Right regular triples of semigroups

Csaba Tóth

Abstract

Let $\mathcal{M}(S ; \Lambda ; P)$ denote a Rees $I \times \Lambda$ matrix semigroup without zero over a semigroup S, where I is a singleton. If θ_{S} denotes the kernel of the right regular representation of a semigroup S, then a triple A, B, C of semigroups is said to be right regular, if there are mappings $A \stackrel{P}{\longleftarrow} B$ and $B \xrightarrow{P^{\prime}} C$ such that $\mathcal{M}(A ; B ; P) / \theta_{\mathcal{M}(A ; B ; P)} \cong$ $\mathcal{M}\left(C ; B ; P^{\prime}\right)$. In this paper we examine right regular triples of semigroups.

1. Introduction and motivation

The notion of right regular triples of semigroups is defined in [19], where a special type of Rees matrix semigroups without zero over semigroups are examined. A triple A, B, C of semigroups is said to be right regular, if there are mappings

$$
A \stackrel{P}{\leftarrow} B \xrightarrow{P^{\prime}} C
$$

such that the factor semigroup $\mathcal{M}(A ; B ; P) / \theta_{\mathcal{M}(A ; B ; P)}$ is isomorphic to the semigroup $\mathcal{M}\left(C ; B ; P^{\prime}\right)$, where $\theta_{\mathcal{M}(A ; B ; P)}$ is the kernel of the right regular representation of the semigroup $\mathcal{M}(A ; B ; P)$. In [19] it is proved that if A, B, C are semigroups such that $A / \theta_{A} \cong B$ and $B / \theta_{B} \cong C$, then the triple A, B, C is right regular. There is also an example given for a right regular triple A, B, C of semigroups such that none of the conditions $A / \theta_{A} \cong B$ and $B / \theta_{B} \cong C$ are fulfilled. These results motivate us to investigate right regular triples of semigroups. In this paper we examine the connection between the structure of semigroups belonging to a right regular triples of semigroups, and present quite a few examples of right regular triples of semigroups.

[^0]Keywords: semigroup, congruence, Rees matrix semigroup

2. Preliminaires

By a semigroup we mean a multiplicative semigroup, that is, a nonempty set endowed with an associative multiplication.

A nonempty subset L of a semigroup S is called a left ideal of S if $S L \subseteq L$. The concept of a right ideal of a semigroup is defined analogously. A semigroup S is said to be left (resp., right) simple if S itself is the only left (resp., right) ideal of S. A semigroup S is left (resp., right) simple if and only if $S a=S$ (resp., $a S=S$) for every $a \in S$.

A semigroup S is called left cancellative if $x a=x b$ implies $a=b$ for every $x, a, b \in S$. A left cancellative and right simple semigroup is called a right group. A semigroup satisfying the identity $a b=b$ is called a right zero semigroup. By [2, Theorem 1.27.], a semigroup is a right group if and only if it is a direct product of a group and a right zero semigroup.

In $[6$, Theorem 1] , it is shown that a semigroup S is embedded in an idempotent-free left simple semigroup if and only if S is idempotent-free and satisfies the condition: for all $a, b, x, y \in S, x a=x b$ implies $y a=y b$. Using the terminology of [16], a semigroup S satisfying this last condition is called a left equalizer simple semigroup. In other words, a semigroup S is left equalizer simple if, for arbitrary elements $a, b \in S$, the assumption that $x a=x b$ is satisfied for some $x \in S$ implies that $y a=y b$ is satisfied for all $y \in S$. By [16, Theorem 2.1], a semigroup S is left equalizer simple if and only if the factor semigroup S / θ_{S} is left cancellative.

A nonempty subset I of a semigroup S is called an ideal of S if I is a left ideal and a right ideal of S. A semigroup S is called simple if S itself is the only ideal of S. By [2, Lemma 2.28], a semigroup S is simple if and only if $S a S=S$ for every $a \in S$.

Let S be a semigroup and I be an ideal of S. We say that the homomorphism $\varphi: S \mapsto I$ is a retract homomorphism [13, Definition 1.44], if it leaves the elements of I fixed. In this case, I is called a retract ideal of S, and S is a retract extension of I by the Rees factor semigroup S / I.

A transformation ϱ of a semigroup S is called a right translation of S if $(x y) \varrho=x(y \varrho)$ is satisfied for every $x, y \in S$. For an arbitrary element a of a semigroup $S, \varrho_{a}: x \mapsto x a(x \in S)$ is a right translation of S which is called an inner right translation of S corresponding to the element a. For an arbitrary semigroup S, the mapping $\Phi_{S}: a \mapsto \varrho_{a}$ is a homomorphism of S into the semigroup of all right translations of S. The homomorphism Φ_{S} is called the right regular representation of S. For an arbitrary semigroup
S, let θ_{S} denote the kernel of Φ_{S}. It is clear that $(a, b) \in \theta_{S}$ for elements $a, b \in S$ if and only if $x a=x b$ for all $x \in S$. A semigroup S is called left reductive if θ_{S} is the identity relation on S. Thus θ_{S} is faithful if and only if S is left reductive. The congruence θ_{S} plays an important role in the investigation of the structure of the semigroup S. In [4], the author characterizes semigroups S for which the factor semigroup S / θ_{S} is a group. In [5], semigroups S are characterized for which the factor semigroup S / θ_{S} is a right group. In [15, Theorem 2], a construction is given which shows that every semigroup S can be obtained from the factor semigroup S / θ_{S} by using this construction. In [18], the authors study the probability that two elements which are selected at random with replacement from a finite semigroup have the same right matrix.

If S is a semigroup, I and Λ are nonempty sets, and P is a $\Lambda \times I$ matrix with entries $P(\lambda, i)$, then the set $\mathcal{M}(S ; I, \Lambda ; P)$ of all triples $(i, s, \lambda) \in I \times S \times$ Λ is a semigroup under the multiplication $(i, s, \lambda)(j, t, \mu)=(i, s P(\lambda, j) t, \mu)$. According to the terminology in [2, §3.1], this semigroup is called a Rees $I \times$ Λ matrix semigroup without zero over the semigroup S with $\Lambda \times I$ sandwich matrix P. In [19], Rees matrix semigroups $\mathcal{M}(S ; I, \Lambda ; P)$ without zero over semigroups S satisfying $|I|=1$ are in the focus. In our present paper we also use such type of Rees matrix semigroups, which will be denoted by $\mathcal{M}(S ; \Lambda ; P)$. In this case the matrix P can be considered as a mapping of Λ into S, and so the entries of P will be denoted by $P(\lambda)$. If the element of I is denoted by 1 , then the element $(1, s, \lambda)$ of $\mathcal{M}(S ; \Lambda ; P)$ can be considered in the form (s, λ); the operation on $\mathcal{M}(S ; \Lambda ; P)$ is $(s, \lambda)(t, \mu)=(s P(\lambda) t, \mu)$.

For notations and notions not defined but used in this paper, we refer the reader to books [2], [9], and [13].

3. Results

Theorem 3.1. If A, B, C is a right regular triple of semigroups such that A is right simple, then C is also right simple.

Proof. Assume that A, B, C is a right regular triple of semigroups. Then there are mappings $P: B \mapsto A$ and $P^{\prime}: B \mapsto C$ such that

$$
\mathcal{M}(A ; B ; P) / \theta_{\mathcal{M}(A ; B ; P)} \cong \mathcal{M}\left(C ; B ; P^{\prime}\right)
$$

Assume that A is right simple. Let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in \mathcal{M}(A ; B ; P)$ be arbitrary elements. Since A is right simple, we have $a P\left(b_{1}\right) A=A$, and so there
is an element $\xi \in A$ such that $a_{1} P\left(b_{1}\right) \xi=a_{2}$ and $\left(a_{1}, b_{1}\right)\left(\xi, b_{2}\right)=\left(a_{2}, b_{2}\right)$. Hence the Rees matrix semigroup $\mathcal{M}(A ; B ; P)$ is right simple. As every homomorphic image of a right simple semigroup is right simple, the Rees matrix semigroup $\mathcal{M}\left(C ; B ; P^{\prime}\right)$ is right simple. Let $c, \eta \in C$ be an arbitrary elements. Then, for any $b \in B,(c, b) \mathcal{M}\left(C ; B ; P^{\prime}\right)=\mathcal{M}\left(C ; B ; P^{\prime}\right)$, and so

$$
(c, b)(u, v)=(\eta, b)
$$

for some $(u, v) \in \mathcal{M}\left(C ; B ; P^{\prime}\right)$. Hence $c P^{\prime}(b) u=\eta$. Thus $c C=C$ for every $c \in C$. Then C is right simple.

Theorem 3.2. If A, B, C is a right regular triple of semigroups such that A is a right group, then C is also a right group.

Proof. Assume that A, B, C is a right regular triple of semigroups. Then there are mappings $P: B \mapsto A$ and $P^{\prime}: B \mapsto C$ such that

$$
\mathcal{M}(A ; B ; P) / \theta_{\mathcal{M}(A ; B ; P)} \cong \mathcal{M}\left(C ; B ; P^{\prime}\right) .
$$

Assume that A is a right group, that is, right simple and left cancellative. By the proof of Theorem 3.1, the semigroups $\mathcal{M}(A ; B ; P)$ and C are right simple. Let $(a, b),\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in \mathcal{M}(A ; B ; P)$ be arbitrary elements with

$$
(a, b)\left(a_{1}, b_{1}\right)=(a, b)\left(a_{2}, b_{2}\right) .
$$

Then

$$
\left(a P(b) a_{1}, b_{1}\right)=\left(a P(b) a_{2}, b_{2}\right),
$$

that is,

$$
a P(b) a_{1}=a P(b) a_{2} \quad \text { and } \quad b_{1}=b_{2} .
$$

As A is left cancellative, we get $a_{1}=a_{2}$, and so

$$
\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right) .
$$

Hence the semigroup $\mathcal{M}(A ; B ; P)$ is left cancellative. As $\mathcal{M}(A ; B ; P)$ is also right simple, it is a right group. From the left cancellativity of $\mathcal{M}(A ; B ; P)$ it follows that $\theta_{\mathcal{M}(A ; B ; P)}=\iota_{\mathcal{M}(A ; B ; P)}$. Thus the semigroup $\mathcal{M}\left(C ; B ; P^{\prime}\right)$ is left cancellative. Assume $x c_{1}=x c_{2}$ for elements $x, c_{1}, c_{2} \in C$. Let $b \in B$ be arbitrary. As C is right simple, there are elements $u, v \in C$ such that $P(b) u=c_{1}$ and $P(b) v=c_{2}$. Thus

$$
x P(b) u=x P(b) v .
$$

Then, for an arbitrary $b^{\prime} \in B$,

$$
(x, b)\left(u, b^{\prime}\right)=(x, b)\left(v, b^{\prime}\right)
$$

is satisfied in $\mathcal{M}(C ; B ; P)$. As $\mathcal{M}(C ; B ; P)$ is left cancellative, we get $u=v$, from which it follows that $c_{1}=c_{2}$. Hence C is left cancellative. By the above, C is right simple. Consequently C is a right group.

Theorem 3.3. If A, B, C is a right regular triple of semigroups such that A is simple, then C is also simple.

Proof. Assume that A, B, C is a right regular triple of semigroups. Then there are mappings $P: B \mapsto A$ and $P^{\prime}: B \mapsto C$ such that

$$
\mathcal{M}(A ; B ; P) / \theta_{\mathcal{M}(A ; B ; P)} \cong \mathcal{M}\left(C ; B ; P^{\prime}\right)
$$

Assume that A is simple. Let $(a, b),(u, v) \in \mathcal{M}(A ; B ; P)$ and $z \in B$ be an arbitrary elements. Then $A P(z) a P(b) A=A$ implies that there are elements $\xi, \eta \in A$ such that $\xi P(z) a P(b) \eta=u$ and so $(\xi, z)(a, b)(\eta, v)=(u, v)$. Hence the Rees matrix semigroup $\mathcal{M}(A ; B ; P)$ is simple. As every homomorphic image of a simple semigroup is simple, the Rees matrix semigroup $\mathcal{M}\left(C ; B ; P^{\prime}\right)$ is simple.

Let $c_{1}, c_{2} \in C$ and $b_{1}, b_{2} \in B$ be arbitrary elements. Then

$$
\mathcal{M}\left(C ; B ; P^{\prime}\right)\left(c_{1}, b_{1}\right) \mathcal{M}\left(C ; B ; P^{\prime}\right)=\mathcal{M}\left(C ; B ; P^{\prime}\right),
$$

and so there are elements $(x, \xi),(y, \eta) \in \mathcal{M}\left(C ; B ; P^{\prime}\right)$ such that

$$
\left(x P(\xi) c_{1} P\left(b_{1}\right) y, \eta\right)=(x, \xi)\left(c_{1}, b_{1}\right)(y, \eta)=\left(c_{2}, b_{2}\right) .
$$

Hence

$$
x P(\xi) c_{1} P\left(b_{1}\right) y=c_{2} .
$$

Thus

$$
C c_{1} C=C
$$

for every $c_{1} \in C$. Then C is simple.
The next proposition is used in the proof of Theorem 3.5.
Proposition 3.4. Let A be a semigroup, Λ be an arbitrary nonempty set and $P: \Lambda \mapsto A$ is an arbitrary mapping. If A is left equalizer simple, then the Rees matrix semigroup $\mathcal{M}(A ; \Lambda ; P)$ is also left equalizer simple.

Proof. Suppose that A is a left equalizer simple semigroup, Λ is a nonempty set and $P: \Lambda \mapsto A$ is a mapping. Take $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),(a, b) \in \mathcal{M}(A ; \Lambda ; P)$.
Suppose that

$$
(a, b)\left(a_{1}, b_{1}\right)=(a, b)\left(a_{2}, b_{2}\right)
$$

This means that

$$
\left(a P(b) a_{1}, b_{1}\right)=\left(a P(b) a_{2}, b_{2}\right) \quad \Longleftrightarrow \quad a P(b) a_{1}=a P(b) a_{2} \text { and } b_{1}=b_{2} .
$$

Since A is left equalizer simple we have that, for all $x \in A$ and $y \in \Lambda$:

$$
x P(y) a_{1}=x P(y) a_{2}
$$

hence,

$$
(x, y)\left(a_{1}, b_{1}\right)=(x, y)\left(a_{2}, b_{2}\right)
$$

Thus, $\mathcal{M}(A ; \Lambda ; P)$ is a left equalizer simple semigroup.
Theorem 3.5. Let A, B, C be a right regular triple of semigroups such that $P^{\prime}: B \mapsto C$ is surjective. If A is left equalizer simple, then C is left cancellative.

Proof. Assume that A, B, C is a right regular triple of semigroups. Then there are mappings $P: B \mapsto A$ and $P^{\prime}: B \mapsto C$ such that

$$
\mathcal{M}(A ; B ; P) / \theta_{\mathcal{M}(A ; B ; P)} \cong \mathcal{M}\left(C ; B ; P^{\prime}\right)
$$

From Proposition 3.4, we have that $\mathcal{M}(A ; B ; P)$ is a left equalizer simple semigroup, and hence $\mathcal{M}\left(C ; B ; P^{\prime}\right)$ is left cancellative by [16, Theorem 2.1]. Now, take $x, c_{1}, c_{2} \in C$ such that $x c_{1}=x c_{2}$. Since P^{\prime} is surjective, there exists $b \in B$ such that $P^{\prime}(b)=x$. Then $P^{\prime}(b) c_{1}=P^{\prime}(b) c_{2}$. Let $c \in C$ be arbitrary, then

$$
(c, b)\left(c_{1}, b\right)=\left(c P^{\prime}(b) c_{1}, b\right)=\left(c P^{\prime}(b) c_{2}, b\right)=(c, b)\left(c_{2}, b\right)
$$

Since $\mathcal{M}\left(C ; B ; P^{\prime}\right)$ is left cancellative, $\left(c_{1}, b\right)=\left(c_{2}, b\right)$, hence $c_{1}=c_{2}$. Thus C is left cancellative.

Theorem 3.6. Let A, B, C be a right regular triple of semigroups such that C is left commutative. If A is left equalizer simple, then C is left cancellative.

Proof. From the proof of Theorem 3.5, we know that $\mathcal{M}\left(C ; B ; P^{\prime}\right)$ is left cancellative. Again, take $x, c_{1}, c_{2} \in C$ such that $x c_{1}=x c_{2}$. Then for arbitrary $b \in B$,

$$
P^{\prime}(b) x c_{1}=P^{\prime}(b) x c_{2} .
$$

Since C is left commutative,

$$
x P^{\prime}(b) c_{1}=x P^{\prime}(b) c_{2},
$$

and then

$$
(x, b)\left(c_{1}, b\right)=(x, b)\left(c_{2}, b\right) .
$$

$\mathcal{M}\left(C ; B ; P^{\prime}\right)$ is left cancellative, thus we get $c_{1}=c_{2}$, and that C is left cancellative.

Theorem 3.7. Let A, B, C be a right regular triple of semigroups such that $P: B \mapsto A$ is surjective. If A is left reductive, then C is also left reductive.

Proof. Assume that A, B, C is a right regular triple of semigroups. Then there are mappings $P: B \mapsto A$ and $P^{\prime}: B \mapsto C$ such that

$$
\mathcal{M}(A ; B ; P) / \theta_{\mathcal{M}(A ; B ; P)} \cong \mathcal{M}\left(C ; B ; P^{\prime}\right) .
$$

Assume, that A is a left reductive semigroup, $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in \mathcal{M}(A ; B ; P)$ are elements such that

$$
\forall(x, y) \in \mathcal{M}(A ; B ; P):(x, y)\left(a_{1}, b_{1}\right)=(x, y)\left(a_{2}, b_{2}\right) .
$$

This means that

$$
x P(y) a_{1}=x P(y) a_{2} \quad \text { and } \quad b_{1}=b_{2} .
$$

Since A is left reductive, we get that

$$
\forall y \in B: P(y) a_{1}=P(y) a_{2} .
$$

In this case, P is a surjective mapping, hence using again that A is left reductive, we have $a_{1}=a_{2}$. We conclude that $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right)$, and thus $\mathcal{M}(A ; B ; P)$ is left reductive.

We know, that if S is a left reductive semigroup, then $\theta_{S}=\iota_{S}$. This means, that $\mathcal{M}(A ; B ; P) \cong \mathcal{M}\left(C ; B ; P^{\prime}\right)$, hence $\mathcal{M}\left(C ; B ; P^{\prime}\right)$ is also left reductive.

Now suppose that $c_{1}, c_{2} \in C$ are such elements, that

$$
\forall c \in C: c c_{1}=c c_{2} .
$$

Take two elements, $\left(c_{1}, b\right),\left(c_{2}, b\right)$ from $\mathcal{M}\left(C ; B ; P^{\prime}\right)$. For arbitrary $(x, y) \in$ $\mathcal{M}\left(C ; B ; P^{\prime}\right)$ we have:

$$
(x, y)\left(c_{1}, b\right)=\left(x P^{\prime}(y) c_{1}, b\right)=\left(x P^{\prime}(y) c_{2}, b\right)=(x, y)\left(c_{2}, b\right) .
$$

In the second equality, we used the assumption that $\forall c \in C: c c_{1}=c c_{2}$. Since $\mathcal{M}\left(C ; B ; P^{\prime}\right)$ is left reductive, we have $\left(c_{1}, b\right)=\left(c_{2}, b\right)$, and thus $c_{1}=$ c_{2}. We conclude that C is left reductive.

Let A be a semigroup and B be a nonempty set. For a mapping P of B into A, let α_{P} denote the following relation on A :

$$
\alpha_{P}=\left\{\left(a_{1}, a_{2}\right) \in A \times A:(\forall a \in A)(\forall b \in B) a P(b) a_{1}=a P(b) a_{2}\right\} .
$$

It is clear that α_{P} is a right congruence on A.
Remark 3.8. It is clear that if P is a mapping of a semigroup B into a semigroup A such that α_{P} is the identity relation on A, then $\theta_{\mathcal{M}(A ; B ; P)}$ is the identity relation on $\mathcal{M}(A ; B ; P)$, and hence the triple A, B, A is right regular.

Let A, B, C be semigroups and $P: B \rightarrow A, P^{\prime}: B \rightarrow C$ be arbitrary mappings. We shall say that the triple A, B, C is right regular with respect to the couple $\left(P, P^{\prime}\right)$ if $\mathcal{M}(A ; B ; P) / \theta_{\mathcal{M}(A ; B ; P)} \cong \mathcal{M}\left(C ; B ; P^{\prime}\right)$.

Theorem 3.9. Let A and B be arbitrary semigroups, and P be a mapping of B into A such that α_{P} is a congruence on A. Then the triple $A, B, A / \alpha_{P}$ is right regular with respect to $\left(P, P^{\prime}\right)$, where P^{\prime} is defined by $P^{\prime}: b \mapsto[P(b)]_{\alpha_{P}}$ for every $b \in B$.
Proof. Let Φ be the mapping of the Rees matrix semigroup $M=\mathcal{M}(A ; B ; P)$ onto the Rees matrix semigroup $\mathcal{M}\left(A / \alpha_{P} ; B ; P^{\prime}\right)$ defined by

$$
\Phi:(a, b) \mapsto\left([a]_{\alpha_{P}}, b\right) .
$$

For arbitrary elements $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)$ of M, we have

$$
\Phi\left(\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)\right)=\Phi\left(\left(a_{1} P\left(b_{1}\right) a_{2}, b_{2}\right)\right)=\left(\left[a_{1} P\left(b_{1}\right) a_{2}\right]_{\alpha_{P}}, b_{2}\right)=
$$

$$
\begin{gathered}
=\left(\left[a_{1}\right]_{\alpha_{P}}\left[P\left(b_{1}\right)\right]_{\alpha_{P}}\left[a_{2}\right]_{\alpha_{P}}, b_{2}\right)=\left(\left[a_{1}\right]_{\alpha_{P}} P^{\prime}\left(b_{1}\right)\left[a_{2}\right]_{\alpha_{P}}, b_{2}\right)= \\
=\left(\left[a_{1}\right]_{\alpha_{P}}, b_{1}\right)\left(\left[a_{2}\right]_{\alpha_{P}}, b_{2}\right)=\Phi\left(\left(a_{1}, b_{1}\right)\right) \Phi\left(\left(a_{2}, b_{2}\right)\right)
\end{gathered}
$$

Hence, Φ is a homomorphism. It is clear that Φ is surjective. We show that the kernel $\operatorname{ker} \Phi$ of Φ is the kernel of the right regular representation of M. For elements $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ of M, the equation

$$
(a, b)\left(a_{1}, b_{1}\right)=(a, b)\left(a_{2}, b_{2}\right)
$$

is satisfied for every $a \in A$ and every $b \in B$ if and only if

$$
\left(a P(b) a_{1}, b_{1}\right)=\left(a P(b) a_{2}, b_{2}\right)
$$

that is

$$
\Phi\left(\left(a_{1}, b_{1}\right)\right)=\Phi\left(\left(a_{2}, b_{2}\right)\right)
$$

Thus, $\operatorname{ker} \Phi=\theta_{M}$ which proves our theorem.

A semigroup satisfying the identity $a x y b=a y x b$ is called a medial semigroup. It is easy to see that if A is a medial semigroup, then, for an arbitrary semigroup B and an arbirtary mapping of B into A, the right congruence α_{P} is a congruence on A. Thus we have the following corollary.

Corollary 3.10. Let A be a medial semigroup. Then, for an arbitrary semigroup B and an arbitrary mapping P of B into A, the triple $A, B, A / \alpha_{P}$ is right regular, where P^{\prime} is defined in Theorem 3.9.

If ϱ is an arbitrary congruence on a semigroup S, then $\varrho^{*}=\{(a, b) \in$ $S \times S:(\forall s \in S)(s a, s b) \in \varrho\}$ (defined in [16]) is also a congruence on S which is called the right colon congruence of ϱ.

Remark 3.11. If P is a mapping of a nonempty set B onto a semigroup A, then $\alpha_{P} \supseteq \theta_{A}^{*}$. If P is surjective, then $\alpha_{P}=\theta_{A}^{*}$.

Remark 3.11 and Theorem 3.9 imply the following corollary.
Corollary 3.12. Let A be an ideal of a semigroup B such that there is a surjective homomorphism P of B onto A. Let P^{\prime} denote the mapping of B onto A / θ_{A}^{*} defined in the following way: $P^{\prime}: b \mapsto[P(b)]_{\theta_{A}^{*}}$ for every $b \in B$. Then the triple $A, B, A / \theta_{A}^{*}$ is right regular with respect to $\left(P, P^{\prime}\right)$.

Since the projective homomorphism $P_{A}:(a, b) \mapsto a$ of the direct product $A \times B$ of semigroups A and B is surjective, Remark 3.11 and Theorem 3.9 imply the following corollary.

Corollary 3.13. For arbitrary semigroups A and B, the triple $A, A \times$ $B, A / \theta_{A}^{*}$ is right regular with respect to the couple $\left(P_{A}, P^{\prime}\right)$, where P_{A} denotes the projection homomorphism $P_{A}:(a, b) \mapsto a$ and $P^{\prime}: A \times B \rightarrow A / \theta_{A}^{*}$ is defined by $P^{\prime}:(a, b) \mapsto[a]_{\theta_{A}^{*}}$.

Theorem 3.14. Let A and B be arbitrary semigroups, and φ be a mapping of A into B such that α_{φ} is a congruence on B. Then the triple $A \times B, A, A / \theta_{A}^{*} \times B / \alpha_{\varphi}$ is right regular with respect to the couple $\left(P_{A}, P^{\prime}\right)$, where P_{A} is defined by $P_{A}: a \mapsto(a, \varphi(a))$ and P^{\prime} is defined by $P^{\prime}: a \mapsto$ $\left([a]_{\theta_{A}^{*}},[\varphi(a)]_{\alpha_{\varphi}}\right)$.

Proof. Suppose that $\left(\left(\left(a_{1}, b_{1}\right), a_{2}\right),\left(\left(a_{3}, b_{3}\right), a_{4}\right)\right) \in \theta_{M}$, where $M=\mathcal{M}\left(A \times B ; A ; P_{A}\right)$. This means that, for every $x, x^{\prime} \in A$ and $y \in B$,

$$
\begin{aligned}
& \left((x, y), x^{\prime}\right)\left(\left(a_{1}, b_{1}\right), a_{2}\right)=\left((x, y), x^{\prime}\right)\left(\left(a_{3}, b_{3}\right), a_{4}\right) \Longleftrightarrow \\
& \Longleftrightarrow\left(\left(x x^{\prime} a_{1}, y \varphi\left(x^{\prime}\right) b_{1}\right), a_{2}\right)=\left(\left(x x^{\prime} a_{3}, y \varphi\left(x^{\prime}\right) b_{3}\right), a_{4}\right) .
\end{aligned}
$$

The equality holds if and only if

$$
x x^{\prime} a_{1}=x x^{\prime} a_{3}, \quad y \varphi\left(x^{\prime}\right) b_{1}=y \varphi\left(x^{\prime}\right) b_{3}, \quad a_{2}=a_{4},
$$

that is

$$
\begin{equation*}
\left(a_{1}, a_{3}\right) \in \theta_{A}^{*}, \quad\left(b_{1}, b_{3}\right) \in \alpha_{\varphi}, \quad a_{2}=a_{4} \tag{1}
\end{equation*}
$$

Let Φ be the mapping of $\mathcal{M}\left(A \times B ; A ; P_{A}\right)$ into $\mathcal{M}\left(A / \theta_{A}^{*} \times B / \alpha_{\varphi} ; P^{\prime}\right)$ defined by $\Phi:\left((a, b), a^{\prime}\right) \mapsto\left(\left([a]_{\theta_{A}^{*}},[b]_{\alpha_{\varphi}}\right), a^{\prime}\right)$ for every $a, a^{\prime} \in A$ and every $b \in B$. Since

$$
\begin{gathered}
\Phi\left(\left(\left(a_{1}, b_{1}\right), a_{2}\right)\left(\left(a_{3}, b_{3}\right), a_{4}\right)\right)=\Phi\left(\left(a_{1} a_{2} a_{3}, b_{1} \varphi\left(a_{2}\right) b_{3}\right), a_{4}\right)= \\
=\left(\left(\left[a_{1} a_{2} a_{3}\right]_{\theta_{A}^{*}},\left[b_{1} \varphi\left(a_{2}\right) b_{3}\right]_{\alpha_{P}}\right), a_{4}\right)=\left(\left(\left[a_{1}\right]_{\theta_{A}^{*}},\left[b_{1}\right]_{\alpha_{\varphi}}\right), a_{2}\right)\left(\left(\left[a_{3}\right]_{A A}^{*},\left[b_{3}\right]_{\alpha_{\varphi}}\right), a_{4}\right)= \\
=\Phi\left(\left(\left(a_{1}, b_{1}\right), a_{2}\right)\right) \Phi\left(\left(\left(a_{3}, b_{3}\right), a_{4}\right)\right)
\end{gathered}
$$

for every $a_{1}, a_{2}, a_{3}, a_{4} \in A$ and $b_{1}, b_{3} \in B, \Phi$ is a homomorphism. It is clear that Φ is a surjective.
Since $\left(\left(\left(a_{1}, b_{1}\right), a_{2}\right),\left(\left(a_{3}, b_{3}\right), a_{4}\right)\right) \in \operatorname{ker} \Phi$ if and only if all three conditions in (1) are satisfied, we have $\operatorname{ker} \Phi=\theta_{M}$ and this proves our theorem.

If $\varphi: A \mapsto B$ defined in Theorem 3.14 is surjective, then $\alpha_{\varphi}=\theta_{B}^{*}$ by Remark 3.11, and thus we have the following corollaries:

Corollary 3.15. Let A and B be semigroups, and φ be a surjective mapping of A onto B. Then the triple $A \times B, A, A / \theta_{A}^{*} \times B / \theta_{B}^{*}$ is right regular with respect to the couple $\left(P_{A}, P^{\prime}\right)$, where P_{A} is defined by $P_{A}: a \mapsto(a, \varphi(a))$ and P^{\prime} is defined by $P^{\prime}: a \mapsto\left([a]_{\theta_{A}^{*}},[\varphi(a)]_{\theta_{B}^{*}}\right)$.

Corollary 3.16. Let A be a semigroup, and B be a retract ideal of A. Let φ be a retract homomorphism of A onto B. Then the triple $A \times B, A, A / \theta_{A}^{*} \times$ B / θ_{B}^{*} is right regular with respect to the couple $\left(P_{A}, P^{\prime}\right)$, where P_{A} is defined by $P_{A}: a \mapsto(a, \varphi(a))$ and P^{\prime} is defined by $P^{\prime}: a \mapsto\left([a]_{\theta_{A}^{*}},[\varphi(a)]_{\theta_{B}^{*}}\right)$.

If B is an ideal of a semigroup A such that B is a group, then $\varphi_{B}: A \rightarrow$ B defined by $\varphi_{B}(a)=a e(a \in A)$ is a retract homomorphism of A onto B, where e denotes the identity element of the group B.

Corollary 3.17. Let A be a semigroup and B be an ideal of A such that B is a group. Then the triple $A \times B, A, A / \theta_{A}^{*} \times B$ is right regular with respect to the couple $\left(P_{A}, P^{\prime}\right)$, where P_{A} is defined by $P_{A}: a \mapsto\left(a, \varphi_{B}(a)\right)$ and P^{\prime} is defined by $P^{\prime}: a \mapsto\left([a]_{\theta_{A}^{*}}, \varphi_{B}(a)\right)$; here φ_{B} denotes the above surjective homomorphism of A onto B.

References

[1] H. Ayik, N. Rus̆kuc, Generators and relations of Rees matrix semigroups, Proc. Edinburgh Math. Soc., 42 (1999), 481 - 495.
[2] A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups I, Amer. Math. Soc. Providence R.I. (1961).
[3] A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups II, Amer. Math. Soc. Providence R.I. (1967).
[4] J.L. Chrislock, Semigroups whose regular representation is a group, Proc. Japan Acad., 40 (1964), $799-800$.
[5] J.L. Chrislock, Semigroups whose regular representation is a right group, Amer. Math. Monthly, 74 (1967), 1097 - 1100.
[6] Cohn, P.M., Embeddings in semigroups with one-sided division, J. London Math. Soc., 31-2 (1956), 169 - 181.
[7] L. Descalco, N. Ruškuc, On automatic Rees matrix semigroups, Comm. Algebra, 30 (2002), 1207 - 1226.
[8] J.B. Hickey, Semigroups under a sandwich operation, Proc. Edinburgh Math. Soc., 26(3) (1983), $371-382$.
[9] J.M. Howie, An Introduction to Semigroup Theory, Academic Press, London (1976)
[10] M. Kambites, The loop problem for Rees matrix semigroups, Semigroup Forum, 76 (2008), 204 - 216.
[11] M.V. Lawson, Rees matrix semigroups, Proc. Edinburgh Math. Soc., 33 (1990), $23-37$.
[12] D.B. McAlister, Rees matrix covers for locally inverse semigroups, Trans. Amer. Math. Soc., 227 (1983), $27-738$.
[13] A. Nagy, Special Classes of Semigroups, Kluwer Academic Publishers, Dordrecht/Boston/London (2001).
[14] A. Nagy, Left reductive congruences on semigroups, Semigroup Forum, 87 (2013), $129-148$.
[15] A. Nagy, Remarks on the paper "M. Kolibiar, On a construction of semigroups", Period. Math. Hungar., 71 (2015), 261 - 264.
[16] A. Nagy, Left equalizer simple semigroups, Acta Math. Hungar., 148-2 (2016), $300-311$.
[17] A. Nagy, A construction of left equalizer simple medial semigroups, Period. Math. Hungar., 86 (2023), no.1, $37-42$.
[18] A. Nagy, Cs. Tóth, On the probability that two elements of a finite semigroup have the same right matrix, Comment. Math. Univ. Carolin., 63(1) (2022), 21 - 31.
[19] A. Nagy, Cs. Tóth, On special Rees matrix semigroups over semigroups, (preprint), https://doi.org/10.48550/arXiv.1609.09821
[20] M. Petrich, Embedding semigroups into idempotent generated ones, Monatsh. Math., 141(4) (2004), $315_{3} 22$.
[21] D. Rees, On semi-groups, Proc. Cambridge Philosophical Soc., 36 (1940), $387-400$.

Department of Algebra, Institute of Mathematics, Budapest University of Technology and Economics Múegyetem rkp. 3, Budapest, 1111, Hungary
E-mail: tcsaba94@gmail.com

[^0]: 2010 Mathematics Subject Classification: 20M10, 20M30

