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Probabilistic groupoids

Smile Markovski and Lidija Goračinova-Ilieva

Abstract. Algebraic structures are commonly used as a tool in treatments of various
processes. But their exactness reduces the opportunity of their application in nonde-
terministic environment. On the other hand, probability theory and fuzzy logic do not
provide convenient means for expressing the result of combining elements in order to
produce new ones. Moreover, these theories are not developed to “measure" algebraic
properties. Therefore, we propose a new concept which relies both on universal algebra
and probability theory.

We introduce probabilistic mappings, and by them we define the notion of a proba-
bilistic algebra. Let A and B be non-empty sets, and let DB be the set of all probability
distributions on B. A probabilistic mapping from A to B is a mapping h : A → DB . Let
A be a set, n ∈ N, and let An = {(a1, a2, . . . , an)| ai ∈ A, i = 1, 2, . . . , n} be the n-th
power of A. Every probabilistic mapping from An to A is a probabilistic (n-ary) opera-
tion on A. A pair (A,F ) of a set A and a family F of probabilistic operations on A is
called a probabilistic algebra. When F = {f } has one binary operation, then the proba-
bilistic algebra (A, f) is a probabilistic groupoid. “Ordinary" groupoids are just a special
type of probabilistic ones. Basic properties of probabilistic groupoids and some classes
of probabilistic groupoids (with units, commutative, associative, idempotent, with can-
cellation, with inverses, quasigroups, groups) are treated in this paper. Here we consider
only the finite case.

1. Probabilistic mappings

Let A and B be non-empty finite sets, and denote by DB the set of all
probability distributions on B, that is

DB = {f | f : B → R, f(b) > 0 for b ∈ B,
∑
b∈B

f(b) = 1}.
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WhenB = {b1, b2, . . . , bn} is a finite set, a probability distribution f :B → R
can be also denoted, as usual, by the set of images {f(b1), f(b2), . . . , f(bn)}.

For every mapping h from A to DB we say that it is a probabilistic
mapping from A to B. We denote such a mapping by h : A# B. If h(a) = f
for some a ∈ A, then we write f = ha, and when ha(b) = p, p ∈ [0, 1], we
say that the probability of mapping the element a ∈ A into b ∈ B is p,
or that b is an image of a with probability p. The element a is called a
pre-image of b with probability p = ha(b). Given a fixed element b ∈ B,
each element of A is a pre-image of b with some probability, but the set
h−1{b} = {ha(b)| a ∈ A} is not necessarily a probability distribution on A.

Example 1.1. A = {1, 2, 3}, B = {a, b, c, d}, h : A# B:

h1 =

(
a b c d

0.3 0 0.7 0

)
, h2 =

(
a b c d
0 0 0 1

)
, h3 =

(
a b c d

0.2 0 0.2 0.6

)
.

In order to get the sets {ha(b)| a ∈ A}, for every b ∈ B, to be probability
distributions on A a necessary, but not sufficient, condition is to have the
equality |A| = |B|. An example is given below.

Example 1.2. A = {1, 2, 3}, B = {a, b, c}, s, h : A# B:

s1 =

(
a b c

0.2 0.5 0.3

)
, s2 =

(
a b c

0.6 0.4 0

)
, s3 =

(
a b c

0.2 0.1 0.7

)
;

h1 =

(
a b c

0.2 0.5 0.3

)
, h2 =

(
a b c

0.2 0.5 0.3

)
, h3 =

(
a b c

0.2 0.1 0.7

)
.

The sets s−1{a} = {0.2, 0.6, 0.2}, s−1{b} = {0.5, 0.4, 0.1}, s−1{c} =
{0.3, 0, 0.7} are probability distributions on A, while the set h−1{a} =
{0.2, 0.2, 0.2} is not.

Note that every probabilistic mapping from A to B is actually a family
of distributions on B indexed by the elements of A. In spite of the fact
that this is a familiar notion (discrete stochastic process), the main idea
is to consider some algebraic properties which are satisfied with certain
“probability". Therefore, we start with this concept and appropriate new
terminology.
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2. Representations of probabilistic mappings

Besides using the usual representations of mappings, in the case when the
sets are finite (and not having many elements), weighted digraphs, stochas-
tic matrices and tables are particularly convenient for expressing proba-
bilistic mappings. In what follows, we give the graph, matrix and table
representation of the probability mapping from Example 1.
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h h1 h2 h3
a 0.3 0 0.2
b 0 0 0
c 0.7 0 0.2
d 0 1 0.6

3. Compositions of probabilistic mappings

Let f : A # B and g : B # C be probabilistic mappings. Define composi-
tion of f and g to be the mapping h = g • f which maps every element a of
A into a real-valued function ha on C, determined by the rule

ha(c) =
∑
b∈B

fa(b)gb(c),

for every c ∈ C.

Theorem 3.1. A composition of probabilistic mappings is a probabilistic
mapping.

Proof. Let f : A# B and g : B # C be probabilistic mappings, and h be
the composition of f and g. Then for the image ha of an arbitrary element
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a of A, we obtain∑
c∈C

ha(c) =
∑
c∈C

∑
b∈B

fa(b)gb(c) =
∑
b∈B

(
fa(b)

∑
c∈C

gb(c)
)

=
∑
b∈B

fa(b) · 1 = 1.

Clearly ha(c) > 0 for each c ∈ C, hence for every a ∈ A, ha is a probability
distribution on C, so h is a probabilistic mapping, h : A# C.

By the definition of the notion composition of probabilistic mappings
and the matrix representation, we get the following result.

Theorem 3.2. Let A, B and C be finite sets, f : A # B and g : B # C.
If Π1 and Π2 are the corresponding matrices of f and g, respectively, then
their product Π1 ·Π2 is the matrix representation of the composition g • f .

Example 3.3. A = {1, 2, 3}, B = {a, b, c, d}, C = {u, v} :

Π1(A# B) =

0.3 0 0 0.7
0 0 0 1

0.2 0.1 0.4 0.3

 , Π2(B # C) =


0.8 0.2
1 0
0 1

0.6 0.4

 ,

Π1 ·Π2(A# C) =

0.66 0.34
0.6 0.4
0.44 0.56

 .

Theorem 3.4. Let f : A # B, g : B # C and h : C # D. Then
h • (g • f) = (h • g) • f .

Proof. Let a ∈ A. For each x ∈ D we have

(h • (g • f))a(x) =
∑
c∈C

(g • f)a(c)hc(x) =
∑
c∈C

(∑
b∈B

fa(b)gb(c)
)
hc(x)

=
∑
b∈B

∑
c∈C

fa(b)gb(c)hc(x) =
∑
b∈B

fa(b)
(∑
c∈C

gb(c)hc(x)
)

=
∑
b∈B

fa(b)(h • g)b(x) = ((h • g) • f)a(x).
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4. Definition of probabilistic groupoids

Let A 6= ∅ and N = {1, 2, . . . } be the set of natural numbers. Then, for
n ∈ N, the nth direct power of A is the set of ordered n-tuples An =
{(a1, a2, . . . , an)|ai ∈ A, i = 1, 2, . . . , n}. We take by definition A0 = {∅}.

Every probabilistic mapping f : An # A, n ∈ N ∪ {0}, is said to be an
n-ary probabilistic operation on A. The pair (A,F) of a nonempty set A and
a family F of probabilistic operations on A is called a probabilistic algebra.
In the case when F consists of only one binary probabilistic operation g :
A×A# A, we say that the probabilistic algebra is a probabilistic groupoid,
denoted by (A, g), or just by A when g is known. We also use the notation
ga,b for the probability distribution g(a, b). If ga,b(c) = p, then we say that
the probability the product of a and b to be c is p.

The class of all “ordinary" groupoids can be considered as a subclass of
the class of probabilistic groupoids. Namely, for a ∈ A, let εa ∈ DA be the
probability distribution which is determined by

εa(x) =

{
1 : x = a,
0 : x 6= a.

Denote by D0 the subset of DA which consists of such functions, that is
D0 = {εa ∈ DA| a ∈ A}. Then an “ordinary" groupoid is the pair (A, g),
where g : A×A# D0, under the identification εc ≡ c.

For A = {a} we have that g : A × A → D{a} is just ga,a = εa, so the
probabilistic groupoid ({a}, g) is in fact the (ordinary) trivial groupoid.

If B ⊆ A, we denote by extDB the subset of DA determined by:

f ∈ extDB ⇔ f(x) = 0 for every x ∈ A \B.

In the sequel we identify the distribution extDB on the set A and the
distribution DB on the set B. Clearly,

B1 ⊆ B2 ⊆ A⇒ DB1 ⊆ DB2 ⊆ DA.

Unlike in the case of ordinary groupoids, for finite |A| > 1, there are
infinitely many probabilistic groupoids. For instance, when A = {a, b}, one
is given by

g a b

a ga,a ga,b
b gb,a gb,b

, where
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ga,a =

(
a b

0.6 0.4

)
, gb,a =

(
a b
1 0

)
= εa,

ga,b =

(
a b

0.9 0.1

)
, gb,b =

(
a b
0 1

)
= εb.

This probabilistic groupoid can be presented in more convenient way by
using only one table, as follows:

g ga,a ga,b gb,a gb,b
a 0.6 0.9 1 0
b 0.4 0.1 0 1

.

Finite probabilistic groupoids can be represented by “cubes” whose ele-
ments belong to [0, 1] and the sum of the elements along the vertical axes
are equal to 1. The previous groupoid can be presented as follows.
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5. Probabilistic subgroupoids

Let (A, gA) and (B, gB) be probabilistic groupoids, and B ⊆ A. If for every
a, b ∈ B we have that gBa,b = gAa,b|B (gAa,b|B is the restriction of gAa,b on B,
i.e., gBa,b ∈ extDB), then we say that (B, gB) is a probabilistic subgroupoid
of (A, gA).

Let (A, g) be a probabilistic groupoid and B ⊆ A. Then B is said to be
a closed subset of A if ga,b(c) 6= 0 implies c ∈ B, for every a, b ∈ B.

Theorem 5.1. Let (A, g) be a probabilistic groupoid and B ⊆ A. Then B
is a probabilistic subgroupoid of A if and only if B is a closed subset of A.
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Proof. Let B be a probabilistic subgroupoid of A, and a, b ∈ B be arbitrary.
Assume that there is c ∈ A\B, such that ga,b(c) = p > 0. Then

1 =
∑
x∈A

ga,b(x) =
∑

x∈A\B

ga,b(x) +
∑
x∈B

ga,b(x) > p+
∑
x∈B

ga,b(x) = p+ 1 > 1,

a contradiction.
If B is a closed subset of A then, for every a, b ∈ B, we have that∑

x∈B
ga,b(x) = 1,

since ∑
x∈A

ga,b(x) = 1 and x /∈ B implies ga,b(x) = 0.

Hence, B is a probabilistic subgroupoid of A.

6. Some classes of probabilistic groupoids

sectionSome classes of probabilistic groupoids Here we define several classes
of probabilistic groupoids, corresponding to some classes of ordinary groupoids.

6.1 Probabilistic groupoids with units

Let (A, g) be a probabilistic grou-poid. An element l ∈ A (r ∈ A) is said to
be a left (right) unit if

(∀x ∈ A) gl,x = εx

(
(∀x ∈ A) gx,r = εx

)
,

that is, the probability of the product of l and x to be x is 1 (the probability
of the product of x and r to be x is 1), for every element x ∈ A. (Note that
this implies gl,x(y) = 0 (gx,r(y) = 0), for each y 6= x.)

Let a ∈ A be an arbitrary element, and consider the set

La = {ga,x(x)| x ∈ A}
(
Ra = {gx,a(x)| x ∈ A}

)
.

Let paL = inf La (pa
R = inf Ra). Then paL (pa

R) is called the probability
of the left (right) neutrality of a. The following property is obvious.

Proposition 6.1. An element l is a left unit (a right unit) if and only if
the probability of its left neutrality (right neutrality) is one.
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Proposition 6.2. Let (A, g) be a probabilistic groupoid and let a ∈ A.
Then the probability pbR (pb

L) of the right neutrality (left neutrality) of an
arbitrary element b ∈ A, b 6= a, does not exceed 1− paL (1− paR). Proof.
Let a ∈ A be fixed element and let b 6= a ∈ A be arbitrary element.Then we
have:

pb
R = inf{gx,b(x)|x ∈ A} 6 ga,b(a) = 1−

∑
x∈A
x 6=a

ga,b(x)

6 1− ga,b(b) 6 1− inf{ga,x(x)|x ∈ A} = 1− paL.

As a consequence of Proposition 6.2, we obtain the following statement.

Corollary 6.3. Let l (r) be a left unit (a right unit) of a probabilistic
groupoid (A, g). Then the probability of the right neutrality (left neutrality)
of any other element of A is 0.

It is clear that a probabilistic groupoid does not have to possess a left
unit, but if it has one, then it does not need to be a unique one; the same
holds for the right units. However, like in the case of ordinary groupoids, a
probabilistic groupoid can not have distinct left and right units.

Theorem 6.4. Let (A, g) be a probabilistic groupoid and let l be its left unit
and let r be its right unit. Then l = r.

Proof. Assume that l 6= r. Since l is a left unit, we have that gl,r(r) =
εr(r) = 1, and since r is a right unit, gl,r(l) = εl(l) = 1 also holds. But then

1 =
∑
x∈A

gl,r(x) > gl,r(r) + gl,r(l) = 2,

a contradiction.

An element e ∈ A which is both left and right unit is said to be a unit
of a probabilistic groupoid (A, g).

Having in mind the Corollary 6.3, we have the following property.

Corollary 6.5. Let e be the unit of a probabilistic groupoid (A, g). Then
the probability of both left and right neutrality of any element of A which is
distinct of e is 0.
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6.2 Idempotent probabilistic groupoids

Let (A, g) be a probabilistic groupoid and a ∈ A. Then the number p =
ga,a(a) is called the probability of the idempotence of a. The element a is
said to be idempotent if p = 1.

Proposition 6.6. Let e be the unit of a probabilistic groupoid (A, g). Then
e is an idempotent element.

Let I = {gx,x(x)|x ∈ A} be the set of the probabilities of idempotence of
the elements of (A, g). Then pI = infI is called the probability of the idem-
potence of the probabilistic groupoid (A, g). Hence, the probability of the
idempotence of any particular element is at least pI . Probabilistic groupoid
(A, g) is said to be idempotent if pI = 1 (i.e., if all of its elements are
idempotent ones).

6.3 Commutative probabilistic groupoids

Let a, b ∈ A, and for every z ∈ A let pza,b = min{ga,b(z), gb,a(z)}. Let

pa,b =
∑
z∈A

pza,b.

Then we say that the elements a and b commute with probability pa,b. The
value of pcom = inf{pa,b|a, b ∈ A} is said to be the probability of the com-
mutativity of the probabilistic groupoid (A, g). (A, g) is called a commutative
probabilistic groupoid if all of its elements commute with probability one,
that is if pcom = 1.

Theorem 6.7. A probabilistic groupoid (A, g) is commutative if and only
if

(∀a, b ∈ A) ga,b = gb,a.

Proof. Let (A, g) be commutative and a, b ∈ A. Then pcom = 1 implies∑
z∈A

min{ga,b(z), gb,a(z)} = 1.

Let us assume that ga,b 6= gb,a. It means that ga,b(u) 6= gb,a(u), for some
u ∈ A. Without loss of generality we can take that ga,b(u) < gb,a(u). Then
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we obtain

1=
∑
z∈A

min{ga,b(z), gb,a(z)}=
∑
z∈A
z 6=u

min{ga,b(z), gb,a(z)}+min{ga,b(u), gb,a(u)}

6
∑
z∈A
z 6=u

gb,a(z) + ga,b(u) <
∑
z∈A
z 6=u

gb,a(z) + gb,a(u) =
∑
z∈A

gb,a(z) = 1,

a contradiction.
Let ga,b = gb,a, for all a, b ∈ A. Hence, ga,b(z) = gb,a(z), for every z ∈ A.

Then

pa,b =
∑
z∈A

pza,b =
∑
z∈A

min{ga,b(z), gb,a(z)} =
∑
z∈A

ga,b(z) = 1.

By pa,b = 1 for all a, b ∈ A, we get pcom = inf{pa,b|a, b ∈ A} = 1, that is,
(A, g) is a commutative probabilistic groupoid.

6.4 Composite products of probabilistic groupoids

Given a set A = {a1, a2, . . . , an}, we define inductively terms over the set
A as follows. Each element x ∈ A is a term of length 1, the terms of length
2 are (xy), where x, y ∈ A, and if T1 and T2 are already defined terms of
lengths l1 and l2, then (T1T2) is a term of length l1 + l2. For instance, given
x, y, z, t ∈ A, x(yz), (xy)z are terms of length 3 (and also z(tz), (tz)y, . . . ),
terms of length 4 are t(x(yz)), t((xy)z), (x(yz))t, ((xy)z)t, (xy)(zt) (and also
t(x(xx)), y((xt)t), (t(yz))x, . . . ). (Here, we avoided the non-necessary out-
side brackets.)

For a probabilistic groupoid (A, g), to each term T over the set A of
length at least 2, we associate a probability distribution gT in an inductive
way as follows. To each term ab, a, b ∈ A, of length 2 we associate the
probability distribution ga,b (the product of a and b in the probabilistic
groupoid (A, g)). To the terms T = T1T2 of length l > 3 we associate
inductively a probability distribution gT = gT1,T2 over A as follows.

(1) If T1 ∈ A then gT1,T2(z) =
∑
u∈A

gT1,u(z)gT2(u).

(2) If T2 ∈ A then gT1,T2(z) =
∑
u∈A

gT1(u)gu,T2(z).

(3) If T1, T2 /∈ A then gT1,T2(z) =
∑
u∈A

gT1,u(z)gT2(u)
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=
∑
u∈A

(∑
v∈A

gT1(v)gv,u(z)
)
gT2(u).

Note that gT1,u and gu,T2 are probability distributions and that, by the
inductive hypothesis, when T1 (or T2) is of length > 2, the probability
distribution gT1 (or gT2) is defined.

Theorem 6.8. Let (A, g) be a probabilistic groupoid and let T be a term
of length at least 2. Then gT is a probability distribution on A.

Proof. The claim is trivial when the length of T is 2. Let T be of length
at least 3, i.e., T = T1T2. We use an induction of the length of the terms.

By the definition of gT we have to consider three cases.
(1) Let T1 ∈ A. Then we have∑

z∈A
gT1,T2(z) =

∑
z∈A

∑
u∈A

gT1,u(z)gT2(u) =

=
∑
u∈A

gT2(u)
∑
z∈A

gT1,u(z) =
∑
u∈A

gT2(u) · 1 = 1.

(2) The case T2 ∈ A follows the steps of the case (1).
(3) Let T1, T2 /∈ A. Then we have∑

z∈A
gT1,T2(z) =

∑
z∈A

(∑
u∈A

gT1,u(z)gT2(u)
)

=
∑
u∈A

gT2(u)
(∑
z∈A

gT1,u(z)
)

= (by case (2), since u ∈ A)

=
∑
u∈A

gT2(u) · 1 = 1.

Example 6.9. Let (A, g), where A = {a, b}, be a probabilistic groupoid
given by the table

g ga,a ga,b gb,a gb,b
a 0.3 0.8 1 0.4
b 0.7 0.2 0 0.6

.

We have ga,(a,a) =

(
a b

0.65 0.35

)
, since ga,(a,a)(z) =

∑
u∈A

ga,u(z)ga,a(u)

and then ga,(a,a)(a) =
∑
u∈A

ga,u(a)ga,a(u) = 0.3 · 0.3 + 0.8 · 0.7 = 0.65,

ga,(a,a)(b) =
∑
u∈A

ga,u(b)ga,a(u) = 0.7 · 0.3 + 0.2 · 0.7 = 0.35.
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One can also compute that g(a,a),a =

(
a b

0.79 0.21

)
, g(b,a),(a,b) =

(
a b

0.4 0.6

)
,

and so on.

6.5 Associative probabilistic groupoids

Consider a probabilistic grou-poid (A, g). Let a, b, c ∈ A and let pza,b,c
= min{g(a,b),c(z), ga,(b,c)(z)}, where

g(a,b),c(z) =
∑
u∈A

g(a,b)(u)gu,c(z), ga,(b,c)(z) =
∑
u∈A

ga,u(z)g(b,c)(u).

Define
pa,b,c =

∑
z∈A

pza,b,c

to be the probability of the associativity of the elements a,b and c, while the
probability pass = inf{pa,b,c|a, b, c ∈ A} is referred to be the probability of
the associativity of the probabilistic groupoid (A, g). A probabilistic groupoid
is said to be associative (or a probabilistic semigroup) if pass = 1.

We prove the following statement in the same manner as Theorem 6.7.

Theorem 6.10. A probabilistic groupoid (A, g) is associative if and only if

(∀a, b, c ∈ A)ga,(b,c) = g(a,b),c.

Proof. Let (A, g) be associative probabilistic groupoid, and assume that
ga,(b,c) 6= g(a,b),c for some a, b, c ∈ A. Consequently, there is a u ∈ A such
that ga,(b,c)(u) < g(a,b),c(u) (the assumption ga,(b,c)(u) > g(a,b),c(u) would
cause negligible changes of the proof). Since 1=pass= inf{px,y,z|x, y, z∈A},
we obtain that pa,b,c = 1. Then we have:

1 = pa,b,c =
∑
z∈A

pza,b,c =
∑
z∈A

min{g(a,b),c(z), ga,(b,c)(z)}

=
∑
z 6=u

min{g(a,b),c(z), ga,(b,c)(z)}+min{g(a,b),c(u), ga,(b,c)(u)}

6
∑
z 6=u

g(a,b),c(z) +min{g(a,b),c(u), ga,(b,c)(u)}

<
∑
z 6=u

g(a,b),c(z) + g(a,b),c(u) =
∑
z∈A

g(a,b),c(z) = 1,

a contradiction. Hence, ga,(b,c) = g(a,b),c for all a, b, c ∈ A.
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On the other hand, if (∀a, b, c ∈ A)ga,(b,c) = g(a,b),c holds in a probabilis-
tic groupoid (A, g), then pza,b,c = g(a,b),c(z) = ga,(b,c)(z), for all a, b, c ∈ A,
and every z ∈ A. Therefore,

∑
z∈A

pza,b,c =
∑
z∈A

pa,(b,c)(z) = 1, that is pa,b,c = 1,

for every a, b, c ∈ A. This implies pass = inf{pa,b,c|a, b, c ∈ A} = 1, which
means that (A, g) is an associative probabilistic groupoid.

Example 6.11. We will find all probabilistic semigroups of order 2. Let
A = {a, b} and

g ga,a ga,b gb,a gb,b
a α1 α2 α3 α4

b β1 β2 β3 β4

,

where αi > 0, βi > 0, αi + βi = 1. Since we want the associativity to be
satisfied, i.e., g(a,a),a(z) = ga,(a,a)(z), g(a,a),b(z) = ga,(a,b)(z), g(a,b),a(z) =
ga,(b,a)(z), . . . . . . , g(b,b),b(z) = gb,(b,b)(z), for z ∈ {a, b}, we obtain the fol-
lowing equations with unknowns αi and βi:

α1α1 + β1α3 = α1α1 + α2β1, α1β1 + β1β3 = β1α1 + β2β1,

α1α2 + β1α4 = α1α2 + α2β2, α1β2 + β1β4 = β1α2 + β2β2,

α2α1 + β2α3 = α1α3 + α2β3, α2β1 + β2β3 = β1α3 + β2β3,

α2α2 + β2α4 = α1α4 + α2β4, α2β2 + β2β4 = β1α4 + β2β4,

α3α1 + β3α3 = α3α1 + α4β1, α3β1 + β3β3 = β3α1 + β4β1,

α3α2 + β3α4 = α3α2 + α4β2, α3β2 + β3β4 = β3α2 + β4β2,

α4α1 + β4α3 = α3α3 + α4β3, α4β1 + β4β3 = β3α3 + β4β3,

α4α2 + β4α4 = α3α4 + α4β4, α4β2 + β4β4 = β3α4 + β4β4.

After simplification of the above equalities, two cases remain to be con-
sidered.

Case 1: α4 6= 0 or β1 6= 0. Then we have α2 = α3 and β2 = β3, and
the above system reduces to

β1α4 = α2β2,

α1β2 + β1β4 = β1α2 + β2β2,

α2α2 + β2α4 = α1α4 + α2β4.

After replacing βi by 1 − αi we get that the last system reduces to one
equation

α4(1− α1) = α2(1− α2).
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It follows that in the case α1 6= 1 we can choose arbitrary value for α1 ∈
[0, 1) and then we have the solution

g ga,a ga,b gb,a gb,b
a α1 α2 α2 α2

1−α2
1−α1

b 1− α1 1− α2 1− α2 1− α2
1−α2
1−α1

,

for any α2 such that 0 6 α2
1−α2
1−α1

6 1. In the case α4 6= 0 we can choose
arbitrary value for α4 ∈ (0, 1] and then we have the solution

g ga,a ga,b gb,a gb,b
a 1− α2

1−α2
α4

α2 α2 α4

b α2
1−α2
α4

1− α2 1− α2 1− α4

,

for any α2 such that 0 6 α2
1−α2
α4

6 1.
We notice that in this case all probabilistic semigroups are commutative,

since ga,b = gb,a.
Case 2: α4 = 0 and β1 = 0. Then α1 = 1 and β4 = 1 and the starting

system of equations reduces to
α2 + β2α3 = α3 + α2β3, α2β2 = 0, β2β2 = β2, α2α2 = α2,
α3β2 + β3 = β2α2 + β2, α3β3 = 0, α3α3 = α3, β3β3 = β3.

There are only three solutions in this case:
(α1, α2, α3, α4) ∈ {(1, 0, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0)},

and only for (α1, α2, α3, α4) = (1, 0, 1, 0) we have non-commutative (ordi-
nary) semigroup.

6.6 Probabilistic quasigroups

An ordinary groupoid (Q, ·) is said to be a quasigroup if

(∀a, b ∈ Q)(∃!x, y ∈ Q)(ax = b & ya = b).

We say that a probabilistic groupoid (Q, g) is a probabilistic quasigroup with
probability p (or a p-quasigroup) if

(∀a, b ∈ Q)(∃x, y ∈ Q)(ga,x(b) > p & gy,a(b) > p).

Note that for 0 6 q < p 6 1, every p − quasigroup is a q − quasigroup as
well. It is also clear that every probabilistic groupoid is a 0-quasigroup.
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In the case of p-quasigroups, depending of the value of p, for some
a, b ∈ Q may exist several x, y ∈ Q such that ga,x(b) > p and/or gy,a(b) > p.
Since in any distribution gα,β , when p > 1/2, may exist (if any) a unique
element b such that gα,β(b) = p, we have the following.

Proposition 6.12. If p > 1/2, then for any finite p-quasigroup it is true
that

(∀a, b ∈ Q)(∃!x, y ∈ Q)(ga,x(b) > p & gy,a(b) > p).

Proof. The proof follows by the Pigeonhole Principal. Let Q = {q1, . . . , qn}
be a p-quasigroup and p > 1/2. If ga,x1(b) > p and ga,x2(b) > p for some
a, b, x1 6= x2 ∈ Q, then we have for each of the rest n−1 elements c ∈ Q\{b}
to find some x ∈ Q \ {x1, x2} such that ga,x(c) > p.

Corollary 6.13. 1-quasigroups are ordinary quasigroups.

A probabilistic groupoid (A, g) is said to be with left (right) cancellation
if for every a, b, c ∈ A we have

ga,b = ga,c ⇒ b = c (ga,b = gc,b ⇒ a = c).

A probabilistic groupoid is said to be cancellative if it is with left and right
cancellation.

Proposition 6.14. If p > 1/2, then a p-quasigroup is a cancellative prob-
abilistic groupoid.

Proof. Let p > 1/2 and let (Q, g) be a p-quasigroup. If ga,x = ga,y, then for
the distribution ga,x there is a unique b ∈ Q such that ga,x(b) = ga,y(b) > p.
Now, by Proposition 6.12, we have x = y.

Example 6.15. A 0.5-quasigroup (Q, g), where Q = {1, 2, 3, 4}, is pre-
sented by the distributions given in Table 1. We can see there that g2,1(2) >
0.5, g1,4(2) > 0.5, g4,4(2) > 0.5, etc.

6.7 Inverse elements

Let (A, g) be a probabilistic groupoid which possess a unit e, and let a, b ∈
A. If ga,b(e) = p, then we say that a is a left inverse of b with probability
p and that b is a right inverse of a with probability p. It is obvious that
left/right p-inverses of an element do not have to exist, but if so, then there
might be more than one. If an element a is both left p-inverse and right
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g1,1 g1,2 g1,3 g1,4 g2,1 g2,2 g2,3 g2,4
1 0 0.7 0.5 0.1 0 0.3 0.5 0.04
2 0.5 0.1 0 0.6 0.5 0.1 0.5 0.36
3 0.5 0.2 0 0 0.4 0.1 0 0.5
4 0 0 0.5 0.3 0.1 0.5 0 0.1

g3,1 g3,2 g3,3 g3,4 g4,1 g4,2 g4,3 g4,4
1 0.5 0.2 0 0.1 0.1 0 0.2 0.5
2 0.4 0.55 0 0.1 0.4 0 0.5 0.5
3 0.1 0.25 0.5 0.3 0 0.5 0.13 0
4 0 0 0.5 0.5 0.5 0.5 0.17 0

Table 1: A probabilistic 0.5-quasigroup of order 4.

p-inverse of an element b, then the elements a and b are referred as mutually
p-inverse or p-inverse to each other.

If e is a unit of (A, g), then ga,e(e) = εa(e) =

{
1 : e = a,
0 : e 6= a.

Hence, the

only left p-inverse of e is e itself, and it can be only a 1-inverse as well. So,
the next property holds.

Proposition 6.16. Let e be the unit of a probabilistic groupoid (A, g). Then
e is left and right 1-inverse element to itself.

Further on, instead of a 1-inverse element, we will say simply an inverse
element.

We will prove that an inverse element in a probabilistic semigroup is
unique.

Theorem 6.17. Let the element a of a probabilistic semigroup A = (A, g)
have left inverse b and right inverse c. Then b = c.

Proof. Given that b is a left inverse and c is a right inverse of a, we will
prove that εb = εc, that implies b = c. Denote by e the unit of A. We have

gb,(a,c)(z) =
∑
u∈A

gb,u(z)ga,c(u) = gb,e(z) · 1 = gb,e(z) = εb(z),

since ga,c(e) = 1 and ga,c(u) = 0 when u 6= e. In the same way

g(b,a),c(z) =
∑

u∈A gb,a(u)gu,c(z) = 1 · ge,c(z) = ge,c(z) = εc(z).
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Now, gb,(a,c)(z) = g(b,a),c(z) implies εb(z) = εc(z) for every z ∈ A, i.e.,
εb = εc.

The unique left and right inverse of an element a ∈ A is called an inverse
of a and is denoted by a−1.

Proposition 6.18. Let (A, g) be a probabilistic semigroup with unit e and
let an element b ∈ A has a left (right) inverse. Then for every c, d ∈ A we
have

gb,c = gb,d =⇒ c = d (gc,b = gd,b =⇒ c = d).

Proof. Assume that a is a left inverse of b and gb,c = gb,d. Then ga,(b,c)(z) =∑
u∈A

ga,u(z)gb,c(u) =
∑
u∈A

ga,u(z)gb,d(u) = ga,(b,d)(z), and by associativity we

have g(a,b),c(z) = g(a,b),d(z). So,
∑
u∈A

ga,b(u)gu,c(z) =
∑
u∈A

ga,b(u)gu,d(z) and,

since ga,b(u) = 0 when u 6= e, we obtain ge,c(z) = ge,d(z). This means that
εc = εd, i.e., c = d.

As a corollary of Proposition 6.18 we have the following.

Theorem 6.19. If each element of a probabilistic semigroup has inverse,
then the semigroup is cancellative.

The next simple lemma will be used in the next section.

Lemma 6.20. If a and b are mutually inverse elements in a probabilistic
groupoid (A, g) with unit e, then for each c ∈ A we have gc,(a,b) = gc,e = εc
and g(a,b),c = ge,c = εc.

Proof. We have gc,(a,b)(z) =
∑
u∈A

gc,u(z)ga,b(u) = gc,e(z)ga,b(e) = gc,e(z) =

εc(z), since ga,b(u) = 0 when u 6= e.

7. Probabilistic groups

A probabilistic semigroup is said to be a p-probabilistic group if it has a
unit and each element has a p-inverse. In what follows we will consider
several examples in order to support our opinion that there are not finite
essential p-groups. In fact, we found (without proofs) that there are no
finite p-groups when p < 1, and that for p = 1 the probabilistic 1-groups
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are ordinary groups. Further on, we will say a probabilistic group instead
of a probabilistic 1-group.

Example 7.1. We are asking for all p-groups on the set {e, a, b}, where
0 < p < 1, e is the unit and b is a p-inverse of a. We have the distributions

ge,e ga,e = ge,a gb,e = ge,b ga,b gb,a ga,a gb,b
e 1 0 0 p p γ1 γ2
a 0 1 0 α1 α2 α3 α4

b 0 0 1 β1 β2 β3 β4

for some αi, βi, γi ∈ [0, 1], p+α1 + β1 = 1, p+α2 + β2 = 1, γ1 +α3 + β3 =
1, γ2 + α4 + β4 = 1.

By the associativity, the following 8 equations have to be satisfied for z ∈
{e, a, b}: ga,(a,a)(z) = g(a,a),a(z), ga,(a,b)(z) = g(a,a),b(z), . . . , gb,(b,b)(z) =
g(b,b),b(z). We can infer several equations in unknowns αi, βi, γi.

From ga,(a,a)(z) = g(a,a),a(z), for z = a we have

(α1 − α2)β3 = 0, (1)

and for z = b we have
(β1 − β2)β3 = 0. (2)

From ga,(a,b)(z) = g(a,a),b(z), for z = e we have

γ1α1 + pβ1 = pα3 + β3γ2, (3)

for z = a we have
p+ α1β1 = β3α4, (4)

and for z = b we have

β1α1 + β1β1 = γ1 + α3β1 + β3β4. (5)

From ga,(b,b)(z) = g(a,b),b(z), for z = e we have

γ1α4 + pβ4 = pα1 + β1γ2, (6)

and for z = a we have

α4 + α3α4 + α1β4 = α1α1 + β1α4. (7)
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From gb,(a,a)(z) = g(b,a),a(z), for z = e we have

γ2β3 + pα3 = pβ2 + α2γ1, (8)

and for z = b we have

β3 + β2α3 + β3β4 = α2β3 + β2β2. (9)

Finally, from gb,(b,a)(z) = g(b,b),a(z), for z = e we have

pα2 + γ2β2 = α4γ1 + pβ4, (10)

and for z = a we have

α2α2 + α4β2 = γ2 + α4α3 + β4α2. (11)

The equation (4), since 0 < p < 1, implies α4 > 0, β3 > 0, and then by
(1) and (2) we conclude that α1 = α2 = α and β1 = β2 = β. Now, from (5)
and (11) we have

γ1 = βα+ ββ − α3β − β3β4 (12)

and
γ2 = αα+ α4β − α4α3 − β4α. (13)

We replace γ1 and γ2 in (3) and we obtain the equation

βαα+ββα−α3βα−β3β4α+ pβ = pα3 +ααβ3 +α4ββ3−α4α3β3−β4αβ3.
(14)

After replacing α4β3 by p + αβ (according (4)) and after simplifying, we
obtain the equation βαα = ααβ3. The last equation implies α = 0 or
β = β3. We have to consider three cases.

Case α = 0 and β = β3.
We replace α = 0 and β = β3 in the equation (9) and we get β + βα3 +

ββ4 = ββ. Since β = β3 > 0, it follows that 1 + α3 + β4 = β, i.e. β = 1.
This is a contradiction with p+ α+ β = 1, p > 0.

Case α = 0 and β 6= β3.
We replace α = 0 in the equation (7) and we get α4+α3α4 = βα4. Since

α4 > 0, it follows that 1 + α3 = β, that leads to a contradiction again.

Case α > 0 and β = β3.
We replace β = β3 in the equation (9) and we get β + βα3 + ββ4 =

αβ + ββ. Since β = β3 > 0, it follows that 1 + α3 + β4 = α + β, implying
α+ β = 1. This is a contradiction with p+ α+ β = 1, 0 < p < 1.
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The obtained contradictions shows that there are no probabilistic p-
groups on the set {e, a, b}, where 0 < p < 1, e is the unit and b is a
p-inverse of a. In a similar way one can show that there are no probabilistic
p-groups on the set {e, a, b}, where 0 < p < 1, e is the unit and a (b) is a
p-inverse of a (b).

Example 7.2. Let (A, g), where A = {e, a, b}, be a probabilistic group
with unit e. Let us first assume that a−1 = a, and then b−1 = b. Then we
have the distributions

ge,e, ga,a, gb,b ga,e, ge,a gb,e, ge,b ga,b gb,a
e 1 0 0 α α1

a 0 1 0 β β1
b 0 0 1 γ γ1

for some α, β, γ, α1, β1, γ1 ∈ [0, 1], α+ β + γ = α1 + β1 + γ1 = 1.

By associativity we have g(a,a),b = ga,(a,b), where (according to Lemma
6.20) g(a,a),b(b) = εb(b) = 1, and ga,(a,b)(b) = ga,e(b)ga,b(e) + ga,a(b)ga,b(a) +
ga,b(b)ga,b(b) = γγ.

So we get the equation γγ = 1, i.e., γ = 1. This means that ge,b = ga,b,
i.e., e = a. The obtained contradiction implies that a 6= a−1.

Now, let a−1 = b. Then, by Example 7.1, for p = 1 we have α1 = β1 =
α2 = β2 = α3 = β4 = γ1 = γ2 = 0 and α4 = β3 = 1. Hence, this probability
group is in fact the cyclic group

e a b

e e a b
a a b e
b b e a

.

Example 7.3. Let (A, g), where A = {e, a, b, c}, be a probabilistic group
with unit e. We have to consider two cases, case I and case II.

I. Let first assume that a−1 = a, b−1 = b, c−1 = c. Then we have the
following distributions, presented in more compact way,

ge,e, ga,a ga,e gb,e gc,e
gb,b, gc,c ge,a ge,b ge,c ga,b ga,c gb,a gb,c gc,a gc,b

e 1 0 0 0 α1 α2 α3 α4 α5 α6

a 0 1 0 0 β1 β2 β3 β4 β5 β6
b 0 0 1 0 γ1 γ2 γ3 γ4 γ5 γ6
c 0 0 0 1 δ1 δ2 δ3 δ4 δ5 δ6
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where αi, βi, γi, δi > 0, αi + βi + γi + δi = 1, for i = 1, 2, . . . , 6.
By associativity we have the following equalities.

Case ga,(a,b) = g(a,a),b. By Lemma 6.20 we have g(a,a),b(z) = ge,b(z) =

εb(z) =

(
e a b c
0 0 1 0

)
, and we compute the distribution ga,(a,b).

ga,(a,b)(z) = ga,e(z)ga,b(e)+ga,a(z)ga,b(a)+ga,b(z)ga,b(b)+ga,c(z)ga,b(c) =

=


0
1
0
0

α1 +


1
0
0
0

β1 +


α1

β1
γ1
δ1

 γ1 +


α2

β2
γ2
δ2

 δ1 =


β1 + α1γ1 + α2δ1
α1 + β1γ1 + β2δ1
γ1γ1 + γ2δ1
δ1γ1 + δ2δ1

.
Hence, we have the following system of equations

β1 + α1γ1 + α2δ1 = 0,
α1 + β1γ1 + β2δ1 = 0,

γ1γ1 + γ2δ1 = 1,
δ1γ1 + δ2δ1 = 0,

i.e.,


α1 = β1 = 0,

α1γ1 = β1γ1 = δ1γ1 = 0,
α2δ1 = β2δ1 = δ2δ1 = 0,

γ1γ1 + γ2δ1 = 1.

We consider two possibilities.
γ1 6= 0. Then we have α1 = β1 = δ1 = 0, γ1 = 1, and this implies

ga,b = ge,b. After cancellation we get the contradiction a = e.

γ1 = 0. Then, from γ2δ1 = 1 we have γ2 = 1, δ1 = 1. Hence, we
have α1 = β1 = γ1 = 0, δ1 = 1, and this implies ga,b = ge,c, and also
α2 = β2 = δ2 = 0, γ2 = 1, implying ga,c = ge,b.

Case gb,(b,c) = g(b,b),c. By Lemma 6.20 we have g(b,b),c(z) = ge,c(z) =

εc(z) =

(
e a b c
0 0 0 1

)
, and we compute the distribution gb,(b,c).

gb,(b,c)(z) = gb,e(z)gb,c(e) + gb,a(z)gb,c(a) + gb,b(z)gb,c(b) + gb,c(z)gb,c(c) =

=


0
0
1
0

α4 +


α3

β3
γ3
δ3

β4 +


1
0
0
0

 γ4 +


α4

β4
γ4
δ4

 δ4 =


α3β4 + γ4 + α4δ4
β3β4 + β4δ4

α4 + γ3β4 + γ4δ4
δ3β4 + δ4δ4

.
Hence, we have the following system of equations

α3β4 + γ4 + α4δ4 = 0,
β3β4 + β4δ4 = 0,

α4 + γ3β4 + γ4δ4 = 0,
δ3β4 + δ4δ4 = 1,

i.e.,


α4 = γ4 = 0,

α3β4 = β3β4 = γ3β4 = 0,
α4δ4 = β4δ4 = γ4δ4 = 0,

δ3β4 + δ4δ4 = 1.

We consider two possibilities.
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β4 6= 0. Then from β4δ4 = 0 we get δ4 = 0, and so α4 = γ4 = δ4 =
0, β4 = 1, which implies gb,c = ge,a. On the other side, we have also
α3 = β3 = γ3 = 0, δ3 = 1, implying gb,a = ge,c.

β4 = 0. Then α4 = β4 = γ4 = 0, δ4 = 1, implying gb,c = ge,c, leading to
the contradiction b = e.

Case gc,(c,a) = g(c,c),a. By Lemma 6.20 we have g(c,c),a(z) = ge,a(z) =

εa(z) =

(
e a b c
0 1 0 0

)
, and we compute the distribution gc,(c,a).

gc,(c,a)(z) = gc,e(z)gc,a(e)+gc,a(z)gc,a(a)+gc,b(z)gc,a(b)+gc,c(z)gc,a(c) =

=


0
0
0
1

α5 +


α5

β5
γ5
δ5

β5 +


α6

β6
γ6
δ6

 γ5 +


1
0
0
0

 δ5 =


α5β5 + α6γ5 + δ5
β5β5 + β6γ5
γ5β5 + γ6γ5

δ5β5 + δ6γ5 + α5

.
Hence, we have the following system of equations

α5β5 + α6γ5 + δ5 = 0,
β5β5 + β6γ5 = 1,
γ5β5 + γ6γ5 = 0,

δ5β5 + δ6γ5 + α5 = 0,

i.e.,


α5 = δ5 = 0,

α5β5 = γ5β5 = δ5β5 = 0,
α6γ5 = γ6γ5 = δ6γ5 = 0,

β5β5 + β6γ5 = 1.

We consider two possibilities.

β5 = 0. Then from β6γ5 = 1 we get β6 = 1, γ5 = 1, that implies
α6 = γ6 = δ6 = 0, β6 = 1, and we infer that gc,b = ge,a. On other side, we
also have α5 = β5 = δ5 = 0, γ5 = 1, implying gc,a = ge,b.

β5 6= 0. Then α5 = γ5 = δ5 = 0, β5 = 1, and this implies gc,a = ge,a,
leading to the contradiction c = e.

Altogether, we get ga,b = ge,c, ga,c = ge,b, gb,c = ge,a, gb,a = ge,c,
gc,b = ge,a, gc,a = ge,b. This means that the probability group is in fact
the ordinary Klein group

e a b c

e e a b c
a a e c b
b b c e a
c c b a e

.

II. The other case is c−1 = a, b−1 = b (or c−1 = b, a−1 = a, or
b−1 = a, c−1 = c, these lead to isomorphic results). Then we have the
following distributions,
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ge,e, gb,b ga,e gb,e gc,e
ga,c, gc,a ge,a ge,b ge,c ga,a ga,b gb,a gb,c gc,b gc,c

e 1 0 0 0 α1 α2 α3 α4 α5 α6

a 0 1 0 0 β1 β2 β3 β4 β5 β6
b 0 0 1 0 γ1 γ2 γ3 γ4 γ5 γ6
c 0 0 0 1 δ1 δ2 δ3 δ4 δ5 δ6

where αi, βi, γi, δi > 0, αi + βi + γi + δi = 1, for i = 1, 2, . . . , 6.
By associativity we have the following equalities.

Case g(b,b),c = gb,(b,c). By Lemma 6.20 we have gg(b,b),c(z) = ge,c(z) =

εc(z) =

(
e a b c
0 0 0

)
, and we compute the distribution gb,(b,c).

gb,(b,c)(z) = gb,e(z)gb,c(e) + gb,a(z)gb,c(a) + gb,b(z)gb,c(b) + gb,c(z)gb,c(c) =

=


0
0
1
0

α4 +


α3

β3
γ3
δ3

β4 +


1
0
0
0

 γ4 +


α4

β4
γ4
δ4

 δ4 =


α3β4 + γ4 + α4δ4
β3β4 + β4δ4

α4 + γ3β4 + γ4δ4
γ3β4 + δ4δ4

.
Hence, we have the following system of equations

α3β4 + γ4 + α4δ4 = 0,
β3β4 + β4δ4 = 0,

α4 + γ3β4 + γ4δ4 = 0,
γ3β4 + δ4δ4 = 1,

i.e.,


α4 = γ4 = 0,

α3β4 = β3β4 = γ3β4 = 0,
α4δ4 = β4δ4 = γ4δ4 = 0,

γ3β4 + δ4δ4 = 1.

We consider two possibilities.
β4 6= 0. Then we have α3 = β3 = γ3 = 0, δ3 = 1, implying gb,a = ge,c.

It follows from β4δ4 = 0 that δ4 = 0, i.e., we have α4 = δ4 = γ4 = 0, β4 = 1,
and so we have gb,c = ge,a.

β4 = 0. Then from δ4δ4 = 1 we have α4 = β4 = γ4 = 0, δ4 = 1, leading
to the contradiction gb,c = ge,c.

Case g(a,a),c = ga,(a,c). By Lemma 6.20 we have ga,(a,c)(z) = ga,e(z) =

εa(z) =

(
e a b c
0 1 0 0

)
, and we compute the distribution g(a,a),c.

g(a,a),c(z) = ga,a(e)ge,c(z)+ga,a(a)ga,c(z)+ga,a(b)gb,c(z)+ga,a(c)gc,c(z) =

= α1


0
0
0
1

+ β1


1
0
0
0

+ γ1


α4

β4
γ4
δ4

+ δ1


α6

β6
γ6
δ6

 =


β1 + γ1α4 + δ1α6

γ1β4 + δ1β6
γ1γ4 + δ1γ6

α1 + γ1δ4 + δ1δ6

.
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Hence, we have the following system of equations
β1 + γ1α4 + δ1α6 = 0,

γ1β4 + δ1β6 = 1,
γ1γ4 + δ1γ6 = 0,

α1 + γ1δ4 + δ1δ6 = 0,

i.e.,


α1 = β1 = 0,

γ1α4 = γ1γ4 = γ1δ4 = 0,
δ1α6 = δ1γ6 = δ1δ6 = 0,

γ1β4 + δ1β6 = 1.

We consider two possibilities.

δ1 6= 0. Then we have α6 = γ6 = δ6 = 0, β6 = 1, leading to a contradic-
tion gc,c = ga,e, since we have shown in the previous case that gb,c = ga,e.

δ1 = 0. Then we have α1 = β1 = δ1 = 0, γ1 = 1, and this gives
ga,a = gb,e.

Case g(a,b),b = ga,(b,b). By Lemma 6.20 we have ga,(b,b)(z) = ga,e(z) =

εa(z) =

(
e a b c
0 1 0 0

)
, and we compute the distribution g(a,b),b.

g(a,b),b(z) = ga,b(e)ge,b(z)+ga,b(a)ga,b(z)+ga,b(b)gb,b(z)+ga,b(c)gc,b(z) =

= α2


0
0
1
0

+ β2


α2

β2
γ2
δ2

+ γ2


1
0
0
0

+ δ2


α5

β5
γ5
δ5

 =


β2α2 + γ2 + δ2α5

β2β2 + δ2β5
α2 + β2γ2 + δ2γ5
β2δ2 + δ2δ5

.
Hence, we have the following system of equations

β2α2 + γ2 + δ2α5 = 0,
β2β2 + δ2β5 = 1,

α2 + β2γ2 + δ2γ5 = 0,
β2δ2 + δ2δ5 = 0,

i.e.,


α2 = γ2 = 0,

β2α2 = β2γ2 = β2δ2 = 0,
δ2α5 = δ2γ5 = δ2δ5 = 0,

β2β2 + δ2β5 = 1.

We consider two possibilities.

δ2 6= 0. Then we have α5 = γ5 = δ5 = 0, β5 = 1, implying gc,b = ge,a.
It follows from β2δ2 = 0 that β2 = 0, i.e., we have α2 = β2 = γ2 = 0, δ2 = 1,
and so we have ga,b = ge,c.

δ2 = 0. Then from β2β2 = 1 we have α2 = γ2 = δ2 = 0, β2 = 1,, leading
to the contradiction ga,b = ga,e.

Until now he have proved that gc,b = ge,a, ga,b = ge,c, gb,a = ge,c,
gb,c = ge,a, ga,a = gb,e. We will show that the equality gc,c = ge,b is also
true. Namely, from gc,b = ga,e, we have gc,(c,b) = gc,(a,e) = g(c,a),e =
ge,e = εe, and hence g(c,c),b = gc,(c,b) = εe. Now, g((c,c),b),b = ge,b, i.e.,
g(c,c),(b,b) = g(c,c),e = gc,c = ge,b. The obtained equalities show that this
probabilistic group is in fact the cyclic group



Probabilistic groupoids 93

e a b c

e e a b c
a a b c e
b b c e a
c c e a b

.

The careful analyses of the Examples 7.2 and 7.3 can give us a hint for
proving the following Hypothesis.

Hypothesis. Each finite probabilistic group is a group.

We are not going to give a complete proof here, mainly because of tech-
nical reasons. We only show how a proof can be inferred for finite groups.

Let (A, g) be a probabilistic group with unit e, where A = {e, a1, a2, an}.
Let suppose that a−12 = a1, i.e., ga1,a2 = ga2,a1 = εe. Take an element
ak, k > 2, and consider the associativity g(a1,a2),ak = ga1,(a2,ak). By

Lemma 6.20 we have g(a1,a2),ak = εak =

(
e a1 a2 . . . ak . . . an
0 0 0 . . . 1 . . . 0

)
,

and we compute the distribution ga1,(a2,ak)(z) =
∑
u∈A

ga1,u(z)ga2,ak(u). (Note

that ga2,ak(u) ∈ A and ga1,u(z) are distributions.) The same way as in Ex-
amples 7.2 and 7.3 we will get a system of equations of type α = 0, αβ = 0
for many unknowns α, β, γ, . . . and only one equation of type αβ + γδ =
1. From these equations one can infer equalities of type gai,aj = gar,e.
Note that, for the inverses a1, a2, we have 4(n − 2) equalities of types
g(a1,a2),ak = ga1,(a2,ak), gak,(a1,a2) = g(ak,a1),a2), g(a2,a1),ak = ga2,(a1,ak) and
gak,(a2,a1) = g(ak,a2),a1) (k = 3, 4, . . . , n). Totally, since there are altogether
n − 1 pairs of inverses of types (ai, aj), (aj , ai) or (ai, ai), we can produce
4(n−1)(n−2) system of equations of previous type. Since the probabilistic
group (A, g) have (n − 1)(n − 2) distributions of type gai,aj , where ai 6= e
or aj 6= e or ai, aj are not mutually inverse, it is reasonable to assume that
for each i, j one can find an r such that gai,aj = gar,e.

8. Conclusion

We have introduced the concept of probabilistic algebras, and our attention
was given mainly to some types of probabilistic groupoids, and we had
considered only the finite case.
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The ideas of this paper are, in best of our knowledge, quite new. By
retrieving the literature we could not find any notion or concept for proba-
bilistic algebras.

The future work on probabilistic algebras can include (and are not re-
stricted to) the following problems:

1. Define and investigate probabilistic groupoids on arbitrary universe
(finite or infinite).

2. Define and investigate other types of probabilistic algebras (rings,
lattices, modules, ...).

3. Prove the Hypothesis from Section 7 for finite groups.

4. Prove the Hypothesis from Section 7 for infinite groups (if it is true
in the infinite cases).

5. Is it true that there are no finite p-groups when 0 < p < 1? What
about the infinite case?

6. Define probabilistic varieties of algebras.

7. Is it true that the distribution of gT , when the length of the term T
goes to infinity, is uniform? Can be characterized the class of proba-
bilistic groupoids with this property?

8. How it can be defined quotient operations for probabilistic quasi-
groups? Can we apply them in cryptography and coding theory?

Remark for References: We could not find any reliable reference, except
standard college algebra textbooks.
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