x^{5}+4 x\right)$-invo-clean ring which is not weakly $\left(x^{5}-4 x\right)$-invo-clean.

Theorem 2.11. Let R be a ring and $a \in C(R)$. Then R is weakly invoclean and $a \in \operatorname{Inv}(R)$ if and only if R is weakly $x(x-a)$-invo-clean.

Proof. Suppose that R is weakly invo-clean and $a \in \operatorname{Inv}(R)$. Let $r \in R$. Then $r a=v+e$ or $r a=v-e$ for some $v \in \operatorname{Inv}(R)$ and $e \in \operatorname{Id}(R)$. Hence $r=v a+e a$ or $r=v a-e a$. It is clear that $v a \in \operatorname{Inv}(R)$ and $e a$ is a root of $x(x-a)$. Therefore R is weakly $x(x-a)$-invo-clean.

Conversely, assume that R is weakly $x(x-a)$-invo-clean. Write $0=v+s$ or $0=v-s$ where $v \in \operatorname{Inv}(R)$ and $s(s-a)=0$. Hence $s= \pm v \in \operatorname{Inv}(R)$ and $s-a=0$, and so $a \in \operatorname{Inv}(R)$. Suppose that $r \in R$ and write $r a=v+s$ or $r a=v-s$ where $v \in \operatorname{Inv}(R)$ and $s(s-a)=0$. Hence $r=v a+s a$ or $r=v a-s a$ such that $v a \in \operatorname{Inv}(R)$ and

$$
(s a)^{2}=s(s-a+a) a^{2}=s(s-a) a^{2}+s a a^{2}=s a .
$$

Then R is weakly invo-clean.
Corollary 2.12. Let R be a ring and $n \in \mathbb{N}$. Then
(i) R is weakly invo-clean and $2 \in \operatorname{Inv}(R)$,
(ii) R is weakly $\left(x^{2}-2 x\right)$-invo-clean,
(iii) R is weakly $\left(x^{2}+2 x\right)$-invo-clean.

Proof. Follows from Theorems 2.9 and 2.11.

Lemma 2.13. Let R be a commutative ring. Then $R[x]$ is not weaklly $\left(x^{2}-x\right)$-invo-clean.

Proof. Suppose that $R[x]$ is weaklly $\left(x^{2}-x\right)$-invo-clean. Hence $x=v \pm s$ where $v \in \operatorname{Inv}(R[x])$ and s is a root of $x^{2}-x$. Then $x \mp s \in \operatorname{Inv}(R[x])$. So $1 \in \operatorname{Nil}(R)$ by [11, Lemma 3.6], a contradiction.

A Morita context is a 6 -tuple $\mathcal{M}(R, M, K, S, \phi, \psi)$, where R and S are rings, M is an (R, S)-bimodule, K is a (S, R)-bimodule, and $\phi: M \otimes_{S} K \rightarrow$ R and $\psi: K \otimes_{R} M \rightarrow S$ are bimodule homomorphisms such that $T(\mathcal{M})=$ $\left(\begin{array}{cc}R & M \\ K & S\end{array}\right)$ is an associative ring with the obvious matrix operations. The ring $T(\mathcal{M})$ is the Morita context ring associated with \mathcal{M}. For more on Morita context rings see [2, 5, 16, 17]. If $g(x)=\left(\begin{array}{cc}r_{0} & m_{0} \\ k_{0} & s_{0}\end{array}\right)+\left(\begin{array}{cc}r_{1} & m_{1} \\ k_{1} & s_{1}\end{array}\right) x+$ $\cdots+\left(\begin{array}{cc}r_{n} & m_{n} \\ k_{n} & s_{n}\end{array}\right) x^{n} \in C(T(\mathcal{M}))[x]$, then $g_{R}(x)=r_{0}+r_{1} x+\cdots+r_{n} x^{n} \in$ $C(R)[x]$ and $g_{S}(x)=r s_{0}+s_{1} x+\cdots+s_{n} x^{n} \in C(S)[x]$.

Theorem 2.14. Let the Morita context ring $T(\mathcal{M})=\left(\begin{array}{cc}R & M \\ K & S\end{array}\right)$ is weakly $g(x)$-invo-clean with $\phi, \psi=0$. Then R is weakly $g_{R}(x)$-invo-clean and S is weakly $g_{S}(x)$-invo-clean.

Proof. Suppose that $T(\mathcal{M})$ is weakly $g(x)$-invo-clean with $\phi, \psi=0$. Hence $I=\left(\begin{array}{cc}0 & M \\ K & S\end{array}\right)$ and $J=\left(\begin{array}{cc}R & M \\ K & 0\end{array}\right)$ are two ideals of $T(\mathcal{M})$. Since $T(\mathcal{M}) / I \cong$ R and $T(\mathcal{M}) / J \cong S$, the assertion holds by Lemma 2.3.

Corollary 2.15. Let R and S be two rings and M be an (R, S)-bimodule. Let $T=\left(\begin{array}{cc}R & M \\ 0 & S\end{array}\right)$ be the formal triangular matrix ring. If T is weakly $g(x)$-invo clean, then R is weakly $g_{R}(x)$-invo-clean and S is weakly $g_{S}(x)$ -invo-clean.

Proof. Follows from Theorem 2.14.
Corollary 2.16. Let R be a commutative ring and M be an (R, R)-bimodule such that $2 M=0$. Then $T=\left(\begin{array}{cc}R & M \\ 0 & R\end{array}\right)$ is weakly $g(x)$-invo clean if and only if R is weakly $g(x)$-invo-clean.

Proof. Follows from Lemma 2.3 and Corollary 2.15.
We close the article with the following two problems.
Problem 2.17. What is the behaviour of the matrix rings over weakly $g(x)$ invo clean rings?

Problem 2.18. Let R be a weakly $g(x)$-invo clean ring and $e \in \operatorname{Id}(R)$. What is the behaviour of the corner ring eRe?

Acknowledgement. I would like to thank the reviewers for their thoughtful comments and efforts towards improving our manuscript.

References

[1] Ahn, M.Y., Anderson, D.D., Weakly clean rings and almost clean rings, Rocky Mountain J. Math., 36 (2006), 783 - 799.
[2] Amitsur, S.A., Rings of quotients and Morita contexts, J. Algebra, 17 (1971), 273 - 298
[3] Anderson, D.D., Camillo, V.P., Commutative rings whose elements are a sum of a unit and an idempotent, Comm. Algebra, 30 (2002), 3327 - 3336.
[4] Ashrafi, N., Ahmadi, Z., Weakly $g(x)$-clean ring, Iranian J. Math. Sci. and Inform., 7 (2012), 83 - 91 .
[5] Bass, H., The Morita theorems, Mimeographed Notes. University of Oregon, (1962).
[6] Chin, A.Y.M., Qua, K.T., A note on weakly clean rings, Acta Math. Hungr., 132 (2001), 113 - 116.
[7] Danchev, P.V., On weakly clean and weakly exchange rings having the strong property, Publ. L'Institut Math., 101 (2017). 135 - 142.
[8] Danchev, P.V., Invo-clean unital rings, Commun. Korean Math. Soc., 32 (2017), 19 - 27.
[9] Danchev, P.V., Weakly invo-clean unital rings, Africa Math., 28 (20170, 1285-1295.
[10] Danchev, P.V., Corners of invo-clean unital rings, Pure Math. Sci., 7 (2018), 27 - 31.
[11] El Maalmi, M., Mounis, H., On $g(x)$-invo clean rings, Commun. Korean Math. Soc., 35 (2019), $455-468$.
[12] Fan, L., Yang, X., (2008).On rings whose elements are the sum of a unit and a root of a fixed polynomial, Comm. Algebra, 36 (1008), $269-278$.
[13] Kosan, T., Sahinkaya S., Zhou, Y., On weakly clean rings, Comm. Algebra, 45 (2017), 3494 - 3502.
[14] Lam, T.Y., A First Course in Noncommutative Rings, Second Edition, Graduate Texts in Math., Vol. 131, Springer-Verlag, (2001).
[15] Nicholson, W.K., Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1997), $269-278$.
[16] Sands, A.D., Radicals and Morita contexts, J. Algebra, 24 (1973), 335-345.
[17] Tang, G., Li, C., Zhou, Y., Study of Morita contexts, Comm. Algebra, 42 (2014), 1668 - 1681.

Received November 04, 2022
Department of Mathematics
Technical and Vocational University (TVU)
Tehran, Iran
E-mail: frashedi@tvu.ac.ir

