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Right regular triples of semigroups

Csaba Tóth

Abstract. Let M(S; Λ;P ) denote a Rees I × Λ matrix semigroup without zero over
a semigroup S, where I is a singleton. If θS denotes the kernel of the right regular
representation of a semigroup S, then a triple A,B,C of semigroups is said to be right

regular, if there are mappings A P←− B and B P ′
−→ C such thatM(A;B;P )/θM(A;B;P )

∼=
M(C;B;P ′). In this paper we examine right regular triples of semigroups.

1. Introduction and motivation

The notion of right regular triples of semigroups is defined in [19], where
a special type of Rees matrix semigroups without zero over semigroups are
examined. A triple A,B,C of semigroups is said to be right regular, if there
are mappings

A
P←− B P ′−→ C

such that the factor semigroupM(A;B;P )/θM(A;B;P ) is isomorphic to the
semigroupM(C;B;P ′), where θM(A;B;P ) is the kernel of the right regular
representation of the semigroup M(A;B;P ). In [19] it is proved that if
A,B,C are semigroups such that A/θA ∼= B and B/θB ∼= C, then the triple
A,B,C is right regular. There is also an example given for a right regular
triple A,B,C of semigroups such that none of the conditions A/θA ∼= B
and B/θB ∼= C are fulfilled. These results motivate us to investigate right
regular triples of semigroups. In this paper we examine the connection
between the structure of semigroups belonging to a right regular triples of
semigroups, and present quite a few examples of right regular triples of
semigroups.
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2. Preliminaires

By a semigroup we mean a multiplicative semigroup, that is, a nonempty
set endowed with an associative multiplication.

A nonempty subset L of a semigroup S is called a left ideal of S if
SL ⊆ L. The concept of a right ideal of a semigroup is defined analogously.
A semigroup S is said to be left (resp., right) simple if S itself is the only
left (resp., right) ideal of S. A semigroup S is left (resp., right) simple if
and only if Sa = S (resp., aS = S) for every a ∈ S.

A semigroup S is called left cancellative if xa = xb implies a = b for
every x, a, b ∈ S. A left cancellative and right simple semigroup is called
a right group. A semigroup satisfying the identity ab = b is called a right
zero semigroup. By [2, Theorem 1.27.], a semigroup is a right group if and
only if it is a direct product of a group and a right zero semigroup.

In [6, Theorem 1], it is shown that a semigroup S is embedded in an
idempotent-free left simple semigroup if and only if S is idempotent-free
and satisfies the condition: for all a, b, x, y ∈ S, xa = xb implies ya = yb.
Using the terminology of [16], a semigroup S satisfying this last condition
is called a left equalizer simple semigroup. In other words, a semigroup S is
left equalizer simple if, for arbitrary elements a, b ∈ S, the assumption that
xa = xb is satisfied for some x ∈ S implies that ya = yb is satisfied for all
y ∈ S. By [16, Theorem 2.1], a semigroup S is left equalizer simple if and
only if the factor semigroup S/θS is left cancellative.

A nonempty subset I of a semigroup S is called an ideal of S if I is a
left ideal and a right ideal of S. A semigroup S is called simple if S itself
is the only ideal of S. By [2, Lemma 2.28], a semigroup S is simple if and
only if SaS = S for every a ∈ S.

Let S be a semigroup and I be an ideal of S. We say that the homo-
morphism ϕ : S 7→ I is a retract homomorphism [13, Definition 1.44], if it
leaves the elements of I fixed. In this case, I is called a retract ideal of S,
and S is a retract extension of I by the Rees factor semigroup S/I.

A transformation % of a semigroup S is called a right translation of S
if (xy)% = x(y%) is satisfied for every x, y ∈ S. For an arbitrary element a
of a semigroup S, %a : x 7→ xa (x ∈ S) is a right translation of S which is
called an inner right translation of S corresponding to the element a. For
an arbitrary semigroup S, the mapping ΦS : a 7→ %a is a homomorphism of
S into the semigroup of all right translations of S. The homomorphism ΦS

is called the right regular representation of S. For an arbitrary semigroup
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S, let θS denote the kernel of ΦS . It is clear that (a, b) ∈ θS for elements
a, b ∈ S if and only if xa = xb for all x ∈ S. A semigroup S is called
left reductive if θS is the identity relation on S. Thus θS is faithful if and
only if S is left reductive. The congruence θS plays an important role in
the investigation of the structure of the semigroup S. In [4], the author
characterizes semigroups S for which the factor semigroup S/θS is a group.
In [5], semigroups S are characterized for which the factor semigroup S/θS
is a right group. In [15, Theorem 2], a construction is given which shows
that every semigroup S can be obtained from the factor semigroup S/θS
by using this construction. In [18], the authors study the probability that
two elements which are selected at random with replacement from a finite
semigroup have the same right matrix.

If S is a semigroup, I and Λ are nonempty sets, and P is a Λ× I matrix
with entries P (λ, i), then the setM(S; I,Λ;P ) of all triples (i, s, λ) ∈ I×S×
Λ is a semigroup under the multiplication (i, s, λ)(j, t, µ) = (i, sP (λ, j)t, µ).
According to the terminology in [2, §3.1], this semigroup is called a Rees I×
Λ matrix semigroup without zero over the semigroup S with Λ× I sandwich
matrix P . In [19], Rees matrix semigroupsM(S; I,Λ;P ) without zero over
semigroups S satisfying |I| = 1 are in the focus. In our present paper we
also use such type of Rees matrix semigroups, which will be denoted by
M(S; Λ;P ). In this case the matrix P can be considered as a mapping of Λ
into S, and so the entries of P will be denoted by P (λ). If the element of I
is denoted by 1, then the element (1, s, λ) ofM(S; Λ;P ) can be considered
in the form (s, λ); the operation onM(S; Λ;P ) is (s, λ)(t, µ) = (sP (λ)t, µ).

For notations and notions not defined but used in this paper, we refer
the reader to books [2], [9], and [13].

3. Results

Theorem 3.1. If A,B,C is a right regular triple of semigroups such that
A is right simple, then C is also right simple.

Proof. Assume that A,B,C is a right regular triple of semigroups. Then
there are mappings P : B 7→ A and P ′ : B 7→ C such that

M(A;B;P )/θM(A;B;P )
∼=M(C;B;P ′).

Assume that A is right simple. Let (a1, b1), (a2, b2) ∈ M(A;B;P ) be arbi-
trary elements. Since A is right simple, we have aP (b1)A = A, and so there
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is an element ξ ∈ A such that a1P (b1)ξ = a2 and (a1, b1)(ξ, b2) = (a2, b2).
Hence the Rees matrix semigroup M(A;B;P ) is right simple. As every
homomorphic image of a right simple semigroup is right simple, the Rees
matrix semigroupM(C;B;P ′) is right simple. Let c, η ∈ C be an arbitrary
elements. Then, for any b ∈ B, (c, b)M(C;B;P ′) =M(C;B;P ′), and so

(c, b)(u, v) = (η, b)

for some (u, v) ∈M(C;B;P ′). Hence cP ′(b)u = η. Thus cC = C for every
c ∈ C. Then C is right simple.

Theorem 3.2. If A,B,C is a right regular triple of semigroups such that
A is a right group, then C is also a right group.

Proof. Assume that A,B,C is a right regular triple of semigroups. Then
there are mappings P : B 7→ A and P ′ : B 7→ C such that

M(A;B;P )/θM(A;B;P )
∼=M(C;B;P ′).

Assume that A is a right group, that is, right simple and left cancellative.
By the proof of Theorem 3.1, the semigroupsM(A;B;P ) and C are right
simple. Let (a, b), (a1, b1), (a2, b2) ∈M(A;B;P ) be arbitrary elements with

(a, b)(a1, b1) = (a, b)(a2, b2).

Then
(aP (b)a1, b1) = (aP (b)a2, b2),

that is,
aP (b)a1 = aP (b)a2 and b1 = b2.

As A is left cancellative, we get a1 = a2, and so

(a1, b1) = (a2, b2).

Hence the semigroupM(A;B;P ) is left cancellative. AsM(A;B;P ) is also
right simple, it is a right group. From the left cancellativity ofM(A;B;P )
it follows that θM(A;B;P ) = ιM(A;B;P ). Thus the semigroupM(C;B;P ′) is
left cancellative. Assume xc1 = xc2 for elements x, c1, c2 ∈ C. Let b ∈ B
be arbitrary. As C is right simple, there are elements u, v ∈ C such that
P (b)u = c1 and P (b)v = c2. Thus

xP (b)u = xP (b)v.
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Then, for an arbitrary b′ ∈ B,

(x, b)(u, b′) = (x, b)(v, b′)

is satisfied inM(C;B;P ). AsM(C;B;P ) is left cancellative, we get u = v,
from which it follows that c1 = c2. Hence C is left cancellative. By the
above, C is right simple. Consequently C is a right group.

Theorem 3.3. If A,B,C is a right regular triple of semigroups such that
A is simple, then C is also simple.

Proof. Assume that A,B,C is a right regular triple of semigroups. Then
there are mappings P : B 7→ A and P ′ : B 7→ C such that

M(A;B;P )/θM(A;B;P )
∼=M(C;B;P ′).

Assume that A is simple. Let (a, b), (u, v) ∈ M(A;B;P ) and z ∈ B be
an arbitrary elements. Then AP (z)aP (b)A = A implies that there are ele-
ments ξ, η ∈ A such that ξP (z)aP (b)η = u and so (ξ, z)(a, b)(η, v) = (u, v).
Hence the Rees matrix semigroup M(A;B;P ) is simple. As every homo-
morphic image of a simple semigroup is simple, the Rees matrix semigroup
M(C;B;P ′) is simple.

Let c1, c2 ∈ C and b1, b2 ∈ B be arbitrary elements. Then

M(C;B;P ′)(c1, b1)M(C;B;P ′) =M(C;B;P ′),

and so there are elements (x, ξ), (y, η) ∈M(C;B;P ′) such that

(xP (ξ)c1P (b1)y, η) = (x, ξ)(c1, b1)(y, η) = (c2, b2).

Hence
xP (ξ)c1P (b1)y = c2.

Thus
Cc1C = C

for every c1 ∈ C. Then C is simple.

The next proposition is used in the proof of Theorem 3.5.

Proposition 3.4. Let A be a semigroup, Λ be an arbitrary nonempty set
and P : Λ 7→ A is an arbitrary mapping. If A is left equalizer simple, then
the Rees matrix semigroupM(A; Λ;P ) is also left equalizer simple.
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Proof. Suppose that A is a left equalizer simple semigroup, Λ is a nonempty
set and P : Λ 7→ A is a mapping. Take (a1, b1), (a2, b2), (a, b) ∈M(A; Λ;P ).
Suppose that

(a, b)(a1, b1) = (a, b)(a2, b2).

This means that

(aP (b)a1, b1) = (aP (b)a2, b2) ⇐⇒ aP (b)a1 = aP (b)a2 and b1 = b2.

Since A is left equalizer simple we have that, for all x ∈ A and y ∈ Λ :

xP (y)a1 = xP (y)a2,

hence,
(x, y)(a1, b1) = (x, y)(a2, b2).

Thus,M(A; Λ;P ) is a left equalizer simple semigroup.

Theorem 3.5. Let A,B,C be a right regular triple of semigroups such that
P ′ : B 7→ C is surjective. If A is left equalizer simple, then C is left
cancellative.

Proof. Assume that A,B,C is a right regular triple of semigroups. Then
there are mappings P : B 7→ A and P ′ : B 7→ C such that

M(A;B;P )/θM(A;B;P )
∼=M(C;B;P ′).

From Proposition 3.4, we have that M(A;B;P ) is a left equalizer simple
semigroup, and henceM(C;B;P ′) is left cancellative by [16, Theorem 2.1].
Now, take x, c1, c2 ∈ C such that xc1 = xc2. Since P ′ is surjective, there
exists b ∈ B such that P ′(b) = x. Then P ′(b)c1 = P ′(b)c2. Let c ∈ C be
arbitrary, then

(c, b)(c1, b) = (cP ′(b)c1, b) = (cP ′(b)c2, b) = (c, b)(c2, b).

SinceM(C;B;P ′) is left cancellative, (c1, b) = (c2, b), hence c1 = c2. Thus
C is left cancellative.

Theorem 3.6. Let A,B,C be a right regular triple of semigroups such
that C is left commutative. If A is left equalizer simple, then C is left
cancellative.
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Proof. From the proof of Theorem 3.5, we know that M(C;B;P ′) is left
cancellative. Again, take x, c1, c2 ∈ C such that xc1 = xc2. Then for
arbitrary b ∈ B,

P ′(b)xc1 = P ′(b)xc2.

Since C is left commutative,

xP ′(b)c1 = xP ′(b)c2,

and then
(x, b)(c1, b) = (x, b)(c2, b).

M(C;B;P ′) is left cancellative, thus we get c1 = c2, and that C is left
cancellative.

Theorem 3.7. Let A,B,C be a right regular triple of semigroups such that
P : B 7→ A is surjective. If A is left reductive, then C is also left reductive.

Proof. Assume that A,B,C is a right regular triple of semigroups. Then
there are mappings P : B 7→ A and P ′ : B 7→ C such that

M(A;B;P )/θM(A;B;P )
∼=M(C;B;P ′).

Assume, that A is a left reductive semigroup, (a1, b1), (a2, b2) ∈M(A;B;P )
are elements such that

∀(x, y) ∈M(A;B;P ) : (x, y)(a1, b1) = (x, y)(a2, b2).

This means that

xP (y)a1 = xP (y)a2 and b1 = b2.

Since A is left reductive, we get that

∀y ∈ B : P (y)a1 = P (y)a2.

In this case, P is a surjective mapping, hence using again that A is left
reductive, we have a1 = a2. We conclude that (a1, b1) = (a2, b2), and thus
M(A;B;P ) is left reductive.

We know, that if S is a left reductive semigroup, then θS = ιS . This
means, thatM(A;B;P ) ∼=M(C;B;P ′), henceM(C;B;P ′) is also left re-
ductive.
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Now suppose that c1, c2 ∈ C are such elements, that

∀c ∈ C : cc1 = cc2.

Take two elements, (c1, b), (c2, b) fromM(C;B;P ′). For arbitrary (x, y) ∈
M(C;B;P ′) we have:

(x, y)(c1, b) = (xP ′(y)c1, b) = (xP ′(y)c2, b) = (x, y)(c2, b).

In the second equality, we used the assumption that ∀c ∈ C : cc1 = cc2.
SinceM(C;B;P ′) is left reductive, we have (c1, b) = (c2, b), and thus c1 =
c2. We conclude that C is left reductive.

Let A be a semigroup and B be a nonempty set. For a mapping P of
B into A, let αP denote the following relation on A:

αP = {(a1, a2) ∈ A×A : (∀a ∈ A)(∀b ∈ B) aP (b)a1 = aP (b)a2}.

It is clear that αP is a right congruence on A.

Remark 3.8. It is clear that if P is a mapping of a semigroup B into a
semigroup A such that αP is the identity relation on A, then θM(A;B;P ) is
the identity relation on M(A;B;P ), and hence the triple A,B,A is right
regular.

Let A,B,C be semigroups and P : B → A, P ′ : B → C be arbitrary
mappings. We shall say that the triple A,B,C is right regular with respect
to the couple (P, P ′) ifM(A;B;P )/θM(A;B;P )

∼=M(C;B;P ′).

Theorem 3.9. Let A and B be arbitrary semigroups, and P be a mapping of
B into A such that αP is a congruence on A. Then the triple A,B,A/αP is
right regular with respect to (P, P ′), where P ′ is defined by P ′ : b 7→ [P (b)]αP

for every b ∈ B.

Proof. Let Φ be the mapping of the Rees matrix semigroupM =M(A;B;P )
onto the Rees matrix semigroupM(A/αP ;B;P ′) defined by

Φ : (a, b) 7→ ([a]αP , b).

For arbitrary elements (a1, b1), (a2, b2) of M , we have

Φ((a1, b1)(a2, b2)) = Φ((a1P (b1)a2, b2)) = ([a1P (b1)a2]αP , b2) =
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= ([a1]αP [P (b1)]αP [a2]αP , b2) = ([a1]αPP
′(b1)[a2]αP , b2) =

= ([a1]αP , b1)([a2]αP , b2) = Φ((a1, b1))Φ((a2, b2)).

Hence, Φ is a homomorphism. It is clear that Φ is surjective. We show that
the kernel kerΦ of Φ is the kernel of the right regular representation of M .
For elements (a1, b1) and (a2, b2) of M , the equation

(a, b)(a1, b1) = (a, b)(a2, b2)

is satisfied for every a ∈ A and every b ∈ B if and only if

(aP (b)a1, b1) = (aP (b)a2, b2),

that is
Φ((a1, b1)) = Φ((a2, b2)).

Thus, kerΦ = θM which proves our theorem.

A semigroup satisfying the identity axyb = ayxb is called a medial
semigroup. It is easy to see that if A is a medial semigroup, then, for an
arbitrary semigroup B and an arbirtary mapping of B into A, the right
congruence αP is a congruence on A. Thus we have the following corollary.

Corollary 3.10. Let A be a medial semigroup. Then, for an arbitrary
semigroup B and an arbitrary mapping P of B into A, the triple A,B,A/αP
is right regular, where P ′ is defined in Theorem 3.9.

If % is an arbitrary congruence on a semigroup S, then %∗ = {(a, b) ∈
S × S : (∀s ∈ S)(sa, sb) ∈ %} (defined in [16]) is also a congruence on S
which is called the right colon congruence of %.

Remark 3.11. If P is a mapping of a nonempty set B onto a semigroup
A, then αP ⊇ θ∗A. If P is surjective, then αP = θ∗A.

Remark 3.11 and Theorem 3.9 imply the following corollary.

Corollary 3.12. Let A be an ideal of a semigroup B such that there is a
surjective homomorphism P of B onto A. Let P ′ denote the mapping of B
onto A/θ∗A defined in the following way: P ′ : b 7→ [P (b)]θ∗A for every b ∈ B.
Then the triple A,B,A/θ∗A is right regular with respect to (P, P ′).
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Since the projective homomorphism PA : (a, b) 7→ a of the direct product
A×B of semigroups A and B is surjective, Remark 3.11 and Theorem 3.9
imply the following corollary.

Corollary 3.13. For arbitrary semigroups A and B, the triple A,A ×
B,A/θ∗A is right regular with respect to the couple (PA, P

′), where PA de-
notes the projection homomorphism PA : (a, b) 7→ a and P ′ : A×B → A/θ∗A
is defined by P ′ : (a, b) 7→ [a]θ∗A.

Theorem 3.14. Let A and B be arbitrary semigroups, and ϕ be a map-
ping of A into B such that αϕ is a congruence on B. Then the triple
A×B,A,A/θ∗A ×B/αϕ is right regular with respect to the couple (PA, P

′),
where PA is defined by PA : a 7→ (a, ϕ(a)) and P ′ is defined by P ′ : a 7→
([a]θ∗A , [ϕ(a)]αϕ).

Proof. Suppose that (((a1, b1), a2), ((a3, b3), a4)) ∈ θM , where
M =M(A×B;A;PA). This means that, for every x, x′ ∈ A and y ∈ B,

((x, y), x′)((a1, b1), a2) = ((x, y), x′)((a3, b3), a4) ⇐⇒

⇐⇒ ((xx′a1, yϕ(x′)b1), a2) = ((xx′a3, yϕ(x′)b3), a4).

The equality holds if and only if

xx′a1 = xx′a3, yϕ(x′)b1 = yϕ(x′)b3, a2 = a4,

that is
(a1, a3) ∈ θ∗A, (b1, b3) ∈ αϕ, a2 = a4 (1)

Let Φ be the mapping ofM(A × B;A;PA) intoM(A/θ∗A × B/αϕ;P ′)
defined by Φ : ((a, b), a′) 7→ (([a]θ∗A , [b]αϕ), a′) for every a, a′ ∈ A and every
b ∈ B. Since

Φ(((a1, b1), a2)((a3, b3), a4)) = Φ((a1a2a3, b1ϕ(a2)b3), a4) =

= (([a1a2a3]θ∗A , [b1ϕ(a2)b3]αP ), a4) = (([a1]θ∗A , [b1]αϕ), a2)(([a3]θ∗A , [b3]αϕ), a4) =

= Φ(((a1, b1), a2))Φ(((a3, b3), a4))

for every a1, a2, a3, a4 ∈ A and b1, b3 ∈ B, Φ is a homomorphism. It is clear
that Φ is a surjective.
Since (((a1, b1), a2), ((a3, b3), a4)) ∈ kerΦ if and only if all three conditions
in (1) are satisfied, we have kerΦ = θM and this proves our theorem.
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If ϕ : A 7→ B defined in Theorem 3.14 is surjective, then αϕ = θ∗B by
Remark 3.11, and thus we have the following corollaries:

Corollary 3.15. Let A and B be semigroups, and ϕ be a surjective mapping
of A onto B. Then the triple A× B,A,A/θ∗A × B/θ∗B is right regular with
respect to the couple (PA, P

′), where PA is defined by PA : a 7→ (a, ϕ(a))
and P ′ is defined by P ′ : a 7→ ([a]θ∗A , [ϕ(a)]θ∗B ).

Corollary 3.16. Let A be a semigroup, and B be a retract ideal of A. Let ϕ
be a retract homomorphism of A onto B. Then the triple A×B,A,A/θ∗A×
B/θ∗B is right regular with respect to the couple (PA, P

′), where PA is defined
by PA : a 7→ (a, ϕ(a)) and P ′ is defined by P ′ : a 7→ ([a]θ∗A , [ϕ(a)]θ∗B ).

If B is an ideal of a semigroup A such that B is a group, then ϕB : A→
B defined by ϕB(a) = ae (a ∈ A) is a retract homomorphism of A onto B,
where e denotes the identity element of the group B.

Corollary 3.17. Let A be a semigroup and B be an ideal of A such that B
is a group. Then the triple A×B,A,A/θ∗A×B is right regular with respect
to the couple (PA, P

′), where PA is defined by PA : a 7→ (a, ϕB(a)) and P ′

is defined by P ′ : a 7→ ([a]θ∗A , ϕB(a)); here ϕB denotes the above surjective
homomorphism of A onto B.
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