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Completely regular R-semirings

and completely regular L-semirings
Moumita Bag, Sunil Kumar Maity and Mridul Kanti Sen

Abstract. In [6] it was shown that a semiring is completely regular semiring if and
only if it is a b-lattice of completely simple semirings. In this paper, we generalize
this concept and introduce completely regular R-semiring, completely regular L-semiring
and we show that a semiring is completely regular semiring if and only if it is both a
completely regular L-semiring and a completely regular R-semiring. Moreover, we show
that a semiring is a completely regular R-semiring (completely regular L-semiring) if and

only if it is a b-lattice of completely simple R-semirings (completely simple L-semirings).

1. Introduction and preliminaries

Structure of a regular semigroup is well known and Green’s equivalence re-
lations [3] have vital role in the determination of this structure. Completely
regular semirings were introduced and characterized in [6]. A semiring is
completely regular semiring if and only if it is disjoint union of skew-rings
and also if and only if it is a b-lattice of completely simple semirings (see
[6]). Due to their rich structure, it is natural to search for classes of semir-
ings close to completely regular semirings. In this paper, we introduce
new classes of semirings by imposing some conditions on the elements of a
semiring whose additive reduct is a regular semigroup. These new classes
of semirings can be considered as the generalization of completely regular
semirings [6].

By a semiring we mean here an algebraic structure (S, +, ) consisting
of a non-empty set S together with two binary operations ‘4’ and ‘-’ (called
addition and multiplication respectively) defined on S such that both the
reducts (S, +) and (5, ) are semigroups and all elements a, b, c € S satisfy
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a(b+c) = ab+ac and (a+b)c = ac+ be. For briefness, we sometimes write
only S instead of (S, +,-) and we simply write ab instead of writing a - b for
any two elements a,b in a semiring S.

A semiring S is said to be additively commutative if a +b = b+ a for all
a,b € S. A semiring (S, +, ) is called an additively regular semiring if for
every element a € S, there exists an element x € S such that a+x+a = a.
Additively regular semirings were first studied by J. Zeleznekow [7].

Let a be an element in a semiring S. Then an element x € S satisfying
a+x+a=aand x+a+x=xis said to be an additive inverse of a. A
semiring (S, 4+, -) is said to be a completely reqular semiring [6] if for each
element a € S, there exists an element x € S such that a + ¢ + a = a,
a+z =z+a and ala + ) = a+ x. A semiring (5,+,-) is called an
idempotent semiring if both the reducts (S,+) and (S,-) are bands, i.e.
a+a=a=a-aforal aecS. According to Grillet [2], a skew-ring is
a semiring (5,4, ) such that the additive reduct (S,+) is a group. If a
semiring S is such that the additive reduct (S, +) is a semilattice and the
multiplicative reduct (S, -) is a band, then S is called a b-lattice.

A non-empty subset I of a semiring S is a left ideal of S if a +b,7a € [
for all a,b € I and for all r € S. A right ideal is defined dually. A non-
empty subset I of a semiring S is said to be an ideal of S if it is a left ideal
of S as well as a right ideal of S. If I is a left ideal of a semiring S such
that either a+x € I or x+a € I, wherea € [ and x € S, imply x € I, then
I is called a left k-ideal of S. A right k-ideal is defined dually. An ideal I
of a semiring S is said to be a k-ideal of S, if either a+xz €l or x4+ a € I,
where a € I and x € S, imply x € I. A mapping ® : § — T between two
semirings S and T is called a semiring homomorphism if (a+b)® = a®+bP
and (a-b)® =a® - b® for all a,b € S.

Throughout this paper, E*(S) denotes the set of all additive idempo-
tents of the semiring S and the set of all additive inverses of an element
a € S, if exists, is denoted by V*(a). Also, for all @ € S and for any n € N,
we writena=a+a+---+a.

n—copies

As usual, we denote the Green’s relations on the semiring (S, +, ) by
L, R, D, J and H and correspondingly, the L-relation, R-relation, D-
relation, J-relation and H-relation on (S, +) are denoted by £*, RT, DT,
JT and HT respectively. In fact, the relations £, R, DT, J* and HT
are all congruence relations on the multiplicative reduct (.5, -). Thus if any
one of these happens to be a congruence on (S,+), it will be a semiring
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congruence on the semiring (S,+,-). A congruence p on a semiring S is
called a b-lattice congruence if S/p is a b-lattice. A semiring S is called a
b-lattice Y of semirings S, (a € Y) if S admits a b-lattice congruence p
such that Y = S/p and each S, is a p-class. For any a € S, we let H be
the H*-class in (S, +) containing a. For other notations and symbols not
given in this paper, the reader is referred to Golan [1], Howie [3], Petrich
and Reilly [5].

2. Completely regular R-semirings
and completely regular L-semirings

In this section, we introduce completely regular R-semirings and completely
regular L-semirings and study their properties.

Definition 2.1. We call a semiring (S, +, -) a completely reqular R-semiring
if for each a € S, there exists © € S such that a+x+a =a and a(a+z) =
(a+x)a=a+z=2a+ 2.

There are plenty of examples of completely regular R-semirings. For
example, every skew-ring, every ring, every distributive lattice and every
idempotent semiring are completely regular R-semirings. Moreover, from
the definition, it is clear that every completely regular semiring is a com-
pletely regular R-semiring, but the converse may not be true in general.
This follows from the following example.

Example 2.2. Suppose S = 2Z x 2Z such that (a,b)+(c,d) = (¢,b+d) and
(a,b)(c,d) = (ac,bd) for all (a,b), (c,d) € S. Then S is an additively regular
semiring with respect to the given operations. For any p = (a,b) € S, there
is an element ¢ = (0,—b) € V*(p) such that (i) p+ g+ p = p and (ii)
plp+q) = (p+q9p=p+q=2p+2q Hence S is a completely regular
R-semiring. Note that for p = (a,b) € S, we have to choose ¢ = (0, —b) so
that the properties (i) and (ii) hold. But then p 4+ q¢ # ¢ + p. Therefore,
S is not a completely regular semiring. Also note that S is not a quasi
completely regular semiring [4], not an idempotent semiring, not a ring, not
a skew-ring and not even a distributive lattice. Now, for p = (a,b) € S, if
we choose z = (a, —b), then p+2z+p =p and p+ 2z = z+ p, but z does not
satisfy the property p(p+z) = (p+ 2z)p = p+ z = 2p + 2z. From this, it at
once follows that (.S, +) is a completely regular semigroup but the semiring
(S, 4+, ) is not a completely regular semiring. Therefore, a semiring whose
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additive reduct is a completely regular semigroup may not be a completely
regular semiring.

The following theorem characterizes completely regular R-semirings.

Theorem 2.3. A semiring S is a completely regular R-semiring if and only
if for each a € S, there exists an element y € V' (a) such that a(a + y) =
(a+y)a=a+y=2a+2y.

Proof. First suppose that S is a completely regular R-semiring. Then for
any element a € S, there exists an element z € S such that a+x+a =a
and a(a+ ) = (a+z)a =a+x = 2a+2x. Let y = x + a+ z. Then
clearly y € V*t(a). Now, a(la +y) = ala+x+a+2) = ala+2x) =
a+x=a+ (x+a+x) =a+y. Similarly, (a + y)a = a + y. Finally,
2042y = 2a+2(z+a+x) = a+(a+z+a)+z+r+at+x = 2a+2x+a+z =
a+x+a+xz=a+y. Therefore, a(a +y) = (a+y)a =a+y = 2a + 2y.
The converse is obvious. O

Remark 2.4. In a semiring S, if for an element a € S there exists an
element x € S such that z € V*(a), then both a + z and x + a € ET(S).
But the additive idempotent a 4+ x mainly plays the crucial role in the
definition of completely regular R-semiring. Instead of a + x, if we consider
the additive idempotent x 4 a in a similar way, then we call the semiring a
completely regular L-semiring.

Definition 2.5. A semiring S is said to be a completely reqular L-semiring
if for each a € S, there exists an element x € S such that a +x +a =
a,a(z+a)=(x+a)a=2x+a=2x+ 2a.

Similar to Theorem 2.3, we can prove the following result.

Theorem 2.6. A semiring S is a completely regular L-semiring if and only
if for each a € S, there exists an element y € V' (a) such that a(y + a) =
(y+a)a=y+a=2y+2a.

Remark 2.7. For an element ¢ in a semiring S, we denote
In(a)={xeS:zeV*t(a),alr+a)=(x+a)a=x+a=2x+2a}
and
Ir(a)={r e S:xeVT(a),ala+z)=(a+2z)a=a+x=2a+2x}.

Then S is completely regular L-semiring if and only if I1(a) # () and com-
pletely regular R-semiring if and only if Ig(a) # () for all a € S.
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Remark 2.8. It is worth mentioning that I7,(a) or Ig(a) may contain more
than one element. For instance, if we consider the semiring S = Z x Z with
the operations given as (a,b) + (¢,d) = (¢,b+ d) and (a,b)(c,d) = (ac, bd)
for all (a,b), (c,d) € S, then for any a € Z, we have Ir((1,a)) = {(z, —a) :
x €7}

3. Properties of completely regular R-semirings and
completely regular L-semirings

Here we mainly discuss the structure and properties of completely regular
R-semiring and completely regular L-semiring.

First we state the following results from [5, Lemma 1.7.9].

Proposition 3.1. For any H-class H of a semigroup S, the following are
equivalent:
(1) H is a group.
(ii) H contains an idempotent.
) There exist elements a,b € H with ab € H.
)HH C H.

(idi
(iv

Using the above results, we now establish some properties of completely
regular R-semiring.

Theorem 3.2. If S is a completely regular R-semiring, then the following
properties hold:

(i) Fvery R*-class of S is a subsemiring.

(1) Every H't-class is a subgroup of (S, +). Hence (S,+) is a completely
reqular semigroup.

Proof. (i). Let a be an element in a completely regular R-semiring S. Then
there exists an element y € V' (a) such that a +y +a = a and a(a + y) =
(a+y)a=a+y=2a+2y Now,a=a+y+a=ala+y)+a=a’>+ay+a
and a? = a(a+y+a) = a(a+y)+a® = a+y-+a? imply that a®> RT a. Again,
2a+2y+a=a+y+a=aimply 2a R" a. Let b,c € R}, where R} is the
RT-class containing a € S. Then b= a+s1,a = b+3s9,c=a+s3,a = c+s4
for some si, 89,583,854 € S. Now, a +b = 2a + s1,2a = a + b+ so imply
that (a +b) R" 2a R"a and thus a + b € R}. Similarly, we can show that
b+ce R = R}F. Again, be = (a+51)(a+ s3) = a® + as3 + s1a + s153 and
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a? = (b+ s3)(c+ s4) = b+ bsy + sac + s984 imply that be RT a? R a and
thus bc € R}. Therefore, each R*-class is a subsemiring of S.

(74). Let a be an element in a completely regular R-semiring S. Then
there exists an element y € V1 (a) such that a + y + a = a and a(a + y) =
(a+y)a=a+y=2a+2y. Itis easy to verify that a R™ 2a, y R (y + a).
Similarly, for the element y € S, we can show that y R* 2y. Therefore, we
have (y +a) RT 2y. Let e = 2y + 2a. Then e +e = (2y + 2a) + (2y + 2a) =
2y + (2a + 2y +a) +a = 2y + 2a = e and thus e € ET(S). Again,
e+2y = 2y+2a+2y = 2y+a+y = 2y implies e R™ 2y R (y+a) and thus
y+a = e+ u for some u € S. From this, we have e + y +a = y + a, i.e.,
y+a=e+y+a=2y+2a+y+a=2y+2a=e,ie, 2y+2a=e=y+a.

Again, let f =a+2y+a. Then f+f=a+2y+a+a+2y+a=
a+2y+2a+2y+a=a+y+a+2y+a=a+2y+a=f, hence f € ET(S).
Now a+ f = 2a+2y+a = a implies a LT f. Also, f+a = (a+2y+a)+a =
a+2y+2a =a+y+a=aimplies a R" f. Therefore, a H' f, i.e., H, the
‘H " -class containing the element a contains an idempotent of the semigroup
(S, +). Hence by Proposition 3.1, it follows that H,' is a subgroup of (S, +)
and consequently, (S,+) is a completely regular semigroup. O

Corollary 3.3. If S is a completely regular R-semiring and a € S, then
a+2y+a=a+2z+a€ ET(S) for any two elements y, z € Ir(a).

Proof. Let a € S and y € Ig(a). Then from the proof of Theorem 3.2, it
follows that f = a+2y+a € ET(S) is the identity element of the subgroup
(H;,+). Similarly, for any other element z € Ig(a), we can prove that
a+2z+4a € ET(S) is also an identity element of the subgroup (H;,+).
From the uniqueness of the identity element, it follows that a 4+ 2y + a =
a+2z+a. O

Remark 3.4. If S is a completely regular R-semiring, then for every a € S
and y € Ir(a), the unique element a + 2y + a € ET(S) is denoted by 0,.
Therefore, for a € S and for any y € Ir(a), 0, = a + 2y + a is the identity
element of the group (H,,+).

Similarly as Theorem 3.2, we can prove the following result for com-
pletely regular L-semiring.
Theorem 3.5. If S is a completely reqular L-semiring, then the following
properties hold:

(1) Every LT -class of S is a subsemiring.

(i1) Every H' -class is a subgroup of (S,+). Hence (S,+) is a completely
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reqular semigroup.

Remark 3.6. From Theorem 3.2 and Theorem 3.5, we conclude that in a
completely regular R-semiring each RT-class and in a completely regular
L-semiring each LT-class are subsemirings. Moreover, for both of these
semirings the additive reduct is a completely regular semigroup. The names
of our newly defined semirings are chosen according to their structures.
Since the additive reduct is a completely regular semigroup, it follows that
in a completely regular R-semiring and also in a completely regular L-
semiring, DT = J .

Theorem 3.7. If S is a completely reqular R-semiring, then the relation
JV is a b-lattice congruence on S and each J—class is a subsemiring of S.

Proof. Since S is a completely regular R-semiring, so by Theorem 3.2, it
follows that (S, +) is a completely regular semigroup and hence we find from
the Theorem II.1.4 in [5] that J* is a semilattice congruence on (5, +)
and obviously each JT-class is a subsemigroup of (S,+). To complete
the proof, it remains to show that J 7 is a band congruence on (S,-) and
each JT-class is a subsemigroup of (5,). Clearly, J* is a congruence on
(S,). Let a € S. Then there exists an element y € V1 (a) such that
ala+y) =(a+yla=a+y =2a+2y. Now,a=a+y+a= (a+
Y+@a+y)+a=(a+y)+tala+y)+a=(a+y)+a®+ (ay+a) and
a*> = a(a+y+aty+a) = a(a+y)+ala+y)+a® = (a+y)+a+(y+a?) imply
that a2 7+ a. Hence J7 is a band congruence on (S, -) and therefore, 7+ is
a b-lattice congruence on the semiring S. Finally, to show each JT-class is
a subsemigroup of (S, -), let b,c € J, where J} is the J*-class containing
an element @ € S. Then b 7" a and ¢ 7+ a. Since JT is a band congruence
on (S,-), it follows that bc J* a2J T a and therefore, bc € J. Thus each
JT-class is a subsemigroup of (S,-) and consequently, each JT-class is a
subsemiring of .S. O

Similarly as Theorem 3.7, we can prove the following result for com-
pletely regular L-semiring.

Theorem 3.8. If S is a completely reqular L-semiring, then each J*-class
is a subsemiring of S and the relation J is a b-lattice congruence on S.

Now we state some results for completely regular R-semirings and it
can be verified in similar ways that analogous results hold for completely
regular L-semirings.
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Lemma 3.9. Let a be an element in a completely regular R-semiring. Then
the following properties hold:

(i) 0c = e for all e € ET(S).

(i7) ET(S) = {04 :a € S}.
Proof. (). Since 0. is the unique identity element of the group (H.,+), so
clearly 0. = e for all e € E1(S).

(7). Obviously, 0, € ET(S) for all a € S as 0, is the identity of the
group (H},+). Again, by (i), we have 0, = e for all e € ET(S). Hence
E*T(S)={04 : a € S}. O

Lemma 3.10. If S is a completely reqular R-semiring, then for all a € S
and y € Ig(a), the following properties hold:

(1) y(y+a) = (y+a)y.
(1) for allmn € N, na+ny =a+y and ny +na =y + a.

(ii7) (04)? = 0,2 = a0, = 04a.
(v) Oy =y +2a+y.
(v) 0q + 0y = 044y and Oy + 0y = Oypq.
(vi) Oy € Ir(0a)-
Proof. (i). Suppose a € S and y € Ig(a). Then y?> = (y +a+y)y =

(y*+ay)+y? implies (y*+ay) RT >Rt y. Also, y*+ay = y*+a(y+a+y) =
(W +ay+a)+yandy =y+a+y=y+ala+y) =y+a®+ay =
y+a®+(a+y+a)y = (y+a®+ay)+y?>+ay imply that (y*>+ay)LT y. Hence
(y> + ay)H* y. Since (H,f,+) is a group and y* + ay = (y +a)y € ET(S9),
it follows that the identity of (H,",+) is 0, = y?+ay = (y+a)y. Similarly,
we can show that 0y = y(y + a). Consequently, y(y + a) = (y + a)y.

(ii). Since y € Ir(a), we have 2a + 2y = a + y. Now, 3a + 3y =
a+ 2a+2y)+y=a+(a+y)+y =2a+2y = a+y. Similarly, by
induction, we can prove that na + ny = a + y for all n € N.

Again, from the proof of Theorem 3.2, it follows that 2y + 2a = y + a
and hence similar to na + ny = a + y, we can prove that ny +na =y + a.

(74). Clearly, H" is a congruence on (S,-). Again, for any a € S, we
have a H* 0,. This implies a® H* a0, H* 0,a H' (04)%. Since each H*-class
contains unique additive idempotent, therefore, we must have (0,)%? = 0,2 =
a0, = 04a.

(iv). Let a € S and y € Ig(a). Then it is easy to verify that e =
y+2a+y € ET(S). Moreover, e +y=y+2a+2y=y+a+y=y and
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y+e=2y+2a+y=1y+a+y=y imply that y " e. Therefore, e is the
identity element of the group (H;‘, +) and hence 0y =e=y+2a+y.

(v). Now, 0,40y = (a+2y+a)+(y+2a+y) = a+2y+(a+y+a)+aty =
a+2y+2a+y =a+y+a+y=a+y. Since at+y € E1(S), 80 0g1y = a+y.
Therefore, 0, 4 0y = Og4y. Similarly, we can prove that 0, 4+ 0, = 0y44.

(vi). For a € S, let y € Ir(a). Then 0q +0, + 0, = a+y + 0, =
a+y+(a+2y+a)=a+2y+a=0,and 0,+0,+0, =y +a+0, =
y+a+ (y+2a+y) =y+2a+y =0, Therefore, 0, € V(0,). Also,
0a(0a +0y) = (a+2y +a)(a+y) =ala+y)+2yla+ty) +alat+y) =
ala+y)+yla+y)+ala+y) =ala+y) =a+y =04+ 0, Similarly,
we can show that (0, + 04)0, = 04 + 0y and obviously 0, + 0, = 20, + 20,.
Therefore, 0, € Ir(0g). O

Theorem 3.11. Let S be a completely reqular R-semiring. Then S is a
completely regqular semiring if and only if (0,)? = 04, for alla € S.

Proof. First we assume that S is a completely regular R-semiring such that
(04)% = 0y, for all @ € S. Since S is a completely regular R-semiring, then
by Theorem 3.2 (ii), it follows that H is a subgroup of (S,+), for all
x € 8. Since 0,2 = (04)? = 0y, for all a € S, we must have a®>H™ a, for
all a € S. Let b,c € Hf. Then bH' cH* a. Since H' is a congruence on
(S,-), so beHT a? H a and thus be € HS. Hence H; is a skew-ring and
therefore, S is disjoint union of skew-rings. Consequently, by [6, Theorem
3.6], it follows that S is a completely regular semiring.

The converse statement is obvious. O

Combining Lemma 3.9 (i7) and Theorem 3.11, we have the following
corollary.

Corollary 3.12. A completely regular R-semiring is a completely regular
semiring if and only if every additive idempotent is also a multiplicative
idempotent.

Theorem 3.13. Let S be a completely reqular R-semiring. Then S is a
skew-ring if and only if 04 = Oy, for all a,b € S.

Proof. Since S is a completely regular R-semiring, so (S,+) is a regular
semigroup. Again, since 0, = 0, for all a,b € S, it follows that ET(S) is
a singleton set. This implies (S, +) is a regular semigroup with only one
additive idempotent element. Therefore, (S, +) is a group and hence S is a
skew-ring.
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The second part is obvious. ]

Corollary 3.14. A completely regular R-semiring is a skew-ring if and only
if it contains exactly one additive idempotent.

Theorem 3.15. Let b : § — T be a semiring homomorphism from a
completely regular R-semiring S into a semiring T'. Then

(1) St is also a completely reqular R-semiring.

(1) 05t = Ogyp, for all s € S.

Proof. (i). Suppose t € S1. Then there exists some s € S such that t = si.
As S is a completely regular R-semiring, so there exists x € V1 (s) C S such
that s(s+x) = (s +z)s = s+ x = 25 + 2z. Let x¢) = y. Then one can
easily prove that y € V' (¢) such that t(t +y) = (t +y)t =t +y = 2t + 2y.
Consequently, S is a completely regular R-semiring.

(7). For any element s € S, there exists an element x € V1 (s) such
that s(s+x) = (s+z)s = s+x = 2s + 2x. Then 05 = s+ 2z + s. Let
sp =t and zv) = y. Then it is easy to verify that y € V1 (t) such that
tt+y) = (t+y)t =t+y = 2t+2y. Then by definition 0, = ¢t + 2y + ¢ and
thus Ogy = s + 229 + 59 = (s + 22 + s5)1p = 051. Therefore, 059 = Oy,
for all s € S. O

Corollary 3.16. If p be a congruence on a completely reqular R-semiring
S such that a pb for some a,b € S, then 0q pOp.

Proof. Consider the natural epimorphism v : S — S/p defined by ayp) =
ap, for all a € S. Now, 0,p = 0,9 = Oqyy = 0gp = 0pp = Oy = Ot = Opp
implies Og p Op. O

Proposition 3.17. Every left (right) k-ideal of a completely regular R-
semiring is also a completely reqular R-semiring. Hence every k-ideal of a
completely reqular R-semiring is also a completely reqular R-semiring.

Proof. Suppose S be a completely regular R-semiring, K be a left k-ideal
of S and a € K. Then there exists an element z € V*(a) C S such that
ala+2) = (a+z)a=a+2z=2a+2z. Now, a € K implies a?,za € K,
ie, a+x = (a+x)a = a’>+ za € K. Since K is a left k-ideal of 9,
so a,a +x € K implies z € K. Consequently, K is a completely regular
R-semiring. Similarly, we can show that every right k-ideal of S and every
k-ideal of S are also completely regular R-semirings. O
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Proposition 3.18. Let (S,+,) be a semiring such that (S,+) is a semi-
lattice. Then S is a completely regular R-semiring if and only if S is a
completely reqular semiring.

Proof. First suppose S is a completely regular R-semiring such that (.S, +)
is a semilattice. Then for any a € S, there exists an element z € V' (a)
such that a(a + x) = (a + z)a = a + x. Since (S, +) is a semilattice, so we
havea =a+z+a=a+a+x =a+ z. Hence from a(a+ ) =a+ x we

have a? = a. Therefore, S is a b-lattice and thus S is a completely regular
semiring.
The converse part is obvious. O

Proposition 3.19. Let (S,+,) be a completely reqular R-semiring such
that (S,-) is a band. Then S is a completely regular semiring.

Proof. Since S is a completely regular R-semiring such that a? = a for all
a € 9, so it follows that a® HT a and hence similar to the proof of Theorem
3.11, we can conclude that each H*-class is a skew-ring. Therefore, S is a
completely regular semiring. ]

We now recall a result from Petrich and Reilly [5, Lemma II.1.6].

Lemma 3.20. The following conditions on a semigroup S are equivalent:

(1) S is a rectangular band.
(ii) S is reqular and satisfies the identity ab = axb for all a,b,x € S.

(7i1) S is a completely simple band.

Theorem 3.21. Let (S, +,-) be a completely reqular R-semiring whose mul-
tiplicative reduct (S,-) is a completely simple semigroup. Then (S,-) is a
rectangular band if and only if S is a completely regular semiring.

Proof. 1f (S, -) is a rectangular band, then by Proposition 3.19, we conclude
that S is a completely regular semiring.

Conversely, if S is a completely regular semiring, then E*(S) # 0.
Clearly, E*(S) is an ideal of (S,-). Since (S,-) is simple, so S = E*(9).
Therefore, every element of S is an additive idempotent and hence (S, -) is
a band [6, Lemma 2.5]. Thus (S,-) is a completely simple band and so by
Lemma 3.20, it follows that (S, -) is a rectangular band. O

Definition 3.22. A completely regular R-semiring (L-semiring) is said to
be a completely simple R-semiring (L-semiring) if 7T =S x S.
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Theorem 3.23. The following conditions on a semiring S are equivalent:
(1) S is a completely reqular R-semiring.

(i) S is a b-lattice of completely simple R-semirings.

Proof. (i) = (ii). Since S is a completely regular R-semiring, so by Theo-
rem 3.2, it follows that (S, +) is a completely regular semigroup and there-
fore, 1 is a semilattice congruence on (S,+). One can easily show that
J* is a congruence on (S, -). Moreover, for any a € S, (a%,a) e Rt C J
implies a?> 7t a and thus J71 is a b-lattice congruence on the semiring S.
Again, as (S, +) is a completely regular semigroup, it follows that each J -
class is a completely simple subsemigroup of (S, +). To show each J*-class
is a subsemiring of S, let b, c € J, where J is the JT-class containing an
element a € S. Since b, ¢ € J;, there exist x, y, u, v, x1, y1, u1, v1 € S such
that b = x+a+y, a=u+b+v, c=2x1+a+y1, a=uj+c+v;. Now, bc =
(z+aty)(z1t+aty) = (z21+zatzy +az:)+a®+(ayr+yri +yat+yy) and
a? = (u+b+v)(ur+ctvr) = (uug +uctuvy +bug)+be+(bvy +vus +vetovy ).
Hence be I+ a?2 JT a. This shows that every J T-class is a subsemiring of
the semiring S. Finally, since S is a completely regular R-semiring, so
for each element u € S, there exists an element v € V*(u) such that
u(lu4+v) = (u+v)u = u+v = 2u + 2v. One can easily verify that
u J T v and hence it follows that each J*-class is also a completely regular
R-semiring. Consequently, S'is a b-lattice of completely simple R-semirings.

(74) = (7). This is obvious. O

Similaly as Theorem 3.23, we can prove the following result.

Theorem 3.24. The following conditions on a semiring S are equivalent:
(i) S is a completely reqular L-semiring.

(74) S is a b-lattice of completely simple L-semirings.

Proposition 3.25. A semiring is completely regular semiring if and only
if it is both a completely regular L-semiring as well as a completely reqular
R-semiring.

Proof. If S is completely regular semiring, then from the definition it is
clear that S is both a completely regular L-semiring as well as a completely
regular R-semiring.

Conversely, suppose S is both completely regular L-semiring as well as
completely regular R-semiring. Then every £7-class and every R'-class of
S are semirings. Again, since (S, +) is a completely regular semigroup, so
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each H*t-class is a subgroup of (S, +). To show each H*-class is a subsemi-
group of (S,-), let b,c € H, where H is the HT-class containing an ele-
ment a € S. Then bH T aH " c¢. This implies bRTaR " cand bLT a LT c.
Therefore, bc RT a®? RT a and bc L1 a? L1 a and thus beHT a. Therefore,
bc € H; and hence each H'-class is a semiring. Thus each H*t-class is a
skew-ring and hence by [6, Theorem 3.6], it follows that S is a completely

regular semiring. O
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