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Solvable and nilpotent ultra-groups

Monireh Aliabadi, Gholamreza Moghaddasi and Parvaneh Zolfaghari

Abstract We propose several characterizations of solvable ultra-groups and investigate
the Jordan-Holder Theorem and the Zassenhaus Lemma, in ultra-groups. We also define
nilpotent ultra-groups by using the center of ultra-groups. Finally, we establish the
relation between nilpotent and solvable ultra-groups. Our results aim to serve as a

bridge between groups and ultra-groups.

1. Introduction

Solvable and nilpotent groups are two fundamental classes of groups in
algebra, and they play a critical role in the study of Lie groups, Galois
groups and others |2, 4. In this paper, we focus on exploring the concepts
solvability and nilpotency and their relation for ultra-groups. Ultra-groups
are defined on the use of transversals in groups. Moghaddasi et al. built
upon the concept of hypergroups and transversals to introduce the concept
ultra-groups |7, 8]. Tolue et al. [9] introduced the category of ultra-group
and investigated some properties of this category.

The organization of the paper is as follows. We first present some basic
definitions and results in ultra-groups. Next, we introduce the concept of
solvable ultra-groups and discuss some general concepts such as composition
series, subnormal series. Finally, we characterize the Zassenhaus Lemma
and generalize the Jordan-Holder theorem for ultra-groups. In Section 3
we describe nilpotent ultra-groups and establish the relationship between
solvable and nilpotent ultra-group.

Our results can be used as a bridge between groups and ultra-groups.

The notation in this paper is as in [7] and [9)].

A pair (A, B) of subsets of a group G is called transversal if the equality
ab = a't implies a = @’ and b = V', where a,a’ € A, b,/ € B. It is not hard
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to deduce that a pair (H, M) of subgroups of a group G is transversal if and
only if HNM = {e}, where e is the identity of the group G. Furthermore, for
a subgroup H and a subset M of a group G we conclude that the pair (H, M)
is a transversal if and only if M N Hg contains at most one element, for all
g € G. A subset M of a group G is called (right unitary) complementary
set with respect to a subgroup H, if for any elements m € M and h € H
there exist unique elements h' € H and m' € M such that mh = h'm’. We
denote #’' and m’ by ™h and m”", respectively. Similarly for any elements
mi,mo € M there exist unique elements [my,ms] € M and (my,ms) € H
such that mimg = (m1, mg)[mi, mgy]. There are atY e H and al=% € M
such that =t = a("Yal~1 since G = HM.

Definition 1.1. |[7] Let M be a transversal set of a subgroup H over a
group G. The set M together with a binary operation oo : M x M — M
and a family of unary operations fj, : M — M defined by a((m1,m2)) :=
[m1, ms] and Bj,(m) := m" for all h € H is called a right ultra-group. An
ultra-group M is called abelian, if for all elements a,b in M, [a,b] = [b,al.

We use the notation ;M to represent the right ultra-group of subgroup
H which we briefly display with the notation M.

Definition 1.2. [7| Let M be an ultra-group of a subgroup H of a group
G. A subset K C M which contains the identity element of the group G,
is called a subultra-group of M, if K is closed under operations « and .
This is denoted by K < M.

Proposition 1.3. 7| Let M be an ultra-group of a subgroup H over a group
G. Then we have the following properties:

(i) a"" = (a")",
(i1) [a,b]" = [a"™), b1,
(m ([a, ] o = [a®9, [b,d]],

kd—a—h%
[al=Y,a] = e = [a©@"), a1,

,b,ce M and h,h € H.

(vi
for

Definition 1.4. [8] A subultra-group N of an ultra-group M is called nor-
mal if [N, [a,b]] = [a, [N, b]] for all a,b € M and is denoted by N < M.

—
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According to the definition, every ultra-group M, has normal subultra-
group {e}. We note that an ultra-group M is normal subultra-group of
itself, whenever the left cancellation law be established for M (see [7]).

Lemma 1.5. [7| Let K be a subultra-group of an ultra-group M. Then for
a,b e M the following conditions are equivalent.

(1) a € [K,b],
(i) [K,a] = [K,b],
(iid) [a® ™) b1 € K.

Theorem 1.6. An ultra-group N is a normal subultra-group of M, if and
only if [[N,a],[N,b]] = [N, [a,b]], for every a,b € M.

Proof. If N is a normal subultra-group then [[N,a],[N,b]] = [N, [a, b]] for
every a,b € M by Lemma 2.5 in [7]. Conversely, let [[N,a],[N,b]] =

[N, [a,b]], for b = ¢ we have [N, a] = [N, [a, N]]. So [[a, N ,a[_lq eN
and since | [[a, N}a(il) ,a[—l}] |=| N | we have [[a, N]“F1> ,a[—ll] = N.

Thus H[a, N]a(_l) ,a[_”] ,a} = [N, a] and [a,N]W_/, [a[_l],a}

= [N, a]. So[a, N] = [N, a] and [a, [N, b]] = [a, [b, N]] = Ha@:N)*,b ,N} -

[N, [ 0] N | = [N, [a, b, NTJ| = | [N, a] [N, [b, N]] =[N, ], [N, B]).
[N,b]
So [a, [N, b]]=[N, [a, b]], hence we get the result. O

Definition 1.7. [7| Let g, M; be an ultra-group of a subgroup H; over group
Gi, 1 = 1,2 and ¢ be a group homomorphism between two subgroups Hj
and Hi. A function f: g, M; — p,Ms is an ultra-group homomorphism
provided that for all m,mi,ma € g, M; and h € Hy:

(i) f(lm1,ma]) = [f (ma), f(ma)],
(i) (f(m))#™ = f(m").
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Theorem 1.8. (First isomorphism theorem) [7| Let f be a surjective ultra-
group homomorphism between two ultra-groups g, Mi and g,Ms and 0 a
congruence over g, My such that 0 C Kerf. If m :g, My — g, M1/0 is a
canonical homomorphism then there exists a homomorphism g: My /0 — My
satisfying gm = f.

Theorem 1.9. (Second isomorphism theorem)|7] If N, N’ are normal subultra-
groups of an ultra-group M such that N C N', then

M
N’

ERES
2

Theorem 1.10. (Third isomorphism theorem) [7] If K is a subultra-group
of an ultra-group M and N is a normal subultra-group of M, then

K _ [N, K]
KNN N

2. Solvable ultra-groups

First, we present some definition similar that to what we have in group
theory and refer the readers to [4, 6].

Definition 2.1. A sequence My, My, ..., M, of subultra-groups of M is
called subnormal series if M, <...<aM; <My = M. If all M; are normal in
M, then the series is called normal.

Every ultra-group M has normal series {e} < M. A subnormal series of
ultra-groups need not be normal. Let Dg=(a,b | a* = b*> = ¢, (ab)? = €)
and H = {e}. The series Dg > {e,b,a?, a?b} > {e,b} > {e} is subnormal
but it is not normal, since {e, b} 4 Ds.

Definition 2.2. Let M = My > My > ... > M, be a subnormal series of
ultra-groups. Each series

M=My>M >...>M;>N>M;1 >...> M, or

M=My>M >...>M;,>...>M, >N
is called a one-step refinement of this series if N is a normal subultra-group
of M; and if i < m, M;y1 is normal in N. A refinement of a subnormal
series is subnormal series that obtained from the finite number of one-step
refinement.
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Definition 2.3. An ultra-group M is called simple if it has just the normal
subultra-group {e}. A subnormal series M = My > M; > ... > M, = {e}
of an ultra-group is called a composition series if each quotient ultra-group

' is simple for every 0 <i <n — 1.
Mita

Definition 2.4. A subnormal series M = My > M; > ... > M, = {e} of

is abelian.

ultra-group M is called a solvable series if each factor
i+1

Definition 2.5. An ultra-group M is called solvable if it has a subnormal
series M = My > My > ... > M, = {e} such that M;,; is normal in M;

for every 0 <i<n—1and is an abelian ultra-group.

(2
M;
Theorem 2.6. Fvery subultra-group and every quotient ultra-group of a
solvable ultra-group is solvable.

Proof. The proof of the first part is similar to groups and we omit it. Now
let IV is a normal subultra-group of a solvable ultra-group M. Hence M has
a solvable series as follow M = My > M; > ... > M, = {e}. Since N is a
normal subultra-group, [M, N| is a subultra-group of M and N C [M;, N]|
for every 0 < 7 < n. Now consider the series:

M _[MN][MN]  [Ma, )

N- N N > N =N

such that every M; is normal in M;_;. We have:

[[N,mi], [[N,mi—1], [N,mj_,]]] =

1]

[NmZ ,[ [mZ 1M
= [N, [ma, [miy,mii]]]
= [N, [mi- 17[mu mi_1]]]
I
=l

[N, m;i_1] [ [mmm; 1”]
Nmz 1 [N mz]a[Nvm;—l]H'

M;, N] . [M;—1,N]

is normal in

Therefore

Now, by Second and Third isomorphism theorems, for ultra-groups:
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[M;_1, N|
N  [Mi1,N] _ [Miy, [M;, N]] M
[MZ‘,N} - [M“N] [M“N] B Mi_lﬂ[Mi,N]
N
M;—
~ M;
- M, N [Mz, N]
M;
i M;_1 N [M;, N
Since every — ! is abelian and ——" [M;, N] is a normal subultra-group
Mifl [Mifl, N]

_ M; . . N .
of —“= we see that ! is abelian. Hence, every ————— is
M; M;_1 N [M;, N] Y T[M;, N

M; N
. M,
abelian and N is solvable. O

Theorem 2.7. Let N be a normal subultra-group of an ultra-group M. If

M
N and N are solvable, then M is solvable.
Proof. Tt is similar to what we have for groups. O

Theorem 2.8. Let K and N be normal and solvable subultra-groups of M .
Then [K, N] is a solvable subultra-group of M.

[K, N] K Lo .
Proof. ~ -
roof. We have N AN by Third isomorphism Ktheorem for ultra
groups. Since K is solvable, therefore the quotient N is solvable by

is solvable. On the other hand N

[K, N]
N

Theorem 2.6 and consequently

[, N]

and o are solvable, therefore [K, N] is solvable by Theorem 2.7. [

In [7] Moghaddasi et al. proved that if N is a normal subultra-group

M K
of an ultra-group M, then every subultra-group of N is of the form a
K
where K is a subultra-group of M containing N. On the other hand, N is
M
a normal subultra-group of N if and only if K is a normal subultra-group

M
of M. Thus, when M # N | N is simple if and only if N is maximal in
the set of all normal subultra-groups L of M with L # M.
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Theorem 2.9. Let M be an ultra-group of a subgroup H over a group G.
Then
(1) Fach finite ultra-group M has composition series.
(i) Each refinement of a solvable series of ultra-group is a solvable
Series.
(7i1) A subnormal series of an ultra-group M is a composition series if
and only if it has no proper refinements.

M

Proof. (i). Let M; be a maximal normal subultra-group of M, then A
1

is simple. Let Ms be a maximal normal subultra-group of M; and so on.

Since M is finite, this process must be stopped. Let M, = {e}, then

M =My > M; > ... > M, = {e} is a composition series.
) !

(id). If is abelian and M;.1 < M’ < M;, then is abelian
i+1 i+1
since it is a subultra-group of an ultra-group * and an ultra-group —
M1 M
M;
is abelian since it is isomorphic to the quotient ultra-group ]\;1 by the
M1

Second isomorphism theorem.

(t3i). Let M = My > M; > ... > M, = {e} be a composition series.

Let M = My > My > ...> M; > M > My > ... > M, = {e} be a
!

is a normal

refinement of this series. Since M;y1 <« M’ < M;, then
i+1
i

and every proper normal subultra-group of
i+l M1
has this form. Hence the result is obtained from the fact that in this case

subultra-group of

is not simple and therefore is not composition series. Conversely if
i+1

M = My > M, >...> M, ={e} (1)

is a subnormal series then it has no proper refinement. Suppose this series is
not composition series. Thus there exist a subultra-group M; such that M;
is not maximal subultra-group of M;_; and therefore there exist a subultra-
group M; such that M;_ # M; # M, and M; a normal subultra-group of
M;_1 and M; is a normal subultra-group of M;. This is a proper refinement
of this series. A contradiction. Thus (1) is a composition series. O
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Definition 2.10. Let M be an ultra-group. Two subnormal series S and T
are called equivalent if there is a one to one correspondence between their
factors such that corresponding factors are isomorphic ultra-groups.

Lemma 2.11. Let S be a composition series of an ultra-group M, then any
refinement of S is equivalent to S.

Proof. According to Theorem 2.9, the proof is similar for groups. O

Before we prove the Zassenhaus Lemma, we need to establish some
necessary lemmas.

Lemma 2.12. Let M be an ultra-group of a subgroup H of a group G.
(1) For every a,b,c € M and every subultra-group K of M if [a,b] = ¢
and a,c € K then b e K.
(ii) For every a,b,c € M and every subultra-group K of M if [a,b] = ¢
and b,c € K thena € K.

Proof. (1). Let [a,b] = ¢ be such that a,c € K. Therefore

(al=th@d) ™" [q, b]} = (a[_”)(“’b)il,c =k € K, hence [[al7Y,a] ,b] = k.
€K

Thus b=k € K.
(73) Let [a,b] = ¢ be such that b,c € K. Therefore

[a, b]b(—l) _ Cb(*l) N [abb(il),bb(il)} _ Cb(*l)
= [[a77 D] B = [Vl
= g(bb(l))(bb(l)jl])v [b]b(l)’[b[uﬂ _ []Cb(l),b[l]}

N a(bb(fl))(bel),b[fl]) _ [Cb(fl)’b[_l]}

Now from [cb(_l),b[*”] € K and (*bCD) (0D pl-1l) = ¢ [bb<_1),b[*1]} _
e, a® = a hence a € K. ]

Theorem 2.13. Let N, K be two subultra-groups of an ultra-group M and
NaM. Then NN K < K.

Proof. Let a,b € K and = € [a,[N N K, b]], thus there exists c € NN K
such that x = [a,][c,b]]. Since N < M, there exists ¢; € N such that
x = [a,[c,b]] = [c1,]a,b]]. As K is a subultra-group, there exists m € K
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such that = [m, [a, b]]. Now from = = [m, [a, b]] = [c1, [a, b]] and the right
cancellation for a binary operation, m = ¢ hence, ¢; € N N K. Therefore
[a, [N N K,b]] C [N NK,]a,b]].

Now suppose a,b € K and = € [NNK,[a,b]]. Thus there exists ¢ €
NN K such that x = [c, [a, b]]. Since N < M, there exists ¢; € N such that

x = [¢,[a,b]] = [a, [c1,b]]. By the above Lemma (i) and z,a,b € K, we have
c1 € K andsoc; € NNK. Thus [N N K, [a,b]] C [a,[N N K, b]]. Hence the
assertion follows. O

Lemma 2.14. Let N, K be subultra-groups of an ultra-group M. Then
[INUK,NUK]=[N,K|]U[K,N].

Proof. Assume that x € [NUK,NUK], then z € [K,N] or [N,K] or
[K,K] = K or [N,N] = N. Considering N, K C [N, K], [K, N], thus z €
[N, K] U [K, N]. Therefore [N UK, N UK] C [N, K]U|[K,N]. Conversely,
it is clear that [N, K],[K,N] C [NUK,N UK]. Thus [N,K]U[K,N] C
[NUK,NUK]. O

Notation 2.15. For subultra-groups N, K of an ultra-group M we denote
NUK =[NUK,NUK]"

2

In particular, forn =2, NUK = [[NUK,N UK],N U K] and for n = 3,
3

NUK=[[NUK,NUK],NUK],NUK].

Lemma 2.16. If N, K are two subultra-groups of an ultra-group M, then
NUK isa subultra-group of M.

Proof. N UK = [NUK,N UK]". Thus by Lemma 2.14

[NUK,NUK]" =[..[[VUK,NUK],NUK],..], NUK]
=...=[N,K]U[K,N]JU[[N,K],N]JU[[K,N], K].

Therefore N U K = [N, K]U[K, N]U[[N, K], NJU[[K, N], K]. Clearly e €
[NUK,NUK]". Let x,y € [NU K, N U K]". Then there exist ny,ng € N
such that z = [NUK,NUK]" and y = [NUK, N UK]|"™. Also there
exist ay, Bi,v € N UK for i = 1,2 such that =z = [[... [a1, 81] ,m1], ...] and
y = [[... [, B2] , 72| , ...]. By considering the fact that «;, 5;,7; are in NUK
we conclude they are in N or K thus for every h € H, (a;)", (8:)", ()" are
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in N or K and therefore in N U K that is [x,y] € N U K. Also, by this

fact N U K is closed with operation 5. Thus, N UK is a subultra-group
of M. ]

Lemma 2.17. If N, K are two normal subultra-groups of M, then for every
neN, NUK =[N, K].

Proof. Since [N U K, N U K] = [N, N|U[N, K]U[K,K|U[K,N] =[N, K|U
[K, N] and also since N, K are normal subultra-groups we have [N, K] =
[K,N] hence N U K = [N, K]. O

The join of two ultra-groups N, K is denoted by N V K.

Lemma 2.18. Let N, K be two subultra-groups of ultra-group M of a sub-
group H over a group G. Then NV K =N UK.

Proof. If K = {e}, then for every n € N, [NUK,NUK]|" = N then N C
[NUK,NUK]". Similarly K C [NUK,N UK]", thus [NUK, N UK]"
is an upper bound for N, K. If C' is an upper bound for N, K then
[N,K] C C, [K,N] C C. Therefore [[N,K],N] C C and [[K,N],K] C C.
Consequently [N, K]U[K, N]JU[[N, K], NJU[[K, N], K] C C and hence by
Lemma 2.16, N 6 K CC. OJ

Theorem 2.19. If N, K are two subultra-groups of M such that N << M,
then NV K = [N, K].

Proof. Since N <« M therefore for every € M we have, [N,z] = [z, N].
Hence [N, K] = [K,N] and [NUK,NUK]" = [N,K]" = [N,K]. Thus
NVE =[N, K]. O

Now by Lemma 2.5 in |7| and above theorem we have:

Proposition 2.20. If N, K are normal subultra-groups of M then NV K <
M.

The next lemma that we consider it as Zassenhaus Lemma is quite
technical. Its value will be immediately apparent in the proof of Theorem
2.22.

Lemma 2.21. Let K*, N*, N, K be subultra-groups of an ultra-group M
such that K* is normal in K and N* is normal in N. Then
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(i) [N*,NNK*<[N*,NnK],
(i) [K*,N*NK]<[K*,NnK],

[N*, NNK] _

[K*, NN K]

(i)

Proof. Since K* is normal in K, NNK* = (NNK)NK* isnormal in NNK
(Theorem 2.13). Similarly, N* N K is normal in N N K. Consequently, by
Theorem 2.19 and Proposition 2.20, D = [N*N K, K* N N]| is normal in

N N K. We define

. NNK
fi[N*, NNK] — 865,

[N*, NNK*] ~ [K*,N*N K]

f is well define because if [a, c] = [b, d] then

(=)@, [a,¢]] = [(al~1)@), [b, d]]

™l | = | @)@, b, d)
~—— a‘;
Therefore ¢ = [az, [b, d]]d(il)
LAY _ a[;’d]d“”, b, d]d(fl) _ [as, [bd(d“l)),dd(*l)
——
as

= [Cd(il) , d[_l]} =

> _cd(71)7d[_1]_ =

> _Cd(71)7d[_1]_ =

L J
eENNK

I

!

@Y 4] € D = [D, = [D,d]

as

f([a?c]) = [D,C].

~"~
a4

as, |d*", a1
————

e

a4€N*

/)

[ (bd(d(1>7dd(1))—17bd(d(1)):| : dd(*l) ,d[_ll

VA e NAKAN* = NN K CD=[N"NK,K*NN]

by (|7], Lemma 2.1)



166 M. Aliabadi, Gh. Moghaddasi and P. Zolfaghari

The map f is an ultra-groups homomorphism since

fllasd, ood)] = f |a@lbD) (e, (b, d]] | Z=E2E2E ¢ (ay, by, [, d]]
= F | [P0, e | =D fe.d)] = [[D.e], [D.d]
I e eENNK
= [fla, ], fb.d]].

Also for every m = [a,c] € [N*, NN K] and h € H we have
Fm) = fla, " = fa, ] = [D, "] = D, " = [D, ") = (f(m))d)
where id : H — H is a group homomorphism. This implies that f is an
ultra-group homomorphism. The map f is clearly surjective. If [a,c] €
ker(f) then, f([a,c]) = [D,c¢] = D. Now by ( [7], Lemma 2.5), since D is
normal in NN K, it follows that ¢ € D that is ¢ = [aj, ¢1] where a1 € N*NK
and ¢ € N N K*. Therefore

[a,c] = [a, [a1, c1]] = [[a @) " a1], 1] € [N*, N N K*].

So ker(f) = [N*,(NNK*)]. Thus [N*, NNK*]<[N*, NNK]. A symmetric
argument shows that [K*, N* N K] is normal in [K*, N N K]. By the First
isomorphism theorem for ultra-groups we have

[N NNK] _ NNK NNK
[N* NnK*] ~ D  [N*NK,KnNN*
which completes the proof. O

Theorem 2.22. Let M be an ultra-group. Any two subnormal (normal)
series of M have subnormal (normal) refinements that are equivalent.

Proof. Let M = My > My > ...M,, and M = Ny > N; > ...N,, be
a subnormal (resp. normal) series. Let M,y1 = {e} = N;4+1 and for
every 0 < ¢ < n consider M; = [Mi+1,MimN0] > [Mi+1,MiﬂN1] >
.. [Mi+1, M; N NJ] > [Mi+1, M; N Nj+1] >0 > [MH»la M; N Nm] >

[Mi+1, M; N\ Npyy1] = My for every 0 < j < m. The Zassenhaus Lemma
applied to M1, M;, Nji1, N; shows that [M;1, M; N Njq1] is normal in
[M; 11, M; N Nj]. Inserting these ultra-groups between every M; and M1,
which we denoting [M;41, M; N N;] by M (i, j). Therefore gives a subnormal
refinement of the series M = My > My > ... M,:

M = M(0,0) > M(0,1) > ... > M(0,m) > M(1,0) > M(1,1) >
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M(1,2) > ... > M(1l,m) > M(2,0) > ... > M(n—1,m) > M(n,0) >
... > M(n,m) where M(i,0) = M;. Now this refinement has (n+1)(m+1)
(not necessarily distinct) terms. A symmetric argument shows that there is
a refinement of M = Ny > Ny > ... N, (where N(i,5) = [Nj41, M; N Nj]
and N(0,j) = N;) as follows:

M = N(0,0) > N(1,0) >...> N(n,0) > N(0,1) > N(1,1) > ... >
N(n,1) > N(0,2) > ... > N(n,m—1) > N(O,m) > ...> N(n,m).
This refinement also has (n + 1)(m + 1) terms. For every pair (i, j) where
0 <i<n0< j < m. There is by Zassenhaus Lemma (applied to
M; 11, M;, Njt1, Nj) an isomorphism

M(i,j) M, My N;]  [Njy, MinN;l - N(i,J)

M@, j+1)  [Miy1, My Nja]  [Njp1, Mipa N N;] N(i+1,5)
This completes the proof.

We close this section by the following theorem which gives the Jordan-
Holder Theorem for ultra-groups.

Theorem 2.23. Any two composition series of an ultra-group M are equiv-
alent. Therefore, every ultra-group having a composition series determines
a unique list of simple ultra-groups.

Proof. The proof follows from Lemma 2.11 and Theorem 2.22. O

3. Nilpotent ultra-groups

In this section, firstly we define the center of an ultra-group and the upper
central series. Next, we describe nilpotent ultra-groups and define commu-
tators to construct the drived series. Finally, we present some results for
solvable and nilpotent ultra-groups.

Definition 3.1. Let M be an ultra-group of a subgroup H of a group G.
The center of ultra-group M is defined as

Z(M) = {z € M | 2" = 2,[2[a,b]] = [a, [2,b]] for every a,b € M,h € H}.

Lemma 3.2. Z(M) is a normal subultra-group of an ultra-group M.

Proof. Clearly e € Z(M). Let 21,29 € Z(M), we have [z;, [a, b]] = [a, [z, b]]
fori = L,2. Consequently, [[Zl’ 22] ’ [(Z, b]] = [217 [22, [CL, bH] = [Zlv [CL, [ZQ’ bH] =
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[a, [21, [22,0]] = [a,][[21,22],b]] and [z1,22)" = [21,22], thus Z(M) is a
subultra-group of M. Also [Z(M), [a,b]] = [a,[Z (M), b]] for every a,b € M,
therefore Z(M) is a normal subultra-group of M. O

Let M be an ultra-group of a subgroup H of a group G and let Z(M)
be the center of M and w : M — W be the canonical epimorphism.

Since Z( 7 M)) is a normal subultra-group of ( 7, by the corresponding
theorem for ultra-groups (see[7]) we have == !(Z( Z(M))) < M. Hence, by

induction, ZI(M) = Z(M) and Z;(M) = w*l(Z(%(M))) for i > 1 where

M, — 70 M) Therefore we obtain the sequence
{6} = Zo(M) < Zl(M) < ZQ(M) <...

of normal subultra-groups of M, which is called the upper central series of
an ultra-group M.

Definition 3.3. An ultra-group M is called a nilpotent ultra-group if there
exists a natural number n such that Z, (M) = M.

By the definition of the product of a family (f;);er of morphisms in each
category (see Proposition 1.7 in [5] and D efinition 10.34 in [1]) , we see if
fi + M; — M] is a family of ultra-group homomorphisms then f = IIf; :
ITM; — IIM] is an ultra-group homomorphism furthermore ker(f) = Iker(f;).

Lemma 3.4. Let {M; |i € I} and {N;|i € I} be a family of ultra-groups
such that for every i € I, N; is normal subultra-group of M;. Then ILN; is

a normal subultra-group of IIM; and g]\]\/[[ = HM

Proof. Let m; : M; — ]\A{l be the canonical epimorphism By the above
paragraph Ilrw; : [IM; — H

UM~ Mi
N = HF O

by First isomorphism theorem for ultra-groups
Theorem 3.5. Direct product of finite nilpotent ultra-groups is nilpotent.

Proof. Let M; be ultra-groups over the group Gj;; ¢ = 1,2. This is sufficient
to prove this result for the direct product of two ultra-groups. The proof for
most factors is similar. Let M = M; x My. We prove by induction Z;(M) =

Zi(My) x Z;(Ma). The proof for i = 1 is clear. Suppose 7y, is the canonical

epimorphism M; — % then 7 is the canonical epimorphism from
PSS

M = M; x My onto 7. (M 7 X 7 (M ) by the above paragraph. Now consider
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the ultra-group homomorphism ¢ from Z~](V[1\141) X Z‘](VIJ\ZQ) to Z‘(]\]}{l)ig%Mz)

that it is equal to Z~](\41\141Xi\/[1\242) = Z,](WM) by Lemma 3.4. Consider an ultra-

group epimorphism ¢ : M — ZLM) as a composition of two ultra-group
homomorphisms ¥ and 7. As a result,

Zin (M) = 72 = 7 2
_ M M-
=" 2Gam > Zon)
= 25 h) % 2 )
M, Mo

P e —1(p_ M2
T ( (Zi(Ml))) X Ty ( (Z,-(Mz)))
= Zis1(My) X Zi1(Ma).
Thus for every i, Z;(M) = Z;(M1) x Z;(Ms). Since My, Ms are nilpotent,

there exists n € N such that Z,(M;) = M; and Z,,(Ms) = Ms. Due to this
Zn(M) = M; x My = M and thus M is nilpotent. O

Let M be an ultra-group of subgroup H over a group G. We define the
commutator of M as the subultra-group generated by the set

{ [ [b,a) Y [—1] : /
[a, b] , [b, al } | a,b e M} and denoted it by M’. The element

{[a, b] [b.a] ™Y , [b, a][fl]} is called commutator of a,b and denoted by {c?,\b}
Now let C' be the subultra-group generated by the commutators elements
of M. We show that C'is a normal subultra-group. First for every a,b € M

e85 a1 =1 € 0

N H[a’ oA a][fﬂ] b, a]: = [e1, [b, a]]

N [[% b]([b’a](—l))([b,a][fl],[b,a]) , [[b, a= a]}_ — [en, [b.cl]
= [av b] = [Clv [bv a“ . (*)

So for every a,b € M there exists ¢; € C such that [a,b] = [e1,[b,a]].
Now, using Theorem 1.6, we will prove that C' is a normal subultra-group

of M. Note that for every x,y € M and by (%) we have [c1,[z,y]] =

[61, [627 [?/’xm = HC}f?Cg] 7[y’x]] = [03’ [ya ‘TH) where h = (C2a [yvx])_l) €3 =
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[, eo], thus [C, [z,y]] C [C, [y, 2]]. The inverse of this equation is proved
in the same way. Therefore

C, e, yll = [C [y, «]] . (xx)

For every x,y €g M and every ¢y, co € C:

llev, ). lea,9]) = [efs [ e, 9] h= (@, [e1,9))
= el lea, ez, ] )] by(+)
= ||tz )™ ey [le, ], al
= [ex, l[ez. ) 1] ci = |(e) el ™ o,
= [eo [ 0]
= fes. ] o = [ )

Therefore [[c1,z], [c2,y]] C [cs, [y, x]] and hence [[C, z],[C,y]] C [C, [y, z]].

Y y Y a
Now by (**), [c1, [z,y]] = [c2, [y, 2]] = [[ch.y] , 2] which b = (y,z)"!. Then
by (%) we have, Hcg,y] ] [03, T, [cg,y]]] = Hcé‘,,x] , [cg,yu, where
1

W = (z,[ch,y])~". Thus [C,[y,z]] C [[C,a],[C,y]]. These show that C is
a normal subultra-group of M.

Theorem 3.6. Let M be an ultra-group of a subgroup H over a group G.
Then an ultra-group M is abelian if and only if M' = {e}.

Proof. If ultra-group M is abelian then for every a,b € M, [a,b] = [b,q]
SO [[a, b] [b.a] ™V , [b, a][_lq = [c;,\b] = e by considering the fact for every
a € M we have aa(il),a[_l]} = e. Conversely if for every a,b € M we have
{[a, b][b’a](_l) , [b, a][fl]} = e then in view of Proposition 1.3 and the right
cancellation law [a, D] o)™ b, al e and thus [a,b] = [b, al. O

Theorem 3.7. Let M be an ultra-group of subgroup H over a group G and
M’ be the commutator subultra-group of M. Then % s abelian.

Proof. Forevery a,b € M, [a/,\b] € M’ if and only if [[a, b][b»a](_l) , [b, d] [*1}] c
M’'. Thus [M’',[a,b]] = [M’, [b,a]]. Since M’ is a normal subultra-group of

M, we have [[M’,a],[M’,b]] = [[M',b],[M’,a]], so 4% is abelian. O
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Theorem 3.8. Let M be an ultra-group of a subgroup H over a group G
and N be a normal subultra-group of M. Then % 1s abelian if and only if
M' < N.

Proof. Let % be abelian ultra-group. It is sufficient to show that N contains
the generators of ultra-group M’. For z belongs to the generators of M’,

there exist a,b € M such that x = [[a, b] [p.a) ™ [0, a][_l] . On the other
hand 4L is abelian, therefore for every a,b € M we have [[N,a],[N,b]] =
[[N,b],[N,al]]. Thus by normality of N we have, [N, [a,b]] = [N, [b,a]] (by
Theorem 1.6). So {[a,b][bm(il) . [0, a][_lq € N. This implies that x € N
and therefore M’ < N. -

Conversely if M’ < N, then [[a p)® " b, a][flq € M’ for every
a,b € M. Since M' < N, |[a L R A | ] € N. Thus [N, [a,b]) =
[NV, [b,a]]. Since N is normal, [N, a], [N, b]] = [[N, 0], [N, a]]. 0

Lemma 3.9. If X is a generating set of an ultra-group M then M’ is
generated by the set of commutators of elements of X.

Proof. Let K be a normal subultra-group generated by the commutators of
elements of X. By definition of M’ we have K < M'. On the other hand,

the set 2 generates the quotient ultra-group 2. Now [[K,z1], [K, 2] =
(K, a] (K] i and oy i [y, 2221 [xz,xlﬂ*”} — [#1,73) € K.
So % is abelian by Theorem 3.8 and hence M’ < K. O

Let N and K be two normal subultra-groups of an ultra-group M. Then
[JV,T( } is a subultra-group of M generated by {[ﬂ} In€ N,k e K}.

Let M be an ultra-group of a subgroup H over the group G and let A, B
be two normal subultra-group of M. Then for every a,b € M we have:

@] = [l ™)

= —[a(b[b’a}(_l))jb[b,a][_”] 7 [(a[fl])b(—njb[q]} [b@]]

= [[#a]. ] g
— :Hah&,bhé} ’a[—uhs] ’(b[—u)m}
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- Hb’, [ah’l,(a[*mh‘?’ﬂ ,(b[*”)h‘*} by B<a M
- [a’, [b', (b[‘”)h‘lH c[A,B] by AdM
where hy = (*[b,a] V), hy = [b,a] 7, by = 6DV [b,a)), hy = [b,d],
Ry = ((ha) (" ((al=)ks b)) and bl = hy((al=1)hs, (pI=1D") 1),
Now from Lemma ?? and the normality of B, [b” , [b’ , [ahll, (a[_”)’m}ﬂ =
[b'", [ahi,(a[—ﬂ)hsﬂ € [B, A]. Thus [cﬁ;} € [A, B]N[B, A]. Since A, B are

normal in an ultra-group M, [A, B] and [B, A] are normal subultra-groups
of M.

Lemma 3.10. Let N be a normal subultra-group of an ultra-group M such
that every n € N commute with every m € M and for every h € H, n" = n.
Then [N, m"] = [N,m)].

Proof. First for each n € N and my,mo € M, h € H we have

[, iy mal) = [[n,ma] ,ma] = [[ma, ] ma) = [m{""™), [, my]] .

On the other hand [[mi, ms],n| = [mng,n)’ [mg,n]} = {m&m%n), [n,mg]},

thus m§m2’") = mgn’"m). So m(ln’mQ)(T'””")71 = my. Now we can write
[n, [y, ma]] = [[ma,ma) ,n] = [m{"™"), ma, ]| =
m -1 .
ng 2,n)(n,mz) ,n} 7m2} = [[m1,n], ma]. (i)
Also »
[, [m1, ma]] = [may, [n1, ma]] = ngm’mz) ,m} ,mz]. (i)

From (i), (i7) we can deduced [mq,n] = [m(lm,mz)*l’nl] Thus my =
_ n(=1) -
ngnl,mz) 17n1} 7n[—1] . Somy = [mllzﬂl/} where n/ — [naﬂ 1>’n[_1]}

and h = (nl,mg)_l("1n(_1))(n”(71)’”[71]). Therefore there exist n’ € N
such that m; = [m", '] = [n/,m"] for every n € N. So m; € [N, m}] and
[N,m}] = [N, m]. O

Theorem 3.11. Let N, K be normal subultra-groups of ultra-group M and

K M. . o [
N < K. ThenN<Z(ﬁ) if and only if [K,M} < N.
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Proof. First we note that:
(1). For every k € K,h € H we have

—

(kh)k(_l)ak[—lq € N. Thus [N, k] =

[N, k"]. Therefore for every [N, k] € —, [N, k‘]h = [Nkh, kh} =[N, k.

sz

(2). For every ke K, me M if [m

N and [N, [k, m]] = [N, [m, k]]. Hence [[N
M

[N, k] commute with every [N, m] € N

K
(3). K is normal in M, thus N is normal in N since

N, then {[kz m][m’k}(_l), [m, k][flqe
k], [N, m]] = [[N,m], [N, k]]. So,

[[va]v[[Nvml]v[N’mZ]H: [Nv ]7[N7 [mlva]H

([N, k
= [NV, [k, [m1, ma]]]
= [N, [ma, [k, ma]]]
= [[N;ma] , [[N, k], [N, mo]]

N
Now, by Lemma 3.10, for e and for every mi,mo € M, we have

[[N7 k] ) [[N7 ml} ) [N’ m2m = [HN7 ml} ) [Na mQH J [N> k“
[, g b VAD N o) [V, ]
= [[Nyma], [[N, k], [N, mo]]]
Thus [N, k] € Z(%) for every k € K.

M
Conversely, let [N, k| < Z(ﬁ) Hence for every k € K,m € M

[N, K] [IN,m] S [N e]]] = ([N, m] L [N, k] [N e]]
[N, k] ([N, m], NI = [[N,m], [N, k], N]]
[N, K] [N, m]] = [[N,m], [N, k]

[N, [k, m]] = [N, [m, k]|

(- _
Thus for every k € K, m € M we have, [k,m][m’k] ! , [m, k][ 1}] € N. So
[m] <N. O
Now we give an equivalent characterization of nilpotent ultra-groups,

namely by descending central series.
Let M be an ultra-group and
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W) = M, (M) = [n(D).M|, (M) = [3i-a(M). M)

Then the chain of normal subultra-groups M = v (M) > v2(M) > ... is
called descending central series of M, that have the following properties:
~i(M)<M for every i, and by the above lemma, i) (

M .
S Yit1(M) Z %‘+1(M)) sinee
(M), M| = i (M),

Definition 3.12. A series {e} = My < M; < ... < M, = M of an ultra-
group M is called central series if for each i, M; < M and MA}—T < Z (%)

Lemma 3.13. If {e} = My < M; < ... < M, = M is a central series of
an ultra-group M, then

(1) vi(M) < Mp—it,
(i) M; < Z;(M).
Proof. The proof is straightforward by induction on 4. O

Theorem 3.14. Let M be an ultra-group. Then M is nilpotent if and only
if Tn+1 (M) = {e} for some integer n > 0.

Proof. Assume that there is an integer n > 0 such that ~v,11(M) = {e}.
Consider the series

M =~31(M) > 72 (M) > ... > (M) > v (M) = {e}.

: . (M .
In this series, 77+(1(1\}) < Z(%;l\{M)) and Yp41-i(M) < Z;(M) for all i =
0,1,...,n (Lemma 3.13). Therefore M = (M) < Z,(M), so M is nilpo-
tent.

Conversely, if M is nilpotent then there exists n > 1 such that Z,, (M) =

M. Therefore we have a series of normal subultra-groups
{e} =20(M) < Z1(M) < Zo(M) < ... < Zp(M) = M.

Then it follows that v;(M) < Zp41-i(M) for all i and yp41(M) < Zo(M).
S0 Y1 (M)={e}. O

Theorem 3.15. Fvery subultra-group of nilpotent ultra-group is nilpotent.

Proof. Let M be an ultra-group and K be a subultra-group of M. Since
M is nilpotent, so there exists an integer n > 0 such that v,41(M) = {e}.
Now we will show (by induction on i) that ~;(K) < ~;(M). For i = 1,
it is clear. Suppose that v;(K) < 7;(M). Then v, 41(K) = [%(K),K} <

[WZ(]/W)\,M} = v;+1(M). Hence v;+1(K) < vit1(M) = {e}. O
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Let M be an ultra-group of a subgroup H over the group GG. We define
the i-th derived subultra-group of M inductively as follows:

Mm:M:ﬁﬂﬂ,

ML — A = [M(i/)’j\w(i)} '

So we obtain the sequence of subultra-groups of M such that each one
is normal sn the previous.

The series

MO =M>M'> M > ...
is called derived.

Lemma 3.16. Let M be an arbitrary ultra-group and M = My > My >
My > ... be the solvable series. Then for every i, M@ C M.

Proof. By induction on 4. If i = 0, then M©) = M C M) = M. Suppose
MO C M(;y. We show that this is true for ¢ + 1. By MO C M ;) we have
{MW(Z‘)} C [Mm(l)} So Mt C M!. According to the conditions
of the solvable series MAﬁl is abelian. Thus by Theorem 3.8, M C M.
Therefore M(+1) C M i1y O

Theorem 3.17. Let M be an ultra-group of subgroup H over the group G.
The ultra-group M s solvable if and only if there exists n > 0 such that
M® = {e}.

Proof. If M is a solvable ultra-group, then it has solvable series M = My >
My > My > ... > M, = {e}. Now by the above lemma for i = n we have
M™ > M, = {e}. Conversely, let there exists n > 0 such that M) = {e}.
In this case the derived series has the conditions of a solvable series, that
means M1 < M? and Mj‘ﬁ - is abelian. So it is a solvable series for an
ultra-group M. O

We conclude this paper by presenting the following lemma, which demon-
strates the relationship between nilpotent and solvable ultra-groups.

Lemma 3.18. FEvery nilpotent ultra-group is solvable.

Proof. If an ultra-group M is nilpotent then the upper central series of

M, {e} < Z1(M) < Zo(M) < ... < Z,(M) = M is a normal series. All
Zi(M) Z(—M__)

Zi—1 (M) — Zi—1(M)

and Z(%(M)) is abelian. O

quotients of the upper central series are abelian since
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