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Generalized essential ideals in R-groups
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Abstract. In this paper, we consider an R-group where R is a zero-symmetric right
nearring. We define generalized essential ideal of an R-group and prove several properties.
Further, we extend this notion to obtain a one-one correspondence between s-essential
ideals of R-group and those of Mn(R)-group Rn.

1. Preliminaries

The concept of uniform dimension in modules over rings is a generalization
of the dimension of a vector space over a field. A module in which every
non-zero submodule is essential is called uniform. Uniform submodules play
a significant role to establish various finite dimension conditions in modules
over associative rings. Goldie [11] characterized equivalent conditions for
a module to have finite uniform dimension. In Bhavanari [20], uniform
dimension was generalized to modules over nearrings (also known as, R-
groups) and proved a characterization for a R-group to have finite Goldie
dimension (in short, f.G.d.). Goldie dimension aspects in modules over
nearrings were extensively studied by [5, 7, 20]. In case of a module over a
matrix nearring, the notions essential ideal, uniform ideal were defined in
[6], and proved a characterization for a module over a matrix nearring to
have a f.G.d.. In [10], the authors studied prime and semiprime aspects in
connection with f.G.d. in R-groups and matrix nearrings.

In section 2, we introduce generalized essential ideal in R-groups and
prove some properties. In section 3, we extend the notion of generalized
essential ideal to modules over matrix nearrings and obtain a one-one cor-
respondence between s-essential ideals of an R-group (over itself) and those
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of Mn(N)-group Rn.
A (right) nearring (R,+, ·) is an algebraic system (Pilz [18]), where R

is an additive group (need not be abelian), and a multiplicative semigroup,
satisfying only one distributive axioms (say, right): (n1 + n2)n3 = n1n3 +
n2n3 for all n1, n2, n3 ∈ R. If R is a right nearring, then 0a = 0 and
(−a)b = −ab, for all a, b ∈ R, but in general, a0 6= 0 for some a ∈ R. R is
zero-symmetric (denoted as, R = R0) if a0 = 0 for all a ∈ R. An additive
group (G,+) is called an R-group (or module over a nearring R), denoted
by RG (or simply by G) if there exists a mapping R × G → G (image
(n, g) → ng), satisfying: (n + m)g = ng + mg; (nm)g = n(mg) for all
g ∈ G and n, m ∈ R. It is evident that every nearring is an R-group (over
itself). Also, if R is a ring, then each (left) module over R is an R-group.
Throughout, G denotes an R-group where R is a right nearring.

A subgroup (H,+) of G with RH ⊆ H is called an R-subgroup of
G. A normal subgroup H of G is called an ideal if n(g + h) − ng ∈ H
for all n ∈ R, h ∈ H, g ∈ G. For any two R-groups G1 and G2, a map
f : G1 → G2 is called an R-homomorphism, f(x + y) = f(x) + f(y) and
f(nx) = nf(x) hold for all x, y ∈ G1 and n ∈ R. If f is one-one and onto,
then f is an R-isomorphism.

In case of a zero symmetric nearring, for any ideals A and B of G, A+B
is an ideal of G ([18], Corollary 2.3). For each g ∈ G, Rg is an R-subgroup
of G. The ideal (or R-subgroup) generated by an element g ∈ G is denoted
by 〈g〉.
An ideal H of an R-group G is essential (see, [20]), if for any ideal K of
G, H ∩K = (0) implies K = (0). If every ideal (0) 6= H of G is essential
then we say G is uniform. An ideal (R-subgroup) S of G is said to be
superfluous ideal (see, [2, 3]), if S + K = G and K is an ideal of G, imply
K = G and G is called hollow if every proper ideal of G is superfluous in
G. Generalizations of essential ideals, prime ideals, superfluous ideals in
R-groups, matrix nearrings, and hyperstructures were extensively studied
in [13, 14, 17, 19, 21, 22, 23, 24, 25].

For standard definitions and notations in nearrings, we refer to [8, 18].

2. Generalized essential ideals

Definition 2.1. Let K be an R-ideal (or R-subgroup) of G. K is said to
be s-essential in G (denoted by K Es G) if for any superfluous R-ideal (or
R-subgroup) L of G, K ∩ L = (0) implies L = (0).
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Note 2.2. Every essential R-ideal of G is s-essential in G.

Remark 2.3. Converse of Note 2.2 need not be true. Let R = Z and
G = Z6. Then K1 = {0̄, 3̄} and K2 = {0̄, 2̄, 4̄} are the R-ideals of G. Then
K2 is s-essential but not essential, since K2 ∩K1 = (0̄). but K1 6= (0̄).

Example 2.4. Consider the nearring with addition and multiplication ta-
bles listed in K(135) and K(139) of p.418 of Pilz [18]. Let G = D8 =〈
{a, b | 4a = 2b = 0, a+b = b−a}

〉
= {a, 2a, 3a, 4a = 0, b, a+b, 2a+b, 3a+b},

where a is the rotation in an anti-clockwise direction about the origin
through π

2 radians and b is the reflection about the line of symmetry, and
G = R. Then G is an R-group. Consider the operations:

+ 0 a 2a 3a b a+ b 2a+ b 3a+ b

0 0 a 2a 3a b a+ b 2a+ b 3a+ b
a a 2a 3a 0 a+ b 2a+ b 3a+ b b
2a 2a 3a 0 a 2a+ b 3a+ b b a+ b
3a 3a 0 a 2a 3a+ b b a+ b 2a+ b
b b 3a+ b 2a+ b a+ b 0 3a 2a a

a+ b a+ b b 3a+ b 2a+ b a 0 3a 2a
2a+ b 2a+ b a+ b b 3a+ b 2a a 0 3a
3a+ b 3a+ b 2a+ b a+ b b 3a 2a a 0

∗1 0 a 2a 3a b a+ b 2a+ b 3a+ b

0 0 0 0 0 0 0 0 0
a 0 a 2a 3a b a+ b 2a+ b 3a+ b
2a 0 2a 0 2a 0 0 0 0
3a 0 3a 2a a b a+ b 2a+ b 3a+ b
b 0 b 2a 2a+ b b a+ b 2a+ b 3a+ b

a+ b 0 a+ b 0 a+ b 0 0 0 0
2a+ b 0 2a+ b 2a b b 0 2a+ b 3a+ b
3a+ b 0 3a+ b 0 3a+ b 0 0 0 0

The proper ideals are I1 = {0, 2a}, I2 = {0, a + b, 2a, 3a + b}, and R-
subgroups are J1 = {0, 2a}, J2 = {0, b}, J3 = {0, a + b}, J4 = {0, 2a + b},
J5 = {0, 3a+ b}, J6 = {0, b, 2a, 2a+ b}, J7 = {0, 2a, a+ b, 3a+ b}. Then J1
is s-essential but not essential, as J1 ∩ J3 = (0), whereas J3 6= (0).
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Proposition 2.5. Let G be a unitary R-group and (0) 6= K be an R-
subgroup of G. Then K EsG if and only if for each 0 6= x ∈ G, if Rx� G,
then there exists an element n ∈ R such that 0 6= nx ∈ K.

Proof. Let (0) 6= K be an R-subgroup of G such that K Es G. For each
0 6= x ∈ G, if Rx � G, then since 1 ∈ R and x 6= 0, we have Rx 6= (0).
Clearly, Rx is a R-subgroup of G. Since K Es G, we get K ∩ Rx 6= (0).
Then there exists 0 6= a ∈ K ∩ Rx. Since a ∈ Rx, there exists n ∈ R
such that a = nx. Therefore, 0 6= nx ∈ K. Conversely, suppose that L be
an R-subgroup of G such that (0) 6= L � G. Then 0 6= x ∈ L ⊆ G. To
show Rx � G, let T be an R-subgroup of G such that Rx + T = G. Now
Rx ⊆ RL ⊆ L. Thus, G = Rx + T ⊆ L + T . So L + T = G. Now L � G
implies T = G. Therefore, Rx � G. Then by hypothesis, there exists an
element n ∈ R such that 0 6= nx ∈ K. Hence 0 6= nx ∈ K ∩ L, and so
K ∩ L 6= (0). Therefore, K Es G.

Proposition 2.6. Let K,L, T be R-ideals of G with K ⊆ T . If K Es G,
then K Es T and T Es G.

Proof. Suppose that K be an R-ideal of G with K∩P = (0), where P � T .
To show P � G, let M be an R-ideal of G such that P + M = G. Then
(P+M)∩T = G∩T . Now by modular law, P+(M∩T ) = T . Since P � T ,
we get M ∩ T = T . This implies M ⊆ T . Thus, G = P + M ⊆ T = T .
Therefore, T = G. Hence P � G. Since K Es G, we have P = (0). Thus
K Es T . Now to show T Es G, let Q � G such that T ∩ Q = (0). Since
K ⊆ T , we have K ∩ Q ⊆ T ∩ Q = (0). Then by hypothesis, Q = (0).
Therefore T Es G.

Remark 2.7. The converse of Proposition 2.6 need not be true. Let R = Z
and G = Z36. K = 6Z36 and L = 18Z36 are R-ideals of G. Now L Es K
and K Es G. But L 5s G, since L ∩ 12Z36 = (0), but 12Z36 6= (0).

Proposition 2.8. Let K and L be R-ideals of G. Then K ∩LEs G if and
only if K Es G and LEs G.

Proof. Let K ∩LEsG. To show KEsG, let P � G such that K ∩P = (0).
Now, (K∩L)∩P ⊆ K∩P = (0). Since K∩LEsG, we have P = (0). Thus
K Es G. Similarly, LEs G. Conversely, suppose that K Es G and LEs G.
Let P � G such that (K ∩L)∩P = (0). Then K ∩ (L∩P ) = (0). Now we
show that K ∩P � G. Let T be a R-ideal of G such that (K ∩P )+T = G.
Since K ∩ P ⊆ P , we have G = (K ∩ P ) + T ⊆ P + T . Now P � G,
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implies T = G. Thus K ∩ P � G. Now, L Es G and K ∩ P � G, implies
K ∩ P = (0). Also K Es G and P � G implies P = (0). Therefore,
K ∩ LEs G.

Proposition 2.9. Let f : G→ G′ be an N -epimorphism. If K Es G
′, then

f−1(K) Es G.

Proof. Let L� G such that f−1(K)∩L = (0). To show thatK∩f(L) = (0),
let x ∈ K ∩ f(L). Then x ∈ K and x ∈ f(L). This implies x = f(y), for
some y ∈ L. Then y = f−1(x) ∈ f−1(K) and y ∈ L. Thus y ∈ f−1(K)∩L =
(0), and so y = 0. Hence x = f(0) = 0. Therefore, K ∩ f(L) = (0).
Now we show that f(L) � G′. Let T be an N -ideal of G′ such that
f(L)+T = G′. Then L+f−1(T ) = f−1(G′) = G. This implies f−1(T ) = G,
and so T = f(G) = G′. Therefore, f(L) � G′. Now since K Es G2 and
K ∩f(L) = (0), we get f(L) = (0). Hence L ⊆ f−1(0) ⊆ f−1(K)∩L = (0).
Therefore, L = (0).

Theorem 2.10. Suppose that K1 ≤R G1 ≤R G, K2 ≤R G2 ≤R G, and
G = G1 ⊕ G2; then K1 ⊕ K2 Es G1 ⊕ G2 if and only if K1 Es G1 and
K2 Es G2.

Proof. Suppose that K1 Es G1. That is, K1 ∩ L1 = (0), for some (0) 6=
L1 � G1. We show that (K1 + K2) ∩ L1 = (0). Let x ∈ (K1 + K2) ∩ L1.
Then x = k1 + k2 and x = l1, where k1 ∈ K1, k2 ∈ K2. This implies
l1 = k1 + k2, and so k2 = −k1 + l1 ∈ G1 ∩ G2 = (0). Therefore, k2 = (0).
Hence l1 = k1 ∈ K1 ∩ L1 = (0). Therefore, x = 0. This shows that
(K1 + K2) ∩ L1 = (0). Now to show L1 � G1 + G2, let T ER G1 + G2

such that L1 + T = G1 + G2. Then (L1 + T ) ∩ G1 = (G1 + G2) ∩ G1.
Now by modular law, since L1 ⊆ G1, we get L1 + (T1 ∩ G1) = G1. Since
L1 � G1 and T ∩G1 ER G1, we have T ∩G1 = G1, and so G1 ⊆ T . Thus,
G1 +G2 = L1 + T ⊆ G1 + T = T . Therefore, T = G1 +G2 shows that

L1 � G1 +G2 · · · (∗).
Now K1 ⊕K2 Es G1 ⊕ G2 implies L = (0), a contradiction. Therefore

K1 Es G1. In a similar way, it can be proved that K2 Es G2. Conversely,
suppose that Ki Es Gi and 0 6= gi ∈ Gi (i = 1, 2). Then by Proposition 2.5
and by (∗) we have Rgi � G1 +G2. Then by Proposition 2.5, there exists
r1 ∈ R such that 0 6= r1g1 ∈ K1. If r1g2 ∈ K2, then 0 6= r1g1 + r1g2 ∈
K1⊕K2. If r1g2 /∈ K2, then again by Proposition 2.5, there exists an r2 ∈ R
with 0 6= r2r1g2 ∈ K2, and we have 0 6= r2r1g1 + r2r1g2 ∈ K1 ⊕K2. Then
K1 ⊕K2 Es G1 ⊕G2.
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3. Generalized essential ideals in Mn(R)-group Rn

For a zero-symmetric right nearring R with 1, let Rn will be the direct sum
of n copies of (R,+). The elements of Rn are column vectors and written as
(r1, · · · , rn). The symbols ij and πj respectively, denote the ith coordinate
injective and jth coordinate projective maps.
For an element a ∈ R, ii(a) = (0, · · · , a︸︷︷︸

ith

, · · · , 0), and πj(a1, · · · , an) = aj ,

for any (a1, · · · , an) ∈ Rn. The nearring of n× n matrices over R, denoted
by Mn(R), is defined to be the subnearring of M(Rn), generated by the set
of functions {faij : Rn → Rn | a ∈ R, 1 ≤ i, j ≤ n} where faij (k1, · · · , kn) :=
(l1, l2, · · · , ln) with li = akj and lp = 0 if p 6= i. Clearly, faij = iif

aπj , where
fa(x) = ax, for all a, x ∈ R. If R happens to be a ring, then faij corresponds
to the n× n-matrix with a in position (i, j) and zeros elsewhere.

Notation 3.1. ([6], Notation 1.1)
For any ideal A of Mn(R)-group Rn, we write

A∗∗ = {a ∈ R : a = πjA, for some A ∈ A, 1 ≤ j ≤ n}, an ideal of RR.

We denote Mn(R) for a matrix nearring, Rn for an Mn(R)-group Rn.
We refer to Meldrum & Van der Walt [16] for preliminary results on matrix
nearrings.

Theorem 3.2. (Theorem 1.4 of [6]) Suppose A ⊆ R.

1. If An is an ideal of Mn(R)R
n, then A = (An)??.

2. If A is an ideal of RR if and only if An is an ideal of Mn(R)R
n.

3. If A is an ideal of RR, then A = (An)??.

Lemma 3.3. (Lemma 1.5 of [6])

1. If I is an ideal of Mn(R)R
n, then (I??)n = I.

2. Every ideal I of Mn(R)R
n is of the form Kn for some ideal K of RR.

Remark 3.4. (Remark 1.6 of [6]) Suppose I, J are ideals of RR. Then

(i) (I ∩ J)n = In ∩ Jn;

(ii) I ∩ J = (0) if and only if (I ∩ J)n = (0̄) if and only if In ∩ Jn = (0̄).
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Lemma 3.5. If I and J are ideals of R, then (I + J)n = In + Jn.

Proof. Clearly, I ⊆ I + J and I ⊆ I + J which implies In ⊆ (I + J)n and
Jn ⊆ (I + J)n and so In + Jn ⊆ (I + J)n. To prove the other part, let
(x1, x2, · · · , xn) ∈ (I + J)n. Then xi ∈ I + J for every 1 ≤ i ≤ n which
implies xi = ai + bi, where ai ∈ I and bi ∈ J .
Now,

(x1, x2, · · · , xn) = (a1 + b1, a2 + b2, · · · , an + bn)

= (a1, a2, · · · , an) + (b1, b2, · · · , bn)

∈ In + Jn

Therefore, (I + J)n ⊆ In + Jn. Hence, (I + J)n = In + Jn.

Lemma 3.6. I + J = G if and only if (I + J)n = Gn if and only if
In + Jn = Gn.

Lemma 3.7. (Note 1.7(iii) of [6]) Let A be an ideal of RR. Then A ≤e RR
if and only if An ≤e Mn(R)R

n.

Definition 3.8. An ideal A of Mn(R)-group Rn is said to be superfluous
if for any ideal K of Rn, A+K = Rn implies K = Rn.

Definition 3.9. An ideal K of Mn(R)-group Rn is said to be s-essential if
for any ideal A of Rn, K ∩A = (0̄) and A � Rn implies K = (0̄).

Lemma 3.10. Let K be an ideal of RR. If KEs RR, then KnEs Mn(R)R
n.

Proof. Let KEs RR. To show KnEs Mn(R)R
n, let L be an ideal of Mn(R)R

n

such that Kn ∩ L = (0̄) and L � Mn(R)R
n. Now to show L?? � RR, let

B E RR such that L??+B = R. By Lemma 3.6, we have (L??+B)n = Rn.
By Lemma 3.5, we have (L??)n + Bn = Rn. Now by Lemma 3.3, we get
L = (L??)n, which implies L + Bn = Rn. Since Bn E Mn(R)R

n and L �
Mn(R)R

n, we have Bn = Rn. Let n ∈ R. Then (n, 0, · · · , 0) ∈ Rn = Bn.
Therefore, n ∈ (Bn)?? = B (by Theorem 3.2(3)). Therefore, B = R, and
so L?? � RR. So Kn ∩L = (0̄) implies Kn ∩ (L??)n = (0̄), and by Remark
3.4 (ii), K ∩ (L??) = (0). Now since K Es R, we get L?? = (0). Thus
L = (L??)n = (0̄). This shows that Kn Es Mn(R)R

n.

Lemma 3.11. Let A be an ideal of Mn(R)R. If AEs Mn(R)R
n, then A??Es

RR.
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Proof. Let A Es Mn(R)R
n. To show A?? Es RR, let B � RR such that

A?? ∩ B = (0). Then by Remark 3.4, we have (A??)n ∩ Bn = (0̄) and by
Lemma 3.3, we have A = (A??)n, and so A ∩ Bn = (0). Now to show
Bn � Mn(R)R

n, let L E Mn(R)R
n such that Bn + L = Rn. To show

L = Rn. Since L E Mn(R)R
n, by Lemma 3.3, we have L = (L??)n, which

implies Bn + (L??)n = Rn. Now using Lemma 3.5, we get (B + L??)n =
Rn. Therefore, by Lemma 3.6, B + L?? = R, and since B � RR, we get
L?? = R. Hence, L = (L??)n = Rn. This shows that Bn � Mn(R)R

n.
Now A Es Mn(R)R

n implies Bn = (0̄). Thus B = (0). This shows that
A?? Es RR.

Theorem 3.12. There is a one-one correspondence between the set of s-
essential ideals of RR and those of Mn(R)-group Rn.

Proof. Let P = {A E RR : AEsRR}. Q = {A E Mn(R)R
n : AEsMn(R)R

n}.
Define Φ : P → Q by Φ(A) = An. Then by Lemma 3.10, An Es Mn(R)R

n.
Define Ψ : Q → P by Ψ(A) = A??. By Lemma 3.11, A?? Es RR. Now
(Ψ ◦ Φ)(A) = Ψ(Φ(A)) = Ψ(An) = (An)?? = A. (Φ ◦Ψ)(A) = Φ(Ψ(A)) =
Φ(A??) = (A??)n = A. Therefore, (Ψ ◦ Φ) = IdP and (Φ ◦Ψ) = IdQ.
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