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Right regular triples of semigroups

Csaba Téth

Abstract. Let M(S;A; P) denote a Rees I x A matrix semigroup without zero over
a semigroup S, where I is a singleton. If 65 denotes the kernel of the right regular
representation of a semigroup S, then a triple A, B, C of semigroups is said to be right

regular, if there are mappings A £ Band B X5 C such that M(A; B; P)/Op(a;B;p) =
M(C; B; P'). In this paper we examine right regular triples of semigroups.

1. Introduction and motivation

The notion of right regular triples of semigroups is defined in [19], where
a special type of Rees matrix semigroups without zero over semigroups are
examined. A triple A, B, C of semigroups is said to be right regular, if there
are mappings

AL

such that the factor semigroup M(A; B; P)/0x(a;p;p) is isomorphic to the
semigroup M(C'; B; P"), where Op(4;B;p) 1s the kernel of the right regular
representation of the semigroup M(A; B; P). In [19] it is proved that if
A, B, C are semigroups such that A/04 = B and B/0p = C, then the triple
A, B, C is right regular. There is also an example given for a right regular
triple A, B, C of semigroups such that none of the conditions A/04 =
and B/fp = C are fulfilled. These results motivate us to investigate right
regular triples of semigroups. In this paper we examine the connection
between the structure of semigroups belonging to a right regular triples of
semigroups, and present quite a few examples of right regular triples of
semigroups.
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2. Preliminaires

By a semigroup we mean a multiplicative semigroup, that is, a nonempty
set endowed with an associative multiplication.

A nonempty subset L of a semigroup S is called a left ideal of S if
SL C L. The concept of a right ideal of a semigroup is defined analogously.
A semigroup S is said to be left (resp., right) simple if S itself is the only
left (resp., right) ideal of S. A semigroup S is left (resp., right) simple if
and only if Sa = S (resp., aS = S) for every a € S.

A semigroup S is called left cancellative if xa = xb implies a = b for
every z,a,b € S. A left cancellative and right simple semigroup is called
a right group. A semigroup satisfying the identity ab = b is called a right
zero semigroup. By [2, Theorem 1.27.], a semigroup is a right group if and
only if it is a direct product of a group and a right zero semigroup.

In [6, Theorem 1], it is shown that a semigroup S is embedded in an
idempotent-free left simple semigroup if and only if S is idempotent-free
and satisfies the condition: for all a,b,z,y € S, xa = xb implies ya = yb.
Using the terminology of [16], a semigroup S satisfying this last condition
is called a left equalizer simple semigroup. In other words, a semigroup S is
left equalizer simple if, for arbitrary elements a,b € S, the assumption that
ra = xb is satisfied for some z € S implies that ya = yb is satisfied for all
y € S. By [16, Theorem 2.1], a semigroup S is left equalizer simple if and
only if the factor semigroup S/fg is left cancellative.

A nonempty subset I of a semigroup S is called an ideal of S if I is a
left ideal and a right ideal of S. A semigroup S is called simple if S itself
is the only ideal of S. By [2, Lemma 2.28|, a semigroup S is simple if and
only if SaS = S for every a € S.

Let S be a semigroup and I be an ideal of S. We say that the homo-
morphism ¢ : S+ I is a retract homomorphism [13, Definition 1.44], if it
leaves the elements of I fixed. In this case, I is called a retract ideal of S,
and S is a retract extension of I by the Rees factor semigroup S/I.

A transformation g of a semigroup S is called a right translation of S
if (xy)o = x(yo) is satisfied for every z,y € S. For an arbitrary element a
of a semigroup S, 0, : * — za (z € S) is a right translation of S which is
called an inner right translation of S corresponding to the element a. For
an arbitrary semigroup .S, the mapping ®g : a — 94 is a homomorphism of
S into the semigroup of all right translations of .S. The homomorphism &g
is called the right reqular representation of S. For an arbitrary semigroup
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S, let 6g denote the kernel of ®g. It is clear that (a,b) € Og for elements
a,b € S if and only if za = b for all x € S. A semigroup S is called
left reductive if Og is the identity relation on S. Thus g is faithful if and
only if S is left reductive. The congruence g plays an important role in
the investigation of the structure of the semigroup S. In [4], the author
characterizes semigroups S for which the factor semigroup S/6g is a group.
In [5], semigroups S are characterized for which the factor semigroup S/6g
is a right group. In [15, Theorem 2|, a construction is given which shows
that every semigroup S can be obtained from the factor semigroup S/0g
by using this construction. In [18], the authors study the probability that
two elements which are selected at random with replacement from a finite
semigroup have the same right matrix.

If S is a semigroup, I and A are nonempty sets, and P is a A x I matrix
with entries P(A, 7), then the set M(S; I, A; P) of all triples (i, s, \) € Ix.SX
A is a semigroup under the multiplication (i, s, A)(j, ¢, u) = (i, sP(\, J)t, ).
According to the terminology in [2, §3.1], this semigroup is called a Rees I x
A matriz semigroup without zero over the semigroup S with A x I sandwich
matriz P. In [19], Rees matrix semigroups M(S; I, A; P) without zero over
semigroups S satisfying |I| = 1 are in the focus. In our present paper we
also use such type of Rees matrix semigroups, which will be denoted by
M(S; A; P). In this case the matrix P can be considered as a mapping of A
into S, and so the entries of P will be denoted by P()\). If the element of T
is denoted by 1, then the element (1,s,\) of M(S;A; P) can be considered
in the form (s, \); the operation on M(S; A; P) is (s, \)(t, u) = (sP(N)t, ).

For notations and notions not defined but used in this paper, we refer
the reader to books [2], |9], and [13].

3. Results

Theorem 3.1. If A, B,C is a right reqular triple of semigroups such that
A is right simple, then C is also right simple.

Proof. Assume that A, B,C is a right regular triple of semigroups. Then
there are mappings P : B+ A and P’ : B — C such that

M(A; B; P)/Oa(a:B:p) = M(C; B; P').

Assume that A is right simple. Let (a1, b1), (az,b2) € M(A; B; P) be arbi-
trary elements. Since A is right simple, we have aP(b;)A = A, and so there
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is an element £ € A such that a; P(b1) = a2 and (a1,b1)(&,b2) = (a2, b2).
Hence the Rees matrix semigroup M(A; B; P) is right simple. As every
homomorphic image of a right simple semigroup is right simple, the Rees
matrix semigroup M(C'; B; P’) is right simple. Let ¢, € C be an arbitrary
elements. Then, for any b € B, (¢,b)M(C; B; P') = M(C; B; P'), and so

(Cv b) (u’ U) - (7% b)

for some (u,v) € M(C; B; P"). Hence cP'(b)u = n. Thus ¢C = C for every
c € C. Then C is right simple. O

Theorem 3.2. If A, B,C is a right reqular triple of semigroups such that
A is a right group, then C is also a right group.

Proof. Assume that A, B,C is a right regular triple of semigroups. Then
there are mappings P : B+ A and P’ : B — C such that

M(A; B; P) /0 a;3;p) = M(C; B; P').

Assume that A is a right group, that is, right simple and left cancellative.
By the proof of Theorem 3.1, the semigroups M(A; B; P) and C' are right
simple. Let (a,b), (a1,b1), (az,b2) € M(A; B; P) be arbitrary elements with

(a, b)(al, bl) = (CL, b) (CLQ, bg)
Then
(aP(b)al, bl) = (aP(b)aQ, bz),

that is,
aP(b)ay = aP(b)az and by = bs.

As A is left cancellative, we get a1 = a9, and so
(a1,b1) = (a2, b2).

Hence the semigroup M(A; B; P) is left cancellative. As M(A4; B; P) is also
right simple, it is a right group. From the left cancellativity of M(A; B; P)
it follows that Oq(a;p,p) = tar(4;;p)- Thus the semigroup M(C; B; P') is
left cancellative. Assume xcq; = xcy for elements x,¢1,c0 € C. Let b € B
be arbitrary. As C' is right simple, there are elements u,v € C such that
P(b)u = ¢; and P(b)v = ¢y. Thus

xP(b)u = xP(b)v.
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Then, for an arbitrary b’ € B,
(%,0)(u,b') = (z,b)(v, V)

is satisfied in M(C; B; P). As M(C; B; P) is left cancellative, we get u = v,
from which it follows that ¢; = c3. Hence C is left cancellative. By the
above, C is right simple. Consequently C' is a right group. O

Theorem 3.3. If A, B,C is a right regular triple of semigroups such that
A is simple, then C is also simple.

Proof. Assume that A, B,C is a right regular triple of semigroups. Then
there are mappings P : B+ A and P’ : B — C such that

M(A; B; P) [Opq(a;8,p) = M(C; B; P').

Assume that A is simple. Let (a,b), (u,v) € M(A;B;P) and z € B be
an arbitrary elements. Then AP(z)aP(b)A = A implies that there are ele-
ments &,n € A such that {P(z)aP(b)n = u and so (&, z)(a,b)(n,v) = (u,v).
Hence the Rees matrix semigroup M(A; B; P) is simple. As every homo-
morphic image of a simple semigroup is simple, the Rees matrix semigroup
M(C; B; P') is simple.

Let ¢1,c0 € C and by, by € B be arbitrary elements. Then

M(C; B; P')(c1,01)M(C; B; P') = M(C; B; P'),
and so there are elements (x, ), (y,n) € M(C; B; P') such that

(xP(§)crP(b1)y,n) = (z,8)(c1,b1)(y,n) = (c2,b2).

Hence
zP(§)erP(b)y = ca.
Thus
CcC=C
for every ¢; € C. Then C is simple. O

The next proposition is used in the proof of Theorem 3.5.

Proposition 3.4. Let A be a semigroup, A be an arbitrary nonempty set
and P : A — A is an arbitrary mapping. If A is left equalizer simple, then
the Rees matriz semigroup M(A; A; P) is also left equalizer simple.
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Proof. Suppose that A is a left equalizer simple semigroup, A is a nonempty
set and P : A — A is a mapping. Take (a1,b1), (a2,b2), (a,b) € M(A;A; P).
Suppose that

(a, b)(al, bl) = (a, b) (ag, bg).

This means that
(aP(b)ai,b1) = (aP(b)ag,by) <=  aP(b)a; = aP(b)ay and by = bs.
Since A is left equalizer simple we have that, for all x € A and y € A :
zP(y)ayr = xP(y)az,

hence,
(l‘, y)(ala bl) = (l’, y)(a27 b2)
Thus, M(A; A; P) is a left equalizer simple semigroup. O

Theorem 3.5. Let A, B, C be a right reqular triple of semigroups such that
P' . B — C is surjective. If A is left equalizer simple, then C' is left
cancellative.

Proof. Assume that A, B,C' is a right regular triple of semigroups. Then
there are mappings P : B+ A and P’ : B — C such that

M(A; B; P)/0pqa8,p) = M(C; B; P').

From Proposition 3.4, we have that M(A; B; P) is a left equalizer simple
semigroup, and hence M(C; B; P') is left cancellative by [16, Theorem 2.1].
Now, take x,c1,co € C such that zc; = xcy. Since P’ is surjective, there
exists b € B such that P'(b) = xz. Then P'(b)c; = P'(b)ca. Let ¢ € C be
arbitrary, then

(c,b)(c1,b) = (cP'(b)er, b) = (cP'(b)ea, b) = (¢, b)(ca, b).

Since M(C'; B; P') is left cancellative, (¢1,b) = (co,b), hence ¢; = ¢o. Thus
C is left cancellative. O

Theorem 3.6. Let A, B,C be a right reqular triple of semigroups such
that C' is left commutative. If A is left equalizer simple, then C is left
cancellative.
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Proof. From the proof of Theorem 3.5, we know that M(C'; B; P’) is left
cancellative. Again, take x,c1,co € C such that xc; = xco. Then for
arbitrary b € B,

P'(b)ze; = P'(b)zes.

Since C is left commutative,
2P (b)e; = 2P’ (b)ca,

and then
(z,b)(c1,b) = (x,b)(c2,b).

M(C; B; P') is left cancellative, thus we get ¢; = c2, and that C is left
cancellative. O

Theorem 3.7. Let A, B,C be a right reqular triple of semigroups such that
P : B A is surjective. If A is left reductive, then C is also left reductive.

Proof. Assume that A, B,C is a right regular triple of semigroups. Then
there are mappings P : B+ A and P’ : B — C such that

M(A; B; P) [Opq(a;8,p) = M(C; B; P').

Assume, that A is a left reductive semigroup, (a1,b1), (a2,be) € M(A; B; P)
are elements such that

V(z,y) € M(A;B; P) : (z,y)(a1,b1) = (z,y)(az, ba).

This means that

Since A is left reductive, we get that
Yy € B: P(y)a; = P(y)as.

In this case, P is a surjective mapping, hence using again that A is left
reductive, we have a; = ay. We conclude that (aj,b1) = (ag,bs), and thus
M(A; B; P) is left reductive.

We know, that if S is a left reductive semigroup, then ¢ = 1g. This
means, that M(A; B; P) =2 M(C; B; P'), hence M(C; B; P') is also left re-
ductive.
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Now suppose that c¢1,co € C are such elements, that
Vee C: ccp = ces.
Take two elements, (c1,b), (c2,b) from M(C; B; P'). For arbitrary (z,y) €
M(C; B; P') we have:
(z,y)(c1,b) = (2P (y)er, b) = (2P (y)ez, b) = (2, y)(c2, D).

In the second equality, we used the assumption that Ve € C' : cc; = cea.
Since M(C'; B; P') is left reductive, we have (c1,b) = (¢2,b), and thus ¢; =
co. We conclude that C is left reductive. O

Let A be a semigroup and B be a nonempty set. For a mapping P of
B into A, let ap denote the following relation on A:

ap ={(a1,a2) € Ax A: (Va € A)(Yb € B) aP(b)a; = aP(b)as}.
It is clear that ap is a right congruence on A.

Remark 3.8. It is clear that if P is a mapping of a semigroup B into a
semigroup A such that ap is the identity relation on A, then 6,a.p;p) is
the identity relation on M(A; B; P), and hence the triple A, B, A is right
regular.

Let A, B,C be semigroups and P : B —+ A, P’ : B — C be arbitrary
mappings. We shall say that the triple A, B, C is right regular with respect
to the couple (P, P') if M(A; B; P)/0r(a;;p) = M(C; B; P').

Theorem 3.9. Let A and B be arbitrary semigroups, and P be a mapping of
B into A such that ap is a congruence on A. Then the triple A, B, A/ap is
right reqular with respect to (P, P"), where P’ is defined by P : b+ [P(b)]a,
for every b € B.

Proof. Let ® be the mapping of the Rees matrix semigroup M = M(A; B; P)
onto the Rees matrix semigroup M(A/ap; B; P') defined by

& (a,6) > (alap,b)-
For arbitrary elements (a1,b1), (ag,b2) of M, we have

®((a1,b1)(az,b2)) = ®((a1P(b1)az, b)) = ([a1 P(b1)az]ap, b2) =
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= ([a1]ap [P(b1)laplaz]ap, b2) = ([a1]ap P (b1)]a2]ap, b2) =
= ([a1]ap,b1)([az]ap, b2) = ®((a1,b1))P((az, ba)).

Hence, ® is a homomorphism. It is clear that ® is surjective. We show that
the kernel ker® of ® is the kernel of the right regular representation of M.
For elements (a1, b1) and (ag,b2) of M, the equation

(a’ b) (ala bl) = (av b) (CLQa b2)

is satisfied for every a € A and every b € B if and only if
(aP(b)al, bl) = (aP(b)aQ, bz),

that is
®((a1,b1)) = ((az, b2)).

Thus, ker® = 0;; which proves our theorem. ]

A semigroup satisfying the identity axyb = ayxb is called a medial
semigroup. It is easy to see that if A is a medial semigroup, then, for an
arbitrary semigroup B and an arbirtary mapping of B into A, the right
congruence ap is a congruence on A. Thus we have the following corollary.

Corollary 3.10. Let A be a medial semigroup. Then, for an arbitrary
semigroup B and an arbitrary mapping P of B into A, the triple A, B, A/ap
is right regqular, where P’ is defined in Theorem 3.9.

If o is an arbitrary congruence on a semigroup S, then o* = {(a,b) €
S xS : (Vs € S)(sa,sb) € p} (defined in [16]) is also a congruence on S
which is called the right colon congruence of o.

Remark 3.11. If P is a mapping of a nonempty set B onto a semigroup
A, then ap D 0. If P is surjective, then ap = 6%.

Remark 3.11 and Theorem 3.9 imply the following corollary.

Corollary 3.12. Let A be an ideal of a semigroup B such that there is a
surjective homomorphism P of B onto A. Let P’ denote the mapping of B
onto A/0% defined in the following way: P : b [P(b)le+, for every b € B.
Then the triple A, B, A/07 is right reqular with respect to (P, P’).
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Since the projective homomorphism Py : (a,b) — a of the direct product
A x B of semigroups A and B is surjective, Remark 3.11 and Theorem 3.9
imply the following corollary.

Corollary 3.13. For arbitrary semigroups A and B, the triple A, A x
B, A/0% is right reqular with respect to the couple (Pa,P’), where Py de-
notes the projection homomorphism Py : (a,b) — a and P’ : Ax B — A/6%
is defined by P’ : (a,b) = [a]ey,-

Theorem 3.14. Let A and B be arbitrary semigroups, and ¢ be a map-
ping of A into B such that oy, is a congruence on B. Then the triple
Ax B, A, A/ x B/ay is right reqular with respect to the couple (P4, P’),
where Py is defined by Pa : a — (a,p(a)) and P’ is defined by P’ : a —
(laler s [p(a)]a,)-

Proof. Suppose that (((a1,b1),a2), ((as, b3),as)) € Opr, where

M = M(A x B; A; P4). This means that, for every z,2’ € A and y € B,

((xvy)7$,)((alvb1)va2) = ((l‘,y),$,)((a3,b3),a4) —

= ((z2'a1, yp(2')b1), a2) = ((z2'as, yp(2')bs), as).
The equality holds if and only if

rz'ay = za'as, yo(a' )by = yp(2')bs, as = au,
that is
(a17a3) € 92’ (blab3) € Qp, G2 = a4 (1)

Let ® be the mapping of M(A x B; A; P4) into M(A/0% x B/a; P')
defined by ® : ((a,b),a’) — (([algs, [bla,),a’) for every a,a’ € A and every
b € B. Since

®(((a1,b1),a2)((as, bs), as)) = P((arazas, bip(az)bs), as) =

= (([a12a3py,, brp(a2)bslap ), as) = (([aaley, [0r]a, ), a2)([asley,, (b3l ), aa)
= ®(((a1,b1),a2))®(((as, b3), as))

for every a1, a9, as,aq4 € A and by, b3 € B, ® is a homomorphism. It is clear
that ® is a surjective.

Since (((a1,b1),a2), ((as,b3),a4)) € ker® if and only if all three conditions
in (1) are satisfied, we have ker® = ), and this proves our theorem. [



Right regular triples of semigroups 303

If o : A+ B defined in Theorem 3.14 is surjective, then o, = 0% by
Remark 3.11, and thus we have the following corollaries:

Corollary 3.15. Let A and B be semigroups, and o be a surjective mapping
of A onto B. Then the triple A x B, A, A/0% x B/0% is right regular with
respect to the couple (Pa, P'), where Py is defined by Py : a — (a,p(a))
and P' is defined by P': a — ([a]gs, [p(a)]ez,)-

Corollary 3.16. Let A be a semigroup, and B be a retract ideal of A. Let ¢
be a retract homomorphism of A onto B. Then the triple Ax B, A, A/§% x
B/03; is right reqular with respect to the couple (Pa, P'), where Py is defined
by Pa:a— (a,p(a)) and P is defined by P’ : a — ([a]gs, [p(a)]ey,)-

If B is an ideal of a semigroup A such that B is a group, then pp: A —
B defined by pp(a) = ae (a € A) is a retract homomorphism of A onto B,
where e denotes the identity element of the group B.

Corollary 3.17. Let A be a semigroup and B be an ideal of A such that B
is a group. Then the triple Ax B, A, A/0% x B is right reqular with respect
to the couple (Pa, P'), where Pa is defined by Pa : a — (a,pp(a)) and P’
is defined by P' : a — ([ale+, pp(a)); here pp denotes the above surjective
homomorphism of A onto B.
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