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On commutative subloops of the loop

of invertible elements in the split octonion algebra

over a field of characteristic 2

Evgenii L. Bashkirov

Abstract. A loop X is said to be commutative if x2(yz) = (xy)(xz) for all x, y, z ∈ X.

In the paper, commutative subloops of the Moufang loop of invertible elements in the

split octonion algebra over a field of characteristic 2 are described.

1. Introduction

Let k be an associative and commutative ring with an identity 1, O(k) the
split octonion algebra over k and G(k) the Moufang loop of all invertible
elements of O(k). The present paper deals with the case in which k is
a field of characteristic 2. For this family of fields, as has been shown
in Proposition 2 [2], the loop G(k) has no subloop isomorphic to a class-2
nilpotent group. However, if k is a field of arbitrary characteristic (including
characteristic 2), G(k) possesses an ample quantity of subloops isomorphic
to abelian groups, i.e. to class-1 nilpotent groups. For example, if x is a
fixed element of G(k), then x, being a member of the power associative
algebra O(k), has well-defined powers x0 = 1, x1 = x, x2, . . . , x−1, x−2, . . .
which form a subloop isomorphic to a cyclic group that is certainly abelian.
The present paper concerns a more general algebraic structure, namely,
that of commutative loops. Recall that a loop X is called commutative if
it satisfies the identity

x2(yz) = (xy)(xz). (1)

It is known that if a loop X satisfies (1), then the operation of multiplication
in X is commutative in the sense that xy = yx for all x, y ∈ X, and the
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loop X is Moufang ([3], pp. 99, 100; [6], p. 112, exercise IV 5.A). Speaking
somewhat loosely, the content of the paper can be summed up as follows.

Theorem 1.1. If k is a field of characteristic 2 and G is a commutative

subloop of G(k), that is, if x2(yz) = (xy)(xz) for all x, y, z ∈ G, then the

operation of multiplication in O(k), being restricted to G, is associative and

commutative.

In fact, the proof of Theorem 1.1 is deduced from the proof of Theo-
rem 3.3 which classifies commutative subloops of G(k). In turn the proof
of Theorem 3.3 is accomplished by an investigation of subalgebras of O(k)
that are linear k-hulls of the corresponding commutative subloops. Since
the list of these subalgebras, and as a consequence, that of the correspond-
ing subloops is rather long, the formulation of Theorem 3.3 requires a quite
cumbersome preliminary work.

2. Preliminaries

Let k be an associative and commutative ring with 1. The multiplicative
group of invertible elements of k is denoted k×, and (k,+) is the additive
group of k.

If a ∈ k and S, T ⊆ k, then aS = Sa = {as | s ∈ S}, S + T = {s + t |
s ∈ S, t ∈ T}. The set of all elements that are squares in k is denoted k�,
i.e. k� = {b2 | b ∈ k}.

k3 is the standard free k-module of column vectors of length 3 with com-
ponents in k. The standard basis of k3 is obtained, as usual, by specifying
the elements

e1 =





1
0
0



 , e2 =





0
1
0



 , e3 =





0
0
1



 .

The zero element of k3 is designated as 0.

If α, β ∈ k3, then α ·β and α×β denote the usual dot product and cross
product in k3, respectively.

O(k) is the set of all symbols ( a α
β b ), where a, b ∈ k, α, β ∈ k3. In

O(k), equality, addition and multiplication by elements of k are defined
componentwise, whereas the operation of multiplication is given by

(

a α
β b

)(

c γ
δ d

)

=

(

ac+ α · δ aγ + αd− β × δ
βc+ bδ + α× γ β · γ + bd

)

,
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where a, b, c, d ∈ k, α, β, γ, δ ∈ k3. Under the operations just defined, O(k)
is an alternative non-associative k-algebra termed the split octonion or split
Cayley-Dickson algebra (see, for instance, [8]). One should specify the ele-
ments

e11 =

(

1 0

0 0

)

, e22 =

(

0 0

0 1

)

, e
(m)
12 =

(

0 em
0 0

)

, e
(m)
21 =

(

0 0

em 0

)

(m = 1, 2, 3)

which form a basis for the free k-module O(k).
The symbol 12 is used to denote the identity element of the algebra

O(k),
(

1 0

0 1

)

.

The symbol 02 designates the zero octonion

(

0 0

0 0

)

.

If α ∈ k3, then

t12(α) =

(

1 α
0 1

)

, t21(α) =

(

1 0

α 1

)

.

For any m ∈ {1, 2, 3},

M[m](k) =

{(

a bem
cem d

)
∣

∣

∣

∣

a, b, c, d ∈ k

}

⊆ O(k).

M[m](k) is an associative subalgebra of O(k), and M[m](k) is isomorphic to
the algebra of 2× 2 matrices over k.

The algebra O(k) admits an involution − : O(k) → O(k) such that

x̄ =

(

b −α
−β a

)

whenever x =

(

a α
β b

)

, a, b ∈ k, α, β ∈ k3.

The trace tr(x) and the norm n(x) of the x are defined by

x+ x̄ = tr(x)12, xx̄ = n(x)12,

and so tr(x) = a+ b, n(x) = ab− α · β.
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G(k) denotes the Moufang loop of elements of O(k) whose norm lies in
k×, i.e. elements invertible in O(k).

The norm n determines the bilinear form (x, y) = n(x+y)−n(x)−n(y) =
xȳ + yx̄ on the k-module O(k)(x, y ∈ O(k)). Throughout the paper, all
metric concepts mentioned are related to the bilinear form ( , ) determined
by the norm mapping n : O(k) → k.

The automorphism group of the algebra O(k) is denoted G2(k).
If k is a subring of an associative and commutative ring S having the

same 1 as k, then the set

ZT2(k, S) =

{(

r s
0 r

)

=: [r, s]
∣

∣

∣
r ∈ k, s ∈ S

}

is a subring of the ring of 2 × 2 matrices over S. The group ZT2(k, S)
×

which is formed by all matrices [r, s] with r ∈ k×, s ∈ S, is isomorphic to
the group direct product k× × (S,+), an isomorphism of ZT2(k, S)

× onto
k× × (S,+) being given by [r, s] 7→ (r, sr−1).

3. Results

Assume that k is an associative and commutative ring with identity and
taking m′, t ∈ k,m ∈ k× denote by

C1(k,m,m′), C20(k,m), C30(k,m), C40(k,m, t), C5(k), C6(k), C7(k)

the following seven subsets of O(k):

C1(k,m,m′) =

{(

c c+d
m

e1
c+d
m

m′e1 d

) ∣

∣

∣

∣

c, d ∈ k

}

,

C20(k,m) = k12 + k
(

e
(1)
12 +me

(1)
21

)

,

C30(k,m) = k12 + ke
(1)
12 + ke

(2)
21 + k

(

e
(3)
12 +me

(3)
21

)

,

C40(k,m, t) = k12+k
(

e
(1)
12 +me

(1)
21

)

+k
(

e
(2)
12 + te

(2)
21

)

+k
(

−mte
(3)
12 + e

(3)
21

)

,

C5(k) = C20(k, 0),

C6(k) = k12 + ke
(1)
12 + ke

(3)
21 ,

C7(k) = k12 + ke
(1)
12 + ke

(2)
21 + ke

(3)
21 .

The subsets C20(k,m), C30(k,m), C40(k,m, t), C5(k), C6(k), C7(k)
are subalgebras of O(k), and, furthermore, they are associative because all of
these are generated by at most two elements. In addition, for any such k, the
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subalgebras C20(k,m), hence C5(k), and C6(k) are commutative. On the
other hand, the associative subalgebra A ∈ {C30(k,m), C40(k,m, t), C7(k)}
is commutative if and only if 2 = 0. To see this, it is enough to consider

the equation xy = yx for x = e
(1)
12 , y = e

(3)
12 + me

(3)
21 if A = C30(k,m), for

x = e
(1)
12 +me

(1)
21 , y = e

(2)
12 +te

(2)
21 if A = C40(k,m, t) and for x = e

(2)
21 , y = e

(3)
21

if A = C7(k).

As to C1(k,m,m′), it is immediate that this is a submodule of the k-
module O(k). The sufficient and necessary condition for C1(k,m,m′) to be
a subalgebra of O(k) is 2 = 0 as can be seen from the following assertion.

Lemma 3.1. The following conditions are equivalent for C1 = C1(k,m,m′).

(a) 2 = 0.

(b) C1 contains 12.

(c) C1 is closed under the multiplication in O(k).

Proof. For the sake of brevity, it is convenient to write u(c, d) instead of

(

c c+d
m

e1
c+d
m

m′e1 d

)

.

(a) ⇒ (b). If 2 = 0, then u(1, 1) = 12 ∈ C1.

(b) ⇒ (c). Suppose that C1 contains 12. This means that 12 = u(c, d) for
some c, d ∈ k. Thus c = d = 1, so 0 = 1+1

m
e1, whence 2 = 0. Now the latter

equality shows that u(c, d) = d12 +
c+d
m

ι for all c, d ∈ k, where ι = u(m, 0).
It follows that 12, ι form a basis for C1. Moreover, ι2 = m′12 + mι which
means that C1 is a quadratic k-algebra of type (m′,m) ([4], p. 433), and
hence it is closed under multiplication.

(c) ⇒ (a). Suppose that C1 is closed under multiplication. Then

C1 ∋ u(m, 0)2 =

(

m2 +m′ me1
m′me1 m′

)

,

whence m = (m2+m′+m′)m−1, and so 2m′ = 0. It follows that u(1, 1), be-
ing an element of C1, is equal to t12(2m

−1e1). Therefore, C1 ∋ t12(2m
−1e1)

2

= t12(4m
−1e1), and thus t12(4m

−1e1) = u(c, d) for some c, d ∈ k. This im-
plies c = d = 1, and so 4m−1 = (1 + 1)m−1 = 2m−1, whence 2 = 0. The
lemma is proved completely.
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From now on, k is assumed to be a field of characteristic 2, and hence
all

C1(k,m,m′), C20(k,m), C30(k,m), C40(k,m, t), C5(k), C6(k), C7(k)

are associative and commutative subalgebras of O(k). It should be noted
that some of these subalgebras are isomorphic to each other. The following
lemma lists the isomorphisms and indicates conditions under which they
exist. Note that all of these isomorphisms are induced by automorphisms
of the algebra O(k).

Lemma 3.2.

(I) If m ∈ k�, then C20(k,m)σ1 = C5(k) and C30(k,m)σ2 = C7(k) for

some σ1, σ2 ∈ G2(k).
(II) (a) If either m ∈ k� and t 6∈ k� + k�m or m /∈ k� and t ∈ k� + k�m,

then C40(k,m, t)σ= C30(k,m
′) for some σ∈G2(k) and m′∈k\k�.

(b) If m ∈ k� and t ∈ k� + k�m, then C40(k,m, t)σ = C7(k) for some

σ ∈ G2(k).

Proof. (I) Suppose that m = a2, a ∈ k. The subalgebra C20(k,m) contains

the element y1 = a12 + (e
(1)
12 + e

(1)
21 a

2) for which y21 = 02. Therefore, there

exists σ1 ∈ G2(k) with yσ1

1 = e
(1)
12 , and hence C20(k,m)σ1 = (k12+ky1)

σ1 =
C5(k). Now consider C30(k,m). It contains the subspace Y spanned by

e
(1)
12 , e

(2)
21 , y1, where y1 = a12 + (e

(3)
12 + e

(3)
21 a

2). This Y is a 3-dimensional
totally singular subspace ([5], p. 114) of O(k) and all elements of Y are of

trace 0. Moreover, the elements e
(1)
12 , e

(2)
21 ∈ Y form, in the terminology of

[1], an extra-special pair. By Lemma 5.2 [1], Y σ2 = e
(1)
12 k+ e

(2)
21 k+ e

(3)
21 k for

some σ2 ∈ G2(k). So C30(k,m)σ2 = (k12 + Y )σ2 = C7(k).
(II) (a) Let m = a2, a ∈ k. Suppose that t /∈ k� + k�m which implies

t /∈ k�. Then C40(k,m, t) contains the extra-special pair y1, y2, where

y1 = a12 + (e
(1)
12 + e

(1)
21 a

2), y2 = y1(e
(2)
12 + e

(2)
21 t). By Lemma 5.1 [1], there

exists σ ∈ G2(k) with yσ1 = e
(1)
12 , y

σ
2 = e

(2)
21 . Set y3 = (e

(2)
12 +e

(2)
21 t)

σ and write

y3 =

(

r e1r1 + e2r2 + e3r3
e1t1 + e2t2 + e3t3 r

)

, r, ri, ti ∈ k.

Since y3 commutes with e
(1)
12 and with e

(2)
21 , t1 = r2 = 0. Thus, C40(k,m, t)σ

contains y4 = r3e
(3)
12 + t3e

(3)
21 because y4 = y3 − r12 − e

(1)
12 r1 − e

(2)
21 t2. Since

y23 = t12, r
2 + r3t3 = t which shows that r3t3 /∈ k�. In particular, r3 6= 0,
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and hence m′ = r−1
3 t3 /∈ k�. Now observe that y4 = r3(e

(3)
12 +m′e

(3)
21 ), and

so C40(k,m, t)σ = C30(k,m
′).

Suppose further that m /∈ k� but t ∈ k� + k�m. Thus t = a2 + b2m,
where a, b ∈ k. First consider the case b = 0, and so t = a2 ∈ k�. The
group G2(k) contains an element τ such that

(

e
(1)
12

)τ

= e
(2)
12 ,

(

e
(2)
12

)τ

= e
(1)
12 ,

(

e
(3)
12

)τ

= e
(3)
12 ,

(

e
(1)
21

)τ

= e
(2)
21 ,

(

e
(2)
21

)τ

= e
(1)
21 ,

(

e
(3)
21

)τ

= e
(3)
21 .

Then C40(k,m, t)τ = C40(k, t,m) and since t ∈ k� and m /∈ k�, the case
already considered shows that C40(k, t,m)φ = C30(k,m

′) for some φ ∈
G2(k) and m′ ∈ k \ k�. Therefore, C40(k,m, t)τφ = C30(k,m

′) and hence
τφ can serve as a required σ.

Next suppose that b 6= 0. Now the elements

y1 = a12 + b
(

e
(1)
12 +me

(1)
21

)

+
(

e
(2)
12 + te

(2)
21

)

, y2 = y1

(

e
(1)
12 +me

(1)
21

)

,

both belonging to C40(k,m, t), form an extra-special pair. Again arguing
as at the beginning of the Part (II) proof, one concludes that for some
σ ∈ G2(k) and m′ ∈ k \ k�, C40(k,m, t)σ = C30(k,m

′).

(b). Suppose that m ∈ k� and t ∈ k� + k�m. This means that both
a and t are squares in k, i.e. m = a2, t = d2, a, d ∈ k. Then C40(k,m, t)
contains the elements

y1 =

(

a e1
me1 a

)

, y2 =

(

d e2
te2 d

)

,

y3 =

(

ad e1d+ e2a+ e3mt
e1md+ e2at+ e3 ad

)

because

y1 = a12 +
(

e
(1)
12 + e

(1)
21 m

)

, y2 = d12 +
(

e
(2)
12 + e

(2)
21 t

)

, y3 = y1y2.

Let Y be the subspace spanned by y1, y2, y3. Then Y is a 3-dimensional
totally singular subspace that contains the extra-special pair y1, y3 and is
formed by elements of trace 0. Lemma 5.2 [1] shows then that there exists

σ ∈ G2(k) with Y σ = e
(1)
12 k + e

(2)
21 k + e

(3)
21 k. So C40(k,m, t)σ = k12 + Y σ =

C7(k) which completes the proof of the lemma.
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Lemma 3.2 makes it reasonable to consider C20(k,m), C30(k,m) and
C40(k,m, t) under the following additional assumptions.

(a) For C20(k,m) and C30(k,m), it is assumed that m /∈ k�.

(b) For C40(k,m, t), it is assumed that m /∈ k� and t /∈ k� + k�m.

When (a) and (b) hold, C20(k,m), C30(k,m), C40(k,m, t) are denoted

C2(k,m), C3(k,m), C4(k,m, t),

respectively. It should be noted, however, that for certain fields k,

C2(k,m), C3(k,m), C4(k,m, t)

can not arise (this will be the case, for instance, if k is algebraically closed),
whereas C5(k), C6(k), C7(k) exist for all fields of characteristic 2.

So, under the assumptions made, all

C1(k,m,m′), C2(k,m), C3(k,m), C4(k,m, t), C5(k), C6(k), C7(k)

are associative and commutative subalgebras of O(k), and hence their mul-
tiplicative groups

C1(k,m,m′)×, C2(k,m)×, C3(k,m)×, C4(k,m, t)×, C5(k)
×, C6(k)

×, C7(k)
×

are abelian.
The subalgebra C1(k,m,m′) is isomorphic to a quadratic k-algebra of

type (m′,m), and therefore C1(k,m,m′)× is isomorphic to either the mul-
tiplicative group of a separable quadratic field extension k(θ) of k, where
θ is a root of the irreducible (over k) polynomial λ2 +mλ +m′ belonging
to the polynomial ring k[λ] in a transcendental element λ, or to the direct
product k× × k× of two copies of the group k×.

C2(k,m) is isomorphic to a purely inseparable quadratic field extension
k(
√
m) of k, and hence C2(k,m)× ∼= k(

√
m)×.

C3(k,m) is isomorphic to the k-algebra ZT2(k(
√
m), k(

√
m)). The iso-

morphism C3(k,m) → ZT2(k(
√
m), k(

√
m)) is given by

(

x0 x1e1 + x3e3
x2e2 + x3me3 x0

)

7→
(

x0 + x3
√
m x1 + x2

√
m

0 x0 + x3
√
m

)

.

Hence C3(k,m)× ∼= k(
√
m)× × (k(

√
m),+) ∼= k(

√
m)× × (k,+)× (k,+).
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Now let k[q] be a quadratic k-algebra of type (0, 0) for which 1, q is a ba-
sis such that q2 = 0. Then C6(k) is isomorphic to the k-algebra ZT2(k, k[q]),
the isomorphism between C6(k) and ZT2(k, k[q]) being

(

x0 x1e1
x2e3 x0

)

7→
(

x0 x1 + x2q
0 x0

)

.

So C6(k)
× ∼= k× × (k[q],+) ∼= k× × (k,+) × (k,+) and an explicit form of

the group isomorphism of C6(k)
× onto k× × (k,+)× (k,+) is

(

x0 x1e1
x2e3 x0

)

7→ (x0, x1x
−1
0 , x2x

−1
0 ).

Finally, C7(k) is isomorphic to the k-algebra ZT2(k[q], k[q]). So C7(k)
× ∼=

k[q]×× (k[q],+) ∼= k× × (k,+) × (k,+) × (k,+). An explicit form of an
k-algebra isomorphism between C7(k) and ZT2(k[q], k[q]) is

(

x0 x1e1
x2e2 + x3e3 x0

)

7→
(

x0 + x3q x2 + x1q
0 x0 + x3q

)

,

and hence an explicit form of a group isomorphism between C7(k)
× and

k× × (k,+)× (k,+)× (k,+) is

(

x0 x1e1
x2e2 + x3e3 x0

)

7→ (x0, x3x
−1
0 , x2x

−1
0 , x2x3x

−2
0 + x1x

−1
0 ).

Now it will be proved that subgroups of the listed above abelian groups

C1(k,m,m′)×, C2(k,m)×, C3(k,m)×, C4(k,m, t)×, C5(k)
×, C6(k)

×, C7(k)
×

exhaust in fact all commutative subloops of G(k).

Theorem 3.3. Let k be a field of characteristic 2 and G a commutative

subloop of G(k) in the sense that x2(yz) = (xy)(xz) for all x, y, z ∈ G.

Then for some σ ∈ G2(k), one of the following holds.

(i) Gσ 6 C1(k,m,m′) for some m ∈ k×,m′ ∈ k and G * k12 so that

G is isomorphic to either a subgroup of the multiplicative group of a

separable field quadratic extension of k, or to the subgroup of the group

direct product k× × k×.

(ii) Gσ 6 k×12, and so G is isomorphic to a subgroup of k×.
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(iii) Gσ 6 C2(k,m)×, and thus G is isomorphic to a subgroup of the

multiplicative group of the purely inseparable quadraic field extension

k(
√
m), the subloop G containing two elements linearly independent

over k.

(iv) Gσ 6 C3(k,m)×, and thus G is isomorphic to a subgroup of the direct

product k(
√
m)××(k,+)×(k,+), G containing four elements linearly

independent over k.

(v) Gσ 6 C4(k,m, t)×, and so G is isomorphic to a subgroup of the mul-

tiplicative group of the purely inseparable field extension k(
√
m,

√
t) of

degree 4 over k, G containing four elements linearly independent over

k.

(vi) Gσ 6 C5(k)
×, and so G is isomorphic to a subgroup of k× × (k,+),

and G contains two elements linearly independent over k.

(vii) G contains three elements linearly independent over k and Gσ 6

C6(k)
× so that G is isomorphic to a subgroup of k× × (k,+)× (k,+).

(viii) G contains four elements linearly independent over k and Gσ 6 C7(k)
×

so that G is isomorphic to a subgroup of k×× (k,+)× (k,+)× (k,+).

Proof. The proof is divided in two parts, the first of which deals with the
case when G contains an element of nonzero trace, whereas the second is
devoted to loops all of whose elements have zero trace.

Part 1. Several preliminaries are needed before a direct consideration
of the case will be given.

Let m be a fixed element of k× and α0, β0 be fixed vectors of k3. For
any c, d ∈ k, the octonion

(

c c+d
m

α0
c+d
m

β0 d

)

is denoted u(m,α0, β0; c, d) and let

U(m,α0, β0) = {u(m,α0, β0; c, d) | c, d ∈ k}.

Observe that 12 = u(m,α0, β0; 1, 1) ∈ U(m,α0, β0). If ι = u(m,α0,β0;m,0),
then 12, ι is a basis of U(m,α0, β0). Moreover, if m′ = α0 · β0, then ι2 =
ιm+m′12 which can be expressed by saying that U(m,α0, β0) is a quadratic
k-algebra of type (m′,m). By Proposition 3 ([4], p. 441), U(m,α0, β0) is
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isomorphic to a field (when the polynomial f(λ) = λ2 + mλ + m′ in an
indeterminate λ is irreducible over k), or to the direct product k × k of
two copies of the field k (if f(λ) has a root in k). Since (12, ι) = m 6= 0,
the subspace U(m,α0, β0) of the k-vector space O(k) together with the
restriction of the bilinear form ( , ) to U(m,α0, β0) is non-defective (see,
[5], p. 114). Hence U(m,α0, β0) is a subalgebra of the composition algebra
O(k) in the sense of [7], p. 4.

The correspondence 12 7→ 12, ι 7→ u(m, e1, e1m
′;m, 0) determines a

k-linear isomorphism σ̂ of the subalgebra U(m,α0, β0) onto the k-algebra
C1(k,m,m′). By Corollary 1.7.3 [7], p. 17, σ̂ can be extended to an ele-
ment of G2(k). In other words, there is σ ∈ G2(k) with U(m,α0, β0)

σ =
C1(k,m,m′).

Now choose and fix x ∈ G with nonzero trace, and let y be an element
of G. Writing

x =

(

a α
β b

)

(a, b ∈ k, α, β ∈ k3), y =

(

c γ
δ d

)

(c, d ∈ k, γ, δ ∈ k3),

one obtains that the equation xy = yx together with the condition a+b 6= 0
yields

γ =
c+ d

a+ b
α, δ =

c+ d

a+ b
β.

Thus y ∈ U(m,α, β) with m = a + b. So G ⊆ U(m,α, β) and as has been
noted above, if m′ = α ·β, then there is σ ∈ G2(k) with Gσ ⊆ C1(k,m,m′).
Hence Gσ 6 C1(k,m,m′)×. It remains to note that since G contains the
element x with non-zero trace, G can not be contained in k12, and so G is
as in Item (i) of the theorem.

Part 2. Suppose that all elements of G are of trace 0. Hereafter L
denotes the linear k-hull of G. As a subspace of the k-vector space O(k), L
is totally isotropic relative to the alternating bilinear form ( , ). Since the
Witt index of the space O(k) (equipped with ( , )) is 4, dimL 6 4. So the
further proof is divided into four cases in accordance of the dimension of L.

(I) dimL = 1. Since 12 ∈ L, here L = k12, and so G is isomorphic to a
subgroup of k× falling in Item (ii) of the theorem.

(II) dimL = 2. One can choose g ∈ G \ k12. This g together with
12 form a basis for L. One has g2 = e12 with e ∈ k×. There are two
possibilities to consider.

(a) e ∈ k�, e = f2, f ∈ k×. If g1 = f12 + g, then 12, g1 is a basis of L

and g21 = 02. Hence there is σ ∈ G2(k) with gσ1 = e
(1)
12 and so Lσ = C5(k).
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Thus G, being isomorphic to a subgroup of k×× (k,+), falls in Item (vi) of
the theorem.

(b) e /∈ k�. Writing

g =

(

a α
β a

)

, a ∈ k, α, β ∈ k3,

and denoting m = α · β, one has g2 = (a2 + m)12. If g1 = g + a12, then
g1 = x+ y, where

x =

(

0 α
0 0

)

, y =

(

0 0

β 0

)

.

Observe that m 6= 0 due to the condition e /∈ k�. It follows that the
correspondence

x 7→ e
(1)
12 , y 7→ me

(1)
21 , xy 7→ me11, yx 7→ me22

determines a k-linear isomorphism of the k-algebra C = kx+ky+kxy+kyx
onto M[1](k). Therefore, one can find σ ∈ G2(k) such that Cσ = M[1](k)

and xσ = e
(1)
12 , y

σ = me
(1)
21 . Then gσ1 = e

(1)
12 +me

(1)
21 , and so Lσ = C2(k,m).

Thus G falls in Item (iii) of the theorem.
(III) dimL = 3. Choose elements g1, g2 ∈ G so that 12, g1, g2 is a basis

for L. Then g1g2 ∈ G ⊆ L, and hence

g1g2 = r012 + r1g1 + r2g2 (2)

for some ri ∈ k. Since for each i = 1, 2, gi is of trace 0,

g2i = ai12 (3)

for some ai ∈ k×. Therefore, by (3)

(g1g2)g1 = g21g2 = a1g2. (4)

On the other hand, using (2), one has

(g1g2)g1 = (r012 + r1g1 + r2g2)g1 = r0g1 + r1a112 + r2(r012 + r1g1 + r2g2)

= (r1a1 + r0r2)12 + (r0 + r1r2)g1 + r22g2.

(5)

Comparing (4) and (5) gives

r22 = a1, (6)

r0 + r1r2 = 0. (7)
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Similarly, a calculation of (g1g2)g2 in two ways shows that

r21 = a2. (8)

Now set u1 = g1 + r212, u2 = g2 + r112. Then employing (6), (8), (2),
(7) yields u21 = u22 = u1u2 = 02. This, together with linear indepen-
dence of u1, u2, means that u1, u2 form an extra-special pair. According to

Lemma 5.1 [1], there is σ ∈ G2(k) with uσ1 = e
(1)
12 , u

σ
2 = e

(3)
21 . Consequently,

Lσ = C6(k) and so G, being isomorphic to a subgroup of k××(k,+)×(k,+),
falls into Item (vii) of the theorem.

(IV) dimL = 4. Suppose that any nonzero element of L has a nonzero
square. Let g ∈ G \ k12 and write

g =

(

a α
β a

)

, a ∈ k, α, β ∈ k3.

If m = α · β, then m /∈ k�, in particular, m 6= 0. As has been shown
while considering the case dimL = 2, replacing G by Gφ with a suitable

φ ∈ G2(k), one may assume α = e1, β = me1. It follows that g1 = e
(1)
12 +

me
(1)
21 ∈ L. Since dimL = 4, one can find h ∈ G \ (k12 + kg1). Write

h =

(

r r1e1 + r2e2 + r3e3
t1e1 + t2e2 + t3e3 r

)

, r, ri, ti ∈ k.

The condition g1h = hg1 gives t1 = mr1. Then L contains

h1 = h− r12 − r1g1 =

(

0 r2e2 + r3e3
t2e2 + t3e3 0

)

.

The choice of h shows that h1 6= 02, hence h21 6= 02 which, in turn implies
that t = r2t2 + r3t3 6= 0. Suppose t = t20 + s2m where t0, s ∈ k. Let

h2 = t012 + sg1 + h1 =

(

t0 s1e1 + r2e2 + r3e3
sme1 + t2e2 + t3e3 t0

)

.

Then h22 = 02, hence h2 = 02, so r2 = r3 = t2 = t3 = 0 which is impossible
in view of the condition t 6= 0. Thus t /∈ k� + k�m. Set

u11 = e11, u22 = e22,

u
(1)
12 = e

(1)
12 , u

(2)
12 =

(

0 r2e2 + r3e3
0 0

)

, u
(3)
12 = t−1

(

0 t3e2 + t2e3
0 0

)

,

u
(1)
21 = e

(1)
21 , u

(2)
21 = t−1

(

0 0

t2e2 + t3e3 0

)

, u
(3)
21 =

(

0 0

r3e2 + r2e3 0

)

.
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The correspondence

ujj 7→ ejj(j = 1, 2), u
(i)
12 7→ e

(i)
12 , u

(i)
21 7→ e

(i)
21 (i = 1, 2, 3)

determines an element σ of the group G2(k) such that

gσ1 = g1, hσ1 = e
(2)
12 + te

(2)
21 .

So Lσ contains the product gσ1h
σ
1 = e

(3)
21 + e

(3)
12 mt.

The elements 12, g
σ
1 , h

σ
1 , g

σ
1h

σ
1 are linearly independent. Recalling that

m /∈ k� and t /∈ k� + k�m, one has Lσ = C4(k,m, t) and G is as in Item
(v) of the theorem.

Suppose now that L contains a nonzero nilpotent element u. There is

ϕ ∈ G2(k) such that uϕ = e
(1)
12 . Thus replacing G by Gϕ, one may assume

that e
(1)
12 ∈ L. Since dimL = 4, one can find g ∈ G \ (k12 + ke

(1)
12 ). Let

g =

(

r r1e1 + r2e2 + r3e3
t1e1 + t2e2 + t3e3 r

)

, r, ri, ti ∈ k.

Since ge
(1)
12 = e

(1)
12 g, t1 = 0. Hence L contains g1 = r2e

(2)
12 + r3e

(3)
12 + t2e

(2)
21 +

t3e
(3)
21 because g1 = g − r12 − r1e

(1)
12 . Note also that g1 is nonzero in view

of the choice of g. If r2 = r3 = 0, then e
(1)
12 and g1 form an extra-special

pair. If r2e2 + r3e3 6= 0, then L ∋ e
(1)
12 g1 = r2e

(3)
21 + r3e

(2)
21 which, together

with e
(1)
12 , gives an extra-special pair again. Thus if L contains a nonzero

nilpotent element, then L contains an extra-special pair. By Lemma 5.1
[1] replacing G by Gσ with an appropriate σ ∈ G2(k), one may assume

that e
(1)
12 , e

(2)
21 ∈ L. Using again the condition dimL = 4, one can find

h ∈ L \ (k12 + ke
(1)
12 + ke

(2)
21 ). Since h commutes with e

(1)
12 and with e

(2)
21 ,

h =

(

b s1e1 + s3e3
q2e2 + q3e3 b

)

b, s1, s3, q2, q3 ∈ k.

Therefore L contains h1 = s3e
(3)
12 + q3e

(3)
21 because h1 = h − b12 − s1e

(1)
12 −

q2e
(2)
21 . If s3q3 /∈ k�, then s3 6= 0 and h1 = s3(e

(3)
12 + me

(3)
21 ), where m =

q3s
−1
3 /∈ k�. Thus L contains the octonions 12, e

(1)
12 , e

(2)
21 , e

(3)
12 + me

(3)
21 , and

therefore L = C3(k,m). So, in this case G is isomorphic to a subgroup
of k(

√
m)× × (k,+) × (k,+). But G contains four linearly independent

elements, and consequently it falls into Item (iv) of the theorem.
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Finally suppose that s3q3 = t0 ∈ k�. Then L contains h2 = t012 +

h1 = t012 + s3e
(3)
12 + q3e

(3)
21 , and hence L contains the subspace Y spanned

by e
(1)
12 , e

(2)
21 , h2. A direct calculation shows that Y is a totally singular

subspace of O(k) and dimY = 3. Furthermore, every element of Y is of
trace 0 and according to Lemma 5.2 [1], one can find σ ∈ G2(k) such that

Y σ = ke
(1)
12 +ke

(2)
21 +ke

(3)
21 . So Lσ = k12+Y σ = C7(k). Thus, in this case, G

is isomorphic to a subgroup k× × (k,+)× (k,+)× (k,+). Since G contains
four linearly independent elements, G falls in Item (viii) of the theorem.
The theorem is proved completely.

The proof of Theorem 3.3 shows that this theorem admits the following
restatement in the language of maximal commutative subloops of G(k).

Theorem 3.4. Let k be a field of characteristic 2. If G is a maximal

commutative subloop of G(k), then for some σ ∈ G2(k), G
σ coincides with

one of the following subloops:

C1(k,m,m′)×, C2(k,m)×, C3(k,m)×, C4(k,m, t)×, C5(k)
×, C6(k)

×, C7(k)
×.

It is instructive also to see how the example of a commutative subloop
isomorphic to a cyclic group considered at the beginning of the paper is
consistent with Theorem 3.3. So, let x be a fixed element of G(k) and let
G = {xn | n ∈ Z}. Though G is a cyclic, hence abelian group, it may fall
into different parts of Theorem 3.3 depending on the form of x. Let

x =

(

a α
β b

)

, a, b ∈ k, α, β ∈ k3. (9)

If tr(x) 6= 0, then Gσ 6 C1(a + b, e1, e1(α · β))× for some σ ∈ G2(k). If
tr(x) = 0 and α · β /∈ k�, then Gσ 6 C3(k,

√
α · β)× for some σ ∈ G2(k).

If, finally, tr(x) = 0 and α · β ∈ k�, then Gσ 6 C5(k)
×, and thus G is

isomorphic to a subgroup of k× × (k,+). To construct a more concrete
example one can take in (9) the octonion x with a = b = 1, β = 0 and α a
nonzero vector of k3. In this case, G is isomorphic to a cyclic group of order
2. As a subgroup of k× × (k,+), this cyclic group is realized as 1×{1, a0},
where a0 is a nonzero element of k. The first component of any element of
this subgroup of k× × (k,+) must be trivial, since the group k× does not
contain any element of order 2.
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