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Prime one-sided ideals in ordered semigroups

Panuwat Luangchaisri and Thawhat Changphas

Abstract. We prove that the following are equivalent: (1) an ordered semigroup S with
zero and identity is right weakly regular; (2) (AA] = A for any right ideal A of S; (3)
A ∩ I = (AI] for any right ideal A and two-sided ideal I of S; (4) B ∩ I ⊆ (BI] for any
bi-ideal B and two-sided ideal I of S; (5) B∩I∩A ⊆ (BIA] for any bi-ideal B, right ideal
A and two-sided ideal I of S; and prove that S is a fully prime right ordered semigroup
if and only if S is right weakly regular and the set of all two-sided ideals of S is totally
ordered.

1. Introduction

One-sided ideals of a prime type of a ring have been studied by K. Koh in
[6]. One-sided prime ideals have been considered by J. Dauns in [3], the
author considered prime right ideals of a ring. F. Hansen [4] studied one-
sided prime ideals, the paper contained some results on prime right ideals in
a weakly regular ring. W.D. Blair and H. Tsutsui studied fully prime rings,
it was shown a necessary and sufficient condition for a ring to be fully prime
is that every ideal is idempotent and the set of ideals is totally ordered [2].
F. Alarcan and D. Polkawska described fully prime semirings, the authors
characterized semirings where every ideal is prime (fully prime semirings)
as those having a totally ordered lattice with every ideal idempotents [1].
Recently, prime one-sided ideals in a semiring and a Γ-semiring have been
introduced and studied by R. Jagatap and Y. Pawar in [5] and by M. Shabir
and M.S. Iqbal in [7]. An ordered semigroup (S, .,6) is a semigroup (S, .)
together with an ordered relation 6 on S which is compatible with the
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semigroup operation. In this paper, we consider prime one-sided ideals in
an ordered semigroup. Indeed, we mainly consider right weakly regular
ordered semigroups and fully prime right ordered semigroups. Let S be an
ordered semigroup with zero and identity. It is proved that the following
are equivalent: (1) S is right weakly regular; (2) (AA] = A for any right
ideal A of S; (3) A ∩ I = (AI] for any right ideal A and a two-sided ideal
I of S; (4) B ∩ I ⊆ (BI] for any bi-ideal B and two-sided ideal I of S; (5)
B ∩ I ∩ A ⊆ (BIA] for any bi-ideal B, right ideal A and two-sided ideal I
of S. Moreover, a characterization of fully prime right ordered semigroups
will be given in terms of right weakly regularity and the set of all two-sided
ideals. Indeed, it is proved that S is a fully prime right ordered semigroup
if and only if S is right weakly regular and the set of all two-sided ideals of
S is totally ordered (i.e., for any ideals A and B of S, A ⊆ B or B ⊆ A).

An ordered semigroup (S, .,6) consists of a semigroup (S, .) together
with an ordered relation ≤ on S which is compatible with the semigroup
operation (i.e., for any a, b, c ∈ S, a 6 b implies ca 6 cb and ac 6 bc). For
A,B ⊆ S, we write AB for {ab ∈ S | a ∈ A, b ∈ B} and write (A] for
{x ∈ S | ∃a ∈ A, x 6 a}, i.e.

AB = {ab ∈ S | a ∈ A, b ∈ B};

(A] = {x ∈ S | ∃a ∈ A, x 6 a}.

It is observed that

(1) A ⊆ (A];

(2) if A ⊆ B, then (A] ⊆ (B];

(3) ((A]] = (A];

(4) (A](B] ⊆ (AB];

(5) ((A](B]] = (AB];

(6) (A ∪B] = (A] ∪ (B];

(7) (A ∩B] ⊆ (A] ∩ (B].

A nonempty subset A of S is called a right ideal (of S) if

(1) ax ∈ A for any a ∈ A and x ∈ S (i.e., AS ⊆ A);
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(2) (A] = A (i.e., if a ∈ A and x ∈ S such that x 6 a, then x ∈ A).

A left ideal of S can be defined similarly: a nonempty subset A of S is
called a left ideal (of S) if

(1) xa ∈ A for any a ∈ A and x ∈ S (i.e., SA ⊆ A);

(2) (A] = A (i.e., if a ∈ A and x ∈ S such that x 6 a, then x ∈ A).

A nonempty subset A of S is called a two-sided ideal (it is abbreviated by
ideal) of S if it is both a left and a right ideal of S. An element 0 of S
is called a zero if 0a = a0 = 0 for all a ∈ S. An element 1 of S is called
an identity if a1 = 1a = a for all a ∈ S. If S has the identity, then the
principal right ideal of S generated by a is of the form (aS]; the principal
left ideal of S generated by a is of the form (Sa]; and the principal ideal of
S generated by a is of the form (SaS].

2. Main results

Hereafter, S is an ordered semigroup with zero 0 and identity 1. We begin
this section with the definition of prime right ideals of S.

Definition 2.1. Let P be a right ideal of S. Then P is called a prime right
ideal of S if for any right ideals A and B of S, AB ⊆ P implies A ⊆ P or
B ⊆ P .

Theorem 2.2. Let P be a right ideal of S. Then P is a prime right ideal
of S if and only if for any a, b ∈ S, aSb ⊆ P implies a ∈ P or b ∈ P .

Proof. Assume that P is a prime right ideal of S. Let a, b ∈ S be such that
aSb ⊆ P ; then

(aS](bS] ⊆ ((aS](bS]] = ((aS)(bS)] ⊆ (PS] ⊆ (P ] = P.

Since (aS] and (bS] are right ideals of S, (aS] ⊆ P or (bS] ⊆ P . Hence
a ∈ P or b ∈ P . Conversely, assume that for any a, b ∈ S, aSb ⊆ P implies
a ∈ P or b ∈ P . Let A and B be right ideals of S such that AB ⊆ P .
Suppose that A * P , i.e. there exists a ∈ A \ P . Let b ∈ B. Then

aSb ⊆ (aSb] ⊆ (ASB] ⊆ (AB] ⊆ (P ] = P.

By assumption, a ∈ P or b ∈ P . Thus b ∈ P . Therefore B ⊆ P and hence
P is a prime right ideal of S.
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Definition 2.3. Let M be a proper right ideal of S. Then M is said to be
maximal if there is no any proper right ideal of S containing M properly.

Theorem 2.4. If M is a maximal right ideal of S, then M is a prime right
ideal of S.

Proof. Let M be a maximal right ideal of S. To show that M is a prime
right ideal of S, let a, b ∈ S be such that aSb ⊆ M . Suppose that a /∈ M .
We have M ∪ (aS] is a right ideal of S. Since M is a maximal right ideal of
S and M ⊂ M ∪ (aS], M ∪ (aS] = S. Then 1 ∈ M or 1 ∈ (aS]. If 1 ∈ M ,
then b = 1b ∈M . If 1 ∈ (aS], let 1 6 as for some s ∈ S. Consider:

b = 1b 6 asb ∈ aSb ⊆M.

Therefore b ∈M and by Theorem 2.2, M is a prime right ideal of S.

Theorem 2.5. Let P be a prime right ideal of S. For a ∈ S \ P ,

(P : a) = {x ∈ S | ax ∈ P}

is a prime right ideal of S.

Proof. Clearly, 0 ∈ (P : a). If x ∈ (P : a) and s ∈ S, then ax ∈ P ; hence
a(xs) = (ax)s ∈ P . If x ∈ (P : a) and s ∈ S such that s 6 x, then
as 6 ax ∈ P ; hence as ∈ P (i.e., s ∈ (P : a)). Therefore (P : a) is a right
ideal of S. Let B and C be right ideals of S such that BC ⊆ (P : a); then
a(BC) ⊆ P . Consider:

(aB](aC] ⊆ ((aB](aC]] = ((aB)(aC)] ⊆ (aBC] ⊆ (P ] = P.

Then (aB] ⊆ P or (aC] ⊆ P . Hence B ⊆ (P : a) or C ⊆ (P : a). Hence
(P : a) is a prime right ideal of S.

Similarly, we have the following result:

Theorem 2.6. Let P be a prime right ideal of S. Then

{x ∈ S | Sx ⊆ P}

is the largest ideal of S contained in P .

Definition 2.7. Let P be a right ideal of S. Then P is said to be a
semiprime right ideal of S if for any right ideal A of S, AA ⊆ P implies
A ⊆ P .
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It is observed that every prime right ideal is a semiprime right ideal.

Theorem 2.8. Let P be a right ideal of S. Then P is a semiprime right
ideal of S if and only if for any a ∈ S, aSa ⊆ P implies a ∈ P .

Proof. Assume that P is semiprime right ideal of S. Let a ∈ S be such that
aSa ⊆ P ; then

(aS](aS] ⊆ ((aS](aS]] = ((aS)(aS)] ⊆ (PS] ⊆ (P ] = P.

Since (aS] is a right ideal of S, (aS] ⊆ P . Hence a ∈ P . Conversely, assume
that for any a ∈ S, aSa ⊆ P implies a ∈ P . Let A be a right ideal of S
such that AA ⊆ P . Let a ∈ A. Then

aSa ⊆ (aSa] ⊆ (ASA] ⊆ (AA] ⊆ (P ] = P.

By assumption, a ∈ P . Therefore A ⊆ P . Hence P is a semiprime right
ideal of S.

Definition 2.9. Let A be a right ideal of S. Then A is said to be irreducible
if for any right ideals B and C of S, B ∩ C = A implies B = A or C = A.

Definition 2.10. Let A be a right ideal of S. Then A is said to be strongly
irreducible if for any right ideals B and C of S, B ∩ C ⊆ A implies B ⊆ A
or C ⊆ A.

Theorem 2.11. Let A be a right ideal of S. If x /∈ A, then there exists an
irreducible right ideal of S containing A and not containing x.

Proof. Assume that x /∈ A. Clearly, the set of right ideals of S containing
A and not containing x is nonempty. Consider a set {Aα | α ∈ Λ} of a
chain of right ideals of S containing A and not containing x. Then ∪α∈ΛAα

is a right ideal of S containing A and not containing x. By Zorn’s lemma,
the set of right ideals of S containing A and not containing x contains a
maximal element, denoted by M . Let B and C be right ideals of S such
that B ∩ C = M . Suppose that M ⊂ B and M ⊂ C. Then x ∈ B and
x ∈ C. Since x /∈ M , x /∈ B or x /∈ C. This is a contradiction. Hence
M = B or M = C. Therefore M is irreducible

Theorem 2.12. Any proper right ideal A of S is the intersection of irre-
ducible right ideals of S containing A.
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Proof. Let A be a proper right ideal of S, {Aα | α ∈ Λ} the set of irreducible
right ideals of S containing A. Then A ⊆ ∩α∈ΛAα. If x /∈ A, then there
exists an irreducible right ideal Aα0 of S such that A ⊆ Aα0 and x /∈ Aα0 .
Then x /∈ ∩α∈ΛAα. Hence ∩α∈ΛAα ⊆ A. Thus A = ∩α∈ΛAα. Therefore A
is the intersection of irreducible right ideals of S containing A.

Theorem 2.13. Let P be a right ideal of S. If P is strongly irreducible
semiprime, then P is prime.

Proof. Assume that P is strongly irreducible semiprime. To show that P is
prime, let A and B be right ideals of S such that AB ⊆ P . We have

(A ∩B)(A ∩B) ⊆ AB ⊆ P.

Since A∩B is a right ideal of S and P is semiprime, A∩B ⊆ P . From P is
strongly irreducible, it follows that A ⊆ P or B ⊆ P . Hence P is prime.

Definition 2.14. An ordered semigroup S is called right weakly regular if
a ∈ (aSaS] for all a ∈ S.

Theorem 2.15. The following conditions are equivalent:

(1) S is right weakly regular;

(2) (AA] = A for any right ideal A of S;

(3) A ∩ I = (AI] for any right ideal A and ideal I of S.

Proof. Assume that S is right weakly regular. Let A be a right ideal of S.
Then (AA] ⊆ A. If a ∈ A, then

a ∈ (aSaS] ⊆ (ASAS] ⊆ (AA].

Then A ⊆ (AA]. Hence A = (AA]. Therefore (AA] = A for any right ideal
A of S. Conversely, assume that (AA] = A for any right ideal A of S. To
show that S is right weakly regular, let a ∈ S. Since (aS] is a right ideal of
S, ((aS](aS]] = (aS]. Thus

a ∈ (aS] = ((aS](aS]] = (aSaS].

Therefore S is right weakly regular. This proves that (1) is equivalent to
(2).
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To show that (2) is equivalent to (3) assume that (AA] = A for any
right ideal A of S. Let A be a right ideal and I an ideal of S. We have
(AI] ⊆ A ∩ I. From A ∩ I is a right ideal of S, it follows that

A ∩ I = ((A ∩ I)(A ∩ I)] ⊆ (AI].

Then A∩ I = (AI]. Hence A∩ I = (AI] for any right ideal A and ideal I of
S. Conversely, assume that A∩I = (AI] for any right ideal A and ideal I of
S. Let B be a right ideal of S. We have (SBS] is an ideal of S. Consider:

B = B ∩ (SBS] = (B(SBS]] ⊆ ((B](SBS]] = (BSBS] ⊆ (BB].

Hence (BB] = B. Therefore, (BB] = B for any right ideal B of S.

Theorem 2.16. S is right weakly regular if and only if every right ideal of
S is semiprime.

Proof. Assume that S is right weakly regular. Let P be a right ideal of
S. Let A be a right ideal of S such that AA ⊆ P . By assumption and
Theorem 2.15, A = (AA]. Thus A ⊆ P . Hence P is semiprime. Conversely,
assume that every right ideal of S is semiprime. To show that S is right
weakly regular, let B be a right ideal of S. Since (BB] is a right ideal
of S, (BB] is semiprime. From BB ⊆ (BB], it follows that B ⊆ (BB].
Since (BB] ⊆ B ⊆ (BB], (BB] = B. By Theorem 2.15, S is right weakly
regular.

Theorem 2.17. Let S be right weakly regular and P an ideal of S. Then
P is prime if and only if P is irreducible.

Proof. It is clear that if P is prime, then P is irreducible. Assume that P
is irreducible. Let A and B be ideals of S such that AB ⊆ P . By Theorem
2.15, A∩B ⊆ P . Then (A∩B)∪P = P . This means (A∪P )∩(B∪P ) = P .
By assumption, A∪P = P orB∪P = P . Hence A ⊆ P orB ⊆ P . Therefore
P is prime.

Definition 2.18. We call S a fully prime right ordered semigroup if all
right ideals of S are prime right ideals. For a fully semiprime right ordered
semigroup can be defined similarly.

Theorem 2.19. If S is a fully prime right ordered semigroup, then S is
right weakly regular and the set of ideals of S is totally ordered.
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Proof. If S is a fully prime right ordered semigroup, then all right ideals of
S are prime right ideals of S. Since every prime right ideal is semiprime
and Theorem 2.16, S is right weakly regular. Let A and B be ideals of S.
Then A ∩ B is a right ideal of S. By assumption, A ∩ B is prime. Since
AB ⊆ A ∩ B, A ⊆ A ∩ B or B ⊆ A ∩ B. This means A = A ∩ B or
B = A ∩ B. Therefore A ⊆ B or B ⊆ A. Hence S is right weakly regular
and the set of ideals of S is totally ordered.

Theorem 2.20. If S is right weakly regular and the set of ideals of S is
totally ordered, then S is a fully prime right ordered semigroup.

Proof. Assume that S is right weakly regular and the set of ideals of S is
totally ordered. It is to show that S is a fully prime right ordered semigroup.
Let P be a right ideal of S. To show that P is prime, let A and B be right
ideals of S such that AB ⊆ P . We have A ⊆ B or B ⊆ A; (AA] = A,
(BB] = B. If A ⊆ B, then

A = (AA] ⊆ (AB] ⊆ (P ] = P.

Similarly, for B ⊆ A, we have B ⊆ P . Hence P is prime. Therefore S is a
fully prime right ordered semigroup.

Now we give a characterization of a fully prime right ternary semiring fol-
lowed by Theorems 2.19 and Theorem 2.20.

Theorem 2.21. S is a fully prime right ordered semigroup if and only if S
is right weakly regular and the set of ideals of S is totally ordered.

We recalled that a subsemigroup B of S is called a bi-ideal of S if BSB ⊆ B
and (B] = B (i.e., if b ∈ B and x ∈ S such that x 6 b, then x ∈ B).

Theorem 2.22. S is right weakly regular if and only if B ∩ I ⊆ (BI] for
any bi-ideal B and ideal I of S.

Proof. Assume that S is right weakly regular. Let B be a bi-ideal and I an
ideal of S. Let x ∈ B ∩ I. By assumption, x ∈ (xSxS]. Then

x ∈ (xSxS] ⊆ (xS(xSxS]S] ⊆ (xSxSxSS] ⊆ (BSBSISS] ⊆ (BI].

Hence B ∩ I ⊆ (BI]. Conversely, assume that B ∩ I ⊆ (BI] for any bi-ideal
B and an ideal I of S. Let A be a right ideal of S. It is observed that A is
a bi-ideal of S. Using assumption, we have

A = A ∩ (SAS] ⊆ (A(SAS]] = (ASAS] ⊆ (AA] ⊆ A.

Thus A = (AA]. By Theorem 2.15, S is right weakly regular.
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Theorem 2.23. S is right weakly regular if and only if B ∩ I ∩A ⊆ (BIA]
for any bi-ideal B, right ideal A and ideal I of S.

Proof. Assume that S is right weakly regular. Let B be a bi-ideal, A a right
ideal and I an ideal of S. Let x ∈ B ∩ I ∩ A. By assumption, x ∈ (xSxS].
Then

x ∈ (xSxS] = (xS(xSxS]S] ⊆ (xSxSxSS] ⊆ (B(SIS)(ASS)] ⊆ (BIA].

Hence B ∩ I ∩A ⊆ (BIA]. Conversely, assume that B ∩ I ∩A ⊆ (BIA] for
any bi-ideal B, right ideal A and ideal I of S. Let A be a right ideal of S.
From A is a bi-ideal of S and assumption, we have

A = A ∩ S ∩A ⊆ (ASA] ⊆ (AA] ⊆ (A] = A.

Thus A = (AA]. By Theorem 2.15, S is right weakly regular.
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