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On groups with the same type as large Ree groups

Ashraf Daneshkhah, Fatemeh Moameri and Hosein Parvizi Mosaed

Abstract. Let G be a finite group and nse(G) be the set of the number of elements
with the same order in G. In this article, we prove that the large Ree groups 2F4(q) with
an odd order component prime are uniquely determined by nse(2F4(q)) and their order.
As an immediate consequence, we verify Thompson’s problem (1987) for the large Ree
groups 2F4(q) with an odd order component prime.

1. Introduction

In 1987, J. G. Thompson possed a problem which is related to algebraic
number fields [15, Problem 12.37]:

For a finite group G and natural number n, set G(n) = {x ∈ G | xn = 1}
and define the type of G to be the function whose value at n is the order of
G(n). Is it true that a group is solvable if its type is the same as that of a
solvable one?

This problem links to the set nse(G) of the number of elements of the
same order in G. Indeed, it turns out that if two groups G and H are
of the same type, then nse(G) = nse(H) and |G| = |H|. Therefore, if
a group G has been uniquely determined by its order and nse(G), then
Thompson’s problem is true for G. One may ask this problem for non-
solvable groups, in particular, finite simple groups. In this direction, Shao
et al [17] studied finite simple groups whose order is divisible by at most
four primes. Following this investigation, such problem has been studied for
some other families of simple groups including Suzuki groups Sz(q), small
Ree groups 2G2(q) and Chevalley groups F4(q) with q = 24n + 1 prime
[2, 3, 6], see also [4, 7, 8, 10, 12, 16]. In this paper, we study this problem
for the large Ree groups 2F4(q), and prove that
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Theorem 1.1. Let G be a group with nse(G) = nse(2F4(q)) and |G| =
|2F4(q)|, where q = 22m+1 and q2 +

√
2q3 + q+

√
2q+ 1 or q2−

√
2q3 + q−√

2q + 1 is prime. Then G ∼= 2F4(q).

As noted above, as an immediate consequence of Theorem 1.1, we have

Corollary 1.2. If G is a group with the same type as 2F4(q), where q =
22m+1 and q2 +

√
2q3 + q +

√
2q + 1 or q2 −

√
2q3 + q −

√
2q + 1 is prime,

then G is isomorphic to 2F2(q).

Finally, we give some brief comments on the notation used in this paper.
Throughout this article all groups are finite. We denote a Sylow p-subgroup
of G by Gp. We also use np(G) to denote the number of Sylow p-subgroups
of G. For a positive integer n, the set of prime divisors of n is denoted by
π(n), and we set π(G) := π(|G|), where |G| is the order of G. We denote the
set of element orders of G by ω(G) known as spectrum of G. For i ∈ ω(G),
we denote the number of elements of order i in G by mi(G) and the set
of the number of elements with the same order in G by nse(G). In other
words, nse(G) = {mi(G) | i ∈ ω(G)}. The prime graph Γ(G) of a finite
group G is a graph whose vertex set is π(G), and two distinct vertices u
and v are adjacent if and only if uv ∈ ω(G). Assume further that Γ(G)
has t(G) connected components πi(G), for i = 1, 2, . . . , t(G). The positive
integers ni with π(ni) = πi(G) are called order components of G. In the case
where G is of even order, we always assume that 2 ∈ π1, and π1 is said to be
the even component of G. In this way, πi and ni are called odd components
and odd order components of G, respectively. Recall that nse(G) is the set
of the number of elements in G with the same order. In other word, nse(G)
consists of the numbers mi(G) of elements of order i in G, for i ∈ ω(G).
Here, ϕ is the Euler totient function.

2. Preliminaries

In this section, we state some useful lemmas which will be used in the proof
of the main theorem.

Lemma 2.1. [14, Main Theorem] The maximal subgroups of 2F4(q) with
q = 22m+1 > 8 are conjugate to one of the subgroups listed in Table 1.

Lemma 2.2. [5, Theorem 1] and [9, Theorem 2.7.6] Let G be a Frobenius
group of even order with kernel K and complement H. Then t(G) = 2,
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and π(H) and π(K) are vertex sets of the connected components of Γ(G).
Moreover, K is nilpotent and |H| divides |K| − 1.

Table 1: The maximal subgroups of 2F4(q) with q = 22m+1 > 8.
Maximal subgroup Conditions
[q11] : GL2(q)
[q10] : (Sz(q)× Zq−1)
SU3(q(), no.2,
(Zq+1 × Zq+1) : GL2(3)
(Zq−√2q+1 × Zq−√2q+1) : 4S4 q > 8

(Zq+√2q+1 × Zq+√2q+1) : 4S4

Z
q2−
√

2q3+q−
√
2q+1

: 12

Z
q2+
√

2q3+q+
√
2q+1

: 12

PGU3(q) : 2
Sz(q) o 2
Sp4(q) : 2
2F4(q0) q = qr0 with r prime

A group G is a 2-Frobenius group if there exists a normal series 1EHE
K EG such that G/H and K are Frobenius groups with kernels K/H and
H, respectively.

Lemma 2.3. [5, Theorem 2] Let G be a 2-Frobenius group of even order.
Then t(G) = 2, π1(G) = π(G/K)∪π(H) and π2(G) = π(K/H). Moreover,
G/K and K/H are cyclic groups, and |G/K| divides |Aut(K/H)|.

Lemma 2.4. [11, Theorem 9.1.2] Let G be a finite group, and let n be a
positive integer dividing |G|. If G(n) = {g ∈ G | gn = 1}, then n | |G(n)|.

Lemma 2.5. Let G be a finite group, and let i ∈ ω(G). Then mi(G) =
kϕ(i), where k is the number of cyclic subgroups of order i in G. Moreover,
ϕ(i) divides mi(G), and i divides

∑
j|i mj(G). In particular, if i > 2, then

mi(G) is even.

Proof. The proof is straightforward by Lemma 2.4.

Lemma 2.6. [1, Lemma 3.1] The order of 2F4(q) with q = 22m+1 > 8 is
coprime to 17.
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3. Proof of the main result

Let q = 22m+1 > 8, and let p be a prime number. Suppose that p is
q2+

√
2q3+q+

√
2q+1 or q2−

√
2q3+q−

√
2q+1, and set F := 2F4(q). Let G

be a finite group with nse(G) = nse(F ) and |G| = |F |. We note that 2F4(q)
with q = 22m+1 > 8 is of order q12(q−1)(q2+1)(q3+1)(q4−1)·f+(q)·f−(q),
where

fε(q) = q2 + ε
√

2q3 + q + ε
√

2q + 1, (3.1)

with ε = ±. We observe by [18] that the simple group 2F4(q) with q =
22m+1 > 8 has two odd order components, namely, f+(q) and f−(q).

Lemma 3.1. Let F := 2F4(q) with q = 22m+1 > 8, and let fε(q) be as
in (3.1). If p = fε(q) is prime, then

(a) mp(F ) = (p− 1)|F |/(12p);

(b) p | mi(F ) for every i ∈ ω(F ) \ {1, p}.

Proof. By Lemma 2.1, Fp is a cyclic group of order p, and so mp(F ) =
ϕ(p)np(F ) = (p− 1)np(F ). According to Lemma 2.1, |NF (Fp)| = 12p, and
so np(F ) = |F |/12p. If i ∈ ω(F ) \ {1, p}, then [13] implies that p is an
isolated vertex of Γ(F ), and so p - i and pi /∈ ω(F ). Thus Fp acts fixed
point freely on the set of elements of order i in G by conjugation, and hence
|Fp| | mi(F ). Therefore, p | mi(F ).

Lemma 3.2. Let F := 2F4(q), and let G be a group such that |G| = |F |
and nse(G) = nse(F ). Let also p be fε(q) defined as in (3.1). If p is prime,
then

(a) m2(G) = m2(F );

(b) mp(G) = mp(F );

(c) np(G) = np(F );

(d) p is an isolated vertex of Γ(G);

(e) p | mi(G) for every i ∈ ω(G) \ {1, p}.

Proof. According to Lemma 2.5, for any i ∈ ω(G), i > 2 if and only if
mi(G) is even. So m2(G) = m2(F ). By Lemma 2.5, (mp(G), p) = 1, and
so p - mp(G). Then by Lemma 3.1, mp(G) ∈ {m1(F ),mp(F )}, and since
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mp(G) is even, we deduce that mp(G) = mp(F ). Since Gp and Fp are
cyclic groups of order p, it follows that mp(G) = ϕ(p)np(G) = ϕ(p)np(F ) =
mp(F ). So np(G) = np(F ). If p is not an isolated vertex of Γ(G), then there
exists r ∈ π(G) − {p} such that pr ∈ ω(G). Thus mpr(G) = ϕ(pr)np(G)k,
where k is the number of the cyclic subgroups of order r in CG(Gp). Since
np(G) = np(F ) = |F |/(12p) and |F | = |G|, we conclude that np(G) =
|G|/(12p). Thus (p − 1)(r − 1)|G|/(12p) divides mpr(G). On the other
hands, by Lemma 3.1, p is a divisor of mpr(G). Then p(p−1)(r−1)|G|/12p
divides mpr(G) < |G|, and this implies that r = 2 and p < 13, which is a
contradiction. Hence p is an isolated vertex of Γ(G).

Proof of Theorem 1.1. We first prove that the group G is neither a Frobe-
nius group, nor a 2-Frobenius group. Assume to the contrary that G is a
Frobenius group or a 2-Frobenius group. If G is a Frobenius group with
kernel K and complement H. Then Lemma 2.2 implies that t(G) = 2, π(H)
and π(K) are vertex sets of the connected components of Γ(G). Since p is an
isolated vertex of Γ(G), we deduce that |K| = p and |H| = |F |/p, or |H| = p
and |K| = |F |/p. By Lemma 2.2, |F |/fε(q) divides fε(q)−1 or fε(q) divides
[|F |/fε(q)]−1. This implies that p | 11, which is a contradiction. If G is a 2-
Frobenius group, then Lemma 2.3 implies that t(G) = 2 and G has a normal
series 1EHEKEG such that G/H andK are Frobenius groups with kernels
K/H and H, respectively, π1(G) = π(G/K)∪π(H), π2(G) = π(K/H) and
|G/K| divides |Aut(K/H)|. Since p is an isolated vertex of Γ(G), we deduce
that |K/H| = fε(q) and |H| = q12(q−1)(q2+1)(q4−1)(q3+1)F−ε(q)/|G/K|.
Since |G/K| divides |Aut(K/H)|, we deduce that |G/K| divides p− 1. On
the other hand, since K is a Frobenius group with kernel H, Lemma 2.2
implies that p divides [q12(q− 1)(q2 + 1)(q4− 1)(q3 + 1)F−ε(q)/|G/K|]− 1,
and hence p divides 12− |G/K|, which is a contradiction.

Therefore, G is neither a Frobenius group, nor a 2-Frobenius group, and
hence by [18, Theorem A], G has a normal series 1 E H E K E G such
that H and G/K are π1-groups, K/H is a non-abelian simple group, H
is a nilpotent group and |G/K| divides |Out(K/H)|. Moreover, any odd
component of G is also an odd component of K/H. Since p is an isolated
vertex of Γ(G), we deduce that p | |K/H| and t(K/H) ≥ 2. The connected
components of the simple group K/H can be read off from [13, 18], and in
what follows we discuss all these possibilities. For convenience, we use Lie
notation for the finite simple groups of Lie type.

Let K/H be a sporadic simple group or one of the simple groups A2(2),
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A2(4), 2A3(2), 2A5(2), E7(2), E7(3), 2E6(2) and 2F4(2)′. Then fε(q) is equal
to one of the prime numbers 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 59, 67, 71, 73, 127, 757 and 1093. This is possible only for q = 8 when
F−(q) = 37 and K/H is isomorphic to J4 or Ly in which case |K/H| does
not divide |G|.

Let now K/H be an alternating group of degree n. Then since by
Lemma 2.6, 17 /∈ π(G), it follows that n < 17, and this violates the choice
of p which is at least 37.

Let K/H be a finite simple classical group over a finite field of size q′.
Then we easily observe by Lemma 2.6 that 17 - q′. Moreover, if q′16 − 1
is a divisor of |K/H|, then by the Fermat’s little theorem, q′16 − 1 ≡ 0
(mod 17), and so 17 | |K/H| which violates Lemma 2.6. Therefore, we
have one of the following possibilities:

K/H Condition
An(q′) 1 6 n 6 16
2An(q′) 1 6 n 6 16
Cn(q′) 2 6 n 6 7
Bn(q′) 2 6 n 6 7, q′ odd
Dn(q′) 3 6 n 6 8
2Dn(q′) 2 6 n 6 8

Suppose that K/H is isomorphic to An(q′). If n = 1, then p is q′, (q′±1)
or (q′ ± 1)/2, and so p∓ 1 or 2p∓ 1 divides |K/H|, so does |G|, which is a
contradiction. If 2 6 n 6 16 and (n, q′) 6= (2, 2), (2, 4), then n = p′ or p′−1,
and so p is (q′p

′ − 1)/[(q′ − 1)(p′, q′ − 1)] or (q′p
′ − 1)/(q′ − 1). Therefore,

(p′, q′ − 1)p− 1 or p− 1 divides |K/H|, respectively. But none of these is a
divisor of |G|, which is a contradiction.

Suppose that K/H is isomorphic to 2An(q′) for n = p′, p′ − 1 with
(n, q′) 6= (3, 2), (5, 2). Then p is (q′p

′
+ 1)/[(q′ + 1)(p′, q′ + 1)] or (q′p

′
+

1)/(q′+ 1), which is impossible as neither (p′, q′− 1)p− 1, nor p− 1 divides
|G|.

Suppose that K/H is isomorphic to Bn(q′) or Cn(q′). Then p is (q′n ±
1)/(2, q′−1), and so (2, q′−1)p∓1 has to divide |G|, which is a contradiction.

Suppose that K/H is isomorphic to Dn(q′) with n = p′, p′ + 1 and
q′ = 2, 3, 4. Then p is (q′p

′ − 1)/(4, q′ − 1), and so (4, q′ − 1)p + 1 has to
divide |G|, which is a contradiction.
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Suppose that K/H is isomorphic to 2Dn(q′). Then p is (q′p
′
+1)/(2, q′−

1), 2n
′−1 + 1, 2n

′
+ 1, (3n + 1)/4 or (3n−1 + 1)/2. (2, q′ − 1)p − 1, p − 1,

p+ 1, 2p− 1, 4p− 1 has to divide |G|, which is a contradiction.

If K/H is isomorphic to G2(q
′), F4(q

′), E6(q
′), 2E6(q

′) or 3D4(q
′), then

p is q′2 ± q′ + 1, q′4 − q′2 + 1 or q′4 + 1, q′6 + q′3 + 1 or (q′6 + q′3 + 1)/3,
(q′6 ± q′3 + 1)/(3, q ∓ 1) or q′4 − q′2 + 1. So p − 1 or 3p − 1 is a divisor of
|G|, which is a contradiction.

Suppose that K/H is isomorphic to E8(q
′). Then p is q′8 ± q′7 ∓ q′5 −

q′4∓ q′3± q′+ 1, q′8− q′4 + 1 or q′8− q′6 + q′4− q′2 + 1. If p is q′8− q′4 + 1
or q′8 − q′6 + q′4 − q′2 + 1, then p − 1 divides |G|, which is impossible. If
p = q′8 ± q′7 ∓ q′5 − q′4 ∓ q′3 ± q′ + 1, then 2m+1(2m ± 1)(22m+1 + 1) =
q′(q′7 ± q′6 ∓ q′4 − q′3 ∓ q′2 ± 1), so we have three possibilities:

(1) (q′, 2m+1) 6= 1. Since (2m+1, 2m ± 1) = (2m+1, 22m+1 + 1) = 1, we
have q′ = 2m+1. This implies that q′120 | |K/H| so does |G|, which is a
contradiction.

(2) (q′, 22m+1 + 1) 6= 1. If 3 - q′, then q′ | 22m+1 + 1 = q + 1 and q′2 - q + 1
because (22m+1 + 1, 2m ± 1) = 1 or 3. This also requires q′120 | |G|, which
is a contradiction. If 3 | q′, then q′ = 3m

′ for some positive integer m′. If
(q′, 22m+1 + 1) > 3, then 3m

′−1 | 22m+1 + 1 = q+ 1 but 3m
′+1 - q+ 1. Hence

q′120 | |G|, which is impossible. We note that the case where q′ = 3 and
(q′, 22m+1 + 1) = 3 cannot occur as p = q2±

√
2q3 + q±

√
2q+ 1 is a prime

number and q = 22m+1 > 2. If q′ = 3m
′
> 3 and (q′, 22m+1 + 1) = 3, then

3m
′−1 | 2m ± 1 but 3m

′+1 - 2m ± 1. Since |K/H| | |G| we have q′120 | |G|,
which is a contradiction.

(3) (q′, 2m ± 1) 6= 1. This case can be ruled out by the same manner as in
case (2).

Suppose that K/H is isomorphic to 2B2(q
′) with q′ = 22m

′+1 . Then
p = q′ − 1 or q′ ±

√
2q′ + 1. If p = q′ − 1, then 22m

′+1 − 2 = 2m+1(2m ±
1)(22m+1 + 1), and so m = 0, which is a contradiction. If p = q′±

√
2q′+ 1,

then 2m
′+1(2m

′ ± 1) = 2m+1(2m ± 1)(22m+1 + 1) implying that m = m′,
which is a contradiction.

Suppose that K/H is isomorphic to 2G2(q
′) with q′ = 32m

′+1. Then
p = q′ ±

√
3q′ + 1, and so 3m

′+1(3m
′ ± 1) = 2m+1(2m ∓ 1)(22m+1 + 1).

Therefore 2m+1 | 3m
′ ± 1. Note that (2m ∓ 1, 22m+1 + 1) = 1 or 3. If

3m
′ | 2m∓1, then m = m′ = 1, which is impossible. If 3m

′ | 22m+1 +1, then
q′ | (q + 1)2 but q′2 - (q + 1)2. Since q′3 | |K/H|, we have q′3 | |G|, which is
a contradiction.
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Therefore, K/H is isomorphic to 2F4(q
′), and hence q′ = q. This forces

H = 1, and hence G = K ∼= 2F4(q), as claimed.
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