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The inclusion prime ideal graph
of a semigroup and ring

Biswaranjan Khanra, Manasi Mandal, Sarbani Mukherjee (Goswami)

Abstract. We introduce the inclusion prime ideal graph Inp(S) of nontrivial prime
ideals of a commutative semigroup S. We characterize a semigroup S for which the
graph Inp(S) is null, complete or connected. Then we study various graph parameters,
thickness, metric and partition dimension of the inclusion prime ideal graph of the mul-
tiplicative semigroup Zn of integers of modulo n. Finally we characterize a ring R for
which the graph Inp(R) is null, complete or connected and also some graph theoretic
and ring theoretic properties are studied.

1. Introduction

Nowdays in algebraic combinatorics, a major part of research is attached to
the application of graph theory and combinatorics in abstract algebra. In
particular, using graph theory to study a ring (resp. semigroup) draws so
much attention. Since the structure of a ring (resp. semigroup) is closely
tied with the behaviour of its ideals, it is interesting and worthy to consider a
graph with vertex set as ideals of a ring (resp. semigroup). Also as the ideal
structure reflects ring (semigroup) properties, several graphs that are based
on the ideals were defined (see [1], [2], [3]). Akbari et al. [3] introduced
the concept of inclusion ideal graph of a ring R, denoted by In(R), is a
graph with vertices are nontrivial left ideals of R and two distinct vertices
I1, I2 are adjacent if and only if I1 ⊂ I2 or I2 ⊂ I1. In [4], they studied
some graph parameters of In(R) like connectedness, diameter, girth and
perfectness. Recently Baloda et al. [8] studied the inclusion ideal graph of
a semigroup. Then Khanra et al.[16] studied various graph parameters of
inclusion ideal graph of a semigroup, in particular multiplicative semigroup
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Zn of integers modulo n. Also we know that prime ideals play a highly
important role in studying the structure of a ring (resp. semigroup). These
observations prompted us to consider the inclusion prime ideal graph of a
commutative semigroup S (resp. ring R), denoted by Inp(S)(resp. Inp(R)),
is a graph with vertices are nontrivial prime ideals of S(resp. R) and two
distinct vertices P1, P2 are adjacent if and only if P1 ⊂ P2 or P2 ⊂ P1.

Here by a graph G = (V,E), we mean a simple undirected graph with
vertex set V (G) and edge set E. A graph G is said to be connected if there
exists a path between any two distinct vertices of G. A graph G is said
to be null if no two vertices of G are adjacent. If two distinct vertices u,
v ∈ V are adjacent, we write it by u ∼ v, otherwise by u � v. A graph
in which any two distinct vertices are adjacent is called a complete graph.
We use Kn to denote the complete graph with n vertices. The girth of
G is the length of the shortest cycle in G and is denoted by gr(G). An
unicyclic graph is a connected graph containing exactly one cycle. A clique
of a graph G is a complete subgraph of it and the number of vertices in the
largest clique of G, denoted by ω(G), is called the clique number of G. The
chromatic number of G, denoted by χ(G), is the minimum number of colors
required for a vertex coloring of G. A graph is said to be perfect if and only
if ω(H) = χ(H) for every induced subgraph H of G. Here by a surface,
we mean a compact connected topological space such that each point has a
neighbourhood homeomorphic to an open disc in R2. We recall that a map
φ : G −→ S is an embedding of a graph G into a surface S if φ represents a
drawing of G on S without any crossings. The genus of a graph G, denoted
as g(G), is the minimal integer k such that the graph can be embedded
in Sk, where Sk denote the sphere with k handles attached with it. The
graphs of genus 0, 1, 2 are called planar, toroidal, bitoroidal respectively.
An outerplanar graph is a planar graph that can be embedded in a plane
without crossings in such a way that all the vertices lie in the boundary of
the unbounded face of the embedding. The thickness of a graph G, denoted
as θ(G), is the minimum number of decomposition of G into it’s planar
subgraphs. We denote [n] = {1, 2, . . . , n} and for any set X we denote the
cardinality of a set X by |X|. By N [v], we denote the closed neighbourhood
of a vertex v of G. For undefined graph terminology, we refer [15] and [20];
for semigroup theory, see [11, 17, 21].

This paper is arranged as follows : In Section 2, we characterize a com-
mutative semigroup S for which Inp(S) is null, complete or connected.
Then in Section 2.1, we determine various graph parameters like degree of
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a vertex, chromatic and clique number, vertex cover number, metric di-
mension, strong metric dimension and partition dimension of the prime
inclusion ideal graph Inp(Zn) of Zn. Also, we a pose a conjecture regarding
the Hamiltonian nature of Inp(Zn). Finally in Section 3, we characterize
a commutative ring R for which the graph Inp(R) is null or complete and
compute the clique and chromatic number. Also we studied some graph
properties of the prime inclusion ideal graph of an arithmetical ring.

2. Prime inclusion ideal graph of semigroup

It is well known that a commutative semigroup S is archimedian if and only
if it has no proper prime ideals ([21], Theorem 1). So we have the following
immediate result.

Theorem 2.1. Let S be a semigroup. Then the following statements are
equivalent
(1) Inp(S) is an empty graph.
(2) S is an archimedian semigroup.

Example 2.2. It is easy to observe that nontrivial ideals of the monogenic
semigroup SM = {0, x, x2, . . . , xm−1} with zero element is of the form It =
{0, xt, . . . , xm−1}, where 2 6 t 6 m− 1. Therefore SM has no nontrivial
prime ideals and consequently Inp(SM ) is an empty graph.

Theorem 2.3. Let S be a semigroup with zero element. Then Inp(S) is a
null graph if and only if each nontrivial prime ideal is minimal.

Proof. Let S be a semigroup with zero such that Inp(S) is a null graph. Now
if S has exactly one nontrivial prime ideal then it is clear. So let P1 and P2

be two distinct nontrivial prime ideals of S. If P1 is not minimal, then there
exists a prime ideal P of S such that 0 6= P ⊂ P1. It follows that P ∼ P1,
which contradicts the fact that Inp(S) is a null graph. Consequently, each
nontrivial prime ideal of S is minimal. The proof of the converse part is
obvious.

Example 2.4. Let us consider the semigroup S = {0, a, b, ab : a2 = a, b2 =
b, ab = ba} with zero element. The only prime ideals of S are {0, a, ab} and
{0, b, ab}, both are minimal prime. Consequently Inp(S) is a null graph.

We know that if a semigroup has unity but not a group, then it has
a unique maximal ideal, which is prime also. So we have the following
immediate result.
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Corollary 2.5. Let S be a semigroup with unity. Then the following state-
ments are equivalent
(1) Inp(S) is a null graph.
(2) Each nontrivial prime ideal of S is maximal.
(3) S has a unique nontrivial prime ideal.

Since every ideal in a semigroup S with unity is contained in a unique
maximal ideal of S, we have the following result:

Theorem 2.6. The prime inclusion ideal graph Inp(S) of a semigroup S
with unity is connected. Moreover, diam Inp(S) 6 2.

Theorem 2.7. Let S be a semigroup. Then the following statements are
equivalent:
(1) Inp(S) is a complete graph.
(2) S is a semiprimary semigroup.
(3) Prime ideals of S are linearly ordered.
(4) Semiprime ideals of S are linearly ordered.
(5) Semiprime ideals of S are prime.
(6) For each a, b ∈ S, there exists k ∈ N such that a|bk or b|ak.

Proof. (1) ⇔ (2). Let I be a semiprimary ideal of S. Then
√
I =

⋂
Pα,

where Pα’s are prime ideal of S containing I. Since the graph Inp(S) is
complete we have

√
I = P for some prime ideals P of S and hence S is a

semiprimary semigroup.
Conversely, let P1, P2 ∈ V (Inp(S)) but P1 � P2. Then there exists x,

y ∈ S such that x ∈ P1−P2 and y ∈ P2−P1. Then xy ∈ P1∩P2 =
√
P1P2,

a prime ideal of S as S is semiprimary. Hence x ∈ P1 ∩ P2 or y ∈ P1 ∩ P2,
which is a contradiction. Consequently Inp(S) is a complete graph.

(2)⇔ (3). It follows from Theorem 1 of [17].
(3) ⇔ (4). Let I1 and I2 be two semiprime ideals of S. Clearly I1 ∩ I2

is a semiprime ideal of S. Then I1 ∩ I2 =
√
I1 ∩ I2 is a prime ideal of S.

Consequently semiprime ideals are linearly ordered. Converse is clear.
(4) ⇔ (5). Let I be a semiprime ideal of S. Then I =

√
I is a prime

ideal of S. For converse part, let I1 and I2 are two distinct semiprime ideals
of S. Clearly I1 ∩ I2 is a prime ideal of S as semiprime ideals are prime.
Now in a similar way as in the proof of above cases it is clear that semiprime
ideals are linearly ordered.

(3)⇔ (6). Let a, b ∈ S and prime ideals of S are linearly ordered. Then√
(a) ⊆

√
(b) or

√
(b) ⊆

√
(a) which implies either as ∈ (b) or bt ∈ (a) for

some s, t ∈ N. Let k = max{s, t}. Therefore either a|bk or b|ak.
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Conversely, let P1 and P2 be two distinct prime ideals of S and ab ∈
P1 ∩ P2 for some a, b ∈ S. Then ab ∈ P1 and ab ∈ P2 which implies a ∈ P1

or b ∈ P1 and a ∈ P2 or b ∈ P2. Now if a ∈ P1 ∩ P2 or b ∈ P1 ∩ P2 then
it is clear that P1 ⊂ P2 or P2 ⊂ P1. Now we consider the remaining cases
a ∈ P1 and b ∈ P2 or a ∈ P2 and b ∈ P1. Without loss of generality let
a ∈ P1 and b ∈ P2. Then by assumption there exists k ∈ N such that a|bk
or b|ak. Now if a|bk then bk = as ∈ P1 for some s ∈ S, implies b ∈ P1 and
hence b ∈ P1∩P2. Similarly b|ak implies a ∈ P1∩P2. Consequently P1∩P2

is a prime ideal of S. Hence the result follows.

2.1. The prime inclusion ideal graph of the semigroup Zn

Theorem 2.8. Every nontrivial prime ideal P of Zn is of the form P =
∪{piZn : i ∈ [k]}, where p1, p2, . . . , pk are k distinct prime divisor of n.

Proof. It is well known that nonzero ideal of Zn is of the form ∪{miZn :
i ∈ [k]}, where m1, m2, . . . ,mk are divisors of n such that mi - mj if
i 6= j ([22],Theorem 2). Let P be a nontrivial prime ideal of Zn. Then
P ∈ ∪{miZn : i ∈ [k]}, where m1, m2, . . . ,mk are divisors of n such that
mi - mj if i 6= j. Now in the expression of P if one of mi’s is composite,
say mt, then mt = mamb for some proper divisor ma and mb of mt. Then
mamb ∈ P but neither ma ∈ P nor mb ∈ P , contradicts that P is a prime
ideal of Zn. Since ideal generated by prime divisor of n is a prime ideal and
union of any collection of prime ideals of a semigroup is a prime ideal, we
have P = ∪{piZn : i ∈ [k]}, where pi’s (i ∈ [k]) are distinct prime divisor
of n. Hence the result follows.

Proposition 2.9. The number of nontrivial prime ideal of Zn is equal to

2k − 1, where n =
k∏
i=1

pαii .

Proof. The nontrivial prime ideal of Zn is of the form ∪{piZn : i ∈ [k]} (cf.
Theorem 2.8), where pi’s (i ∈ [k]) are distinct prime divisor of n. Therefore
the number of nontrivial prime ideals of Zn is kC1+kC2 + · · ·+kCk = 2k−1.

Corollary 2.10. The order of the graph Inp(Zn) is equal to 2k − 1, where

n =
k∏
i=1

pαii .
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Let Λ = {1, 2, . . . , t} ⊆ [k]. We use the sign PΛ or P12...t to denote
the prime ideal (p1) ∪ (p2) ∪ · · · ∪ (pt) of Zn. Clearly, for k = 1, we have
Inp(Zn) ∼= K1. So throughout this paper we consider the graph Inp(Zn),

where n =
k∏
i=1

pαii with k > 2.

Since the multiplicative semigroup Zn has identity, by Theorem 2.6 we
have the following immediate result.

Corollary 2.11. The graph Inp(Zn) is a connected with diam(Inp(Zn))=2.

Theorem 2.12. (1) The girth of Inp(Zn) is given by

gr(Inp(Zn)) =

{
∞ , if k = 2

3, if k > 3

(2) The graph is triangulated if and only if k > 3.

(3) The graph is k-partiate if and only if n =
k∏
i=1

pαii with k > 2.

Theorem 2.13. The degree of a vertex PΛ such that |Λ| = t(t ∈ [k]) is
deg(PΛ) = 2t + 2k−t − 3.

Proof. Let PΛ be any vertex of Inp(Zn) such that |Λ| = t(t ∈ [k]). Then
the number of nontrivial prime ideals properly contained in PΛ is

tC1+ tC2 + · · ·+ tCt−1 = 2t − 2.

Also the number of nontrivial prime ideals properly containing PΛ is

k−tC1+ k−tC2 + · · ·+ k−tCk−t = 2k−t − 1.

Therefore the total number of vertices adjacent to PΛ is = 2t−2+2k−t−1 =
2t + 2k−t − 3. Therefore deg(PΛ) = 2t + 2k−t − 3.

It is well known that a simple connected graph G is Eulerian if and only
if every vertex of G is of even degree. Since for k 6= t, deg(PΛ) = 2t+2k−t−3
is an odd number, where |Λ| = t, we have the following immediate result

Corollary 2.14. The graph Inp(Zn) is not Eulerian.

Lemma 2.15. Let PΛ1 and PΛ2 be any two vertex of Inp(Zn). Then
deg(PΛ1) =deg(PΛ2) if and only if |Λ1| = |Λ2| or |Λ1|+ |Λ2| = k.
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Proof. Let |Λ1| = s and |Λ2| = t. Then deg(PΛ1) =deg(PΛ2). Consequently,
2s + 2k−s − 3 = 2t + 2k−t − 3, which implies 2s − 2t = 2k(2s−2t)

2s+t
. So either

2s = 2t or 2s 6= 2t.
If 2s = 2t, then s = t ⇒ |Λ1| = |Λ2|.
If 2s 6= 2t, then 2k = 2s+t ⇒ k = s+ t ⇒ |Λ1|+ |Λ2| = k. Conversely, if

|Λ1| = |Λ2|, then clearly deg(PΛ1) = deg (PΛ2).
Now let |Λ1|+|Λ2| = k⇒ s+t = k. Therefore deg(PΛ2) = 2t+2k−t−3 =

2k−s + 2s − 3 = deg (PΛ1).

Theorem 2.16. The maximum and minimum degrees of Inp(Zn) are
∆(Inp(Zn)) = 2k−2 and δ(Inp(Zn)) = 2t+1−3 (if k = 2t) and δ(Inp(Zn)) =
3(2t − 1) (if k = 2t+ 1). Moreover, the degree sequence DS(Inp(Zn)) is
2t+2k−t−3 (kCt times), . . . , 2+2k−1−3 (2.kC1 times), 2k−2 when k = 2t
and 2t+ 2k−t−3 (2.kCt times), . . . , 2 +2k−1−3 (2.kC1 times), 2k−2 when
k = 2t+ 1.

Proof. Since the vertex P12...k is adjacent to every other vertex in Inp(Zn),
we have ∆(Inp(Zn)) =deg(P12...k) = 2k − 2. To find the minimum degree
vertices in Inp(Zn), we consider the function f : [1, k] −→ R defined by

f(x) = 2x + 2k−x − 3 (1)

Now f ′(x) = 0⇒ 2x

loge2
− 2k−x

loge2
= 0⇒ x = k

2 .

Also f ′′(x) = 2x

(loge2)2
+ 2k−x

(loge2)2
. Hence f ′′(k2 ) = 2

k
2 +1

(loge2)2
> 0. Therefore f

has a minimimun value at x = k
2 . Since we are interseted in integer solutions

and also by combining Lemma 2.15, it is easy to observe that vertices of
the form PΛ such that |Λ| = k

2 (if k is even) and |Λ| = k+1
2 or k−1

2 (if k is
odd) have minimum degrees. So we have δ(Inp(Zn)) = 2t+1 − 3 (if k = 2t)
and δ(Inp(Zn)) = 3(2t − 1) (if k = 2t+ 1).

It is clear to observe that for m > n in [1, t] we have f(m) < f(n) and
for a > b in [t, k] we have f(a) > f(b) when k = 2t. Also for a > b in
[p+ 1, k] we have f(a) > f(b) and f(t) = f(t+ 1) when k = 2t+ 1.

Therefore by applying Theorem 2.13 and Lemma 2.15 we have the re-
quired degree sequence.

Corollary 2.17. The irregularity index of Inp(Zn) is MWB(Inp(Zn)) =
t+ 1, where k = 2t or 2t+ 1.

Now we are interested in finding the number of edges of Inp(Zn).



284 B. Khanra, M. Mandal, S. Mukherjee (Goswami)

Theorem 2.18. The number of edges of Inp(Zn) is given by the equation

2|En| =
k∑
i=1

kCi(2
i + 2k−i)− 3|Vn|, where |Vn| and |En| denotes the number

of vertices and edges of Inp(Zn) respectively.

Proof. We know that sum of degrees of vertices of a graph is twice the
number of edges, hence the total no of edges of Inp(Zn) is

2|En| = kC1(2 + 2k−1 − 3) + kC2(22 + 2k−2 − 3) + · · ·+ kCk(2
k + 20 − 3)

=
k∑
i=1

kCi(2
i + 2k−i)− 3(2k − 1) =

k∑
i=1

kCi(2
i + 2k−i)− 3|Vn|.

Hence the result follows.

Example 2.19. Let n =
3∏
i=1

pαii . Then k = 3 and |Vn| = 7. Hence by

Theorem 2.18 we have 2|En| =
3∑
i=1

3Ci(2
i + 23−i) − 3.7 = 24 ⇒ |En| = 12

(see Figure 1(a)).

Theorem 2.20. The vertex connectivity of Inp(Zn) is κ(Inp(Zn)) = 2t +
2k−t − 3, where k = 2t or 2t+ 1, t ∈ N.

Proof. Let k = 2t or 2t + 1. Then the minimum degree of Inp(Zn) is
2t + 2k−t− 3, in fact, every vertex of the form {PΛ : |Λ| = t} is of minimum
degree. Now consider the set N(PΛ) of neighborhoods of any vertex of the
form {PΛ : |Λ| = t} . Clearly |N(PΛ)| = 2t + 2k−t − 3.

We claim that N(PΛ) is a minimal vertex cut of Inp(Zn). It is easy
to observe that Inp(Zn) has two components C1 and C2 where C1 = {PΛ}
and C2 is the induced subgraph of Inp(Zn) with vertex set V (Inp(Zn)) −
{N(PΛ)∪PΛ}. Now if possible let Inp(Zn)−S is a disconnected graph where
S ⊂ N(PΛ) be a vertex cut of Inp(Zn). Then there exists PΛ1 ∈ N(PΛ)−S
and hence PΛ1 ∼ PΛ. Now it is easy to observe that Inp(Zn) − S is a
connected graph, a contradiction. Hence the result follows.

Theorem 2.21. The graphs Inp(Zn) and Inp(Zm) are isomorphic if and
only if n and m have same number of prime factors.

Proof. Let the two graphs Inp(Zn) and Inp(Zm) are isomorphic but n and
m have different number of prime factors. So without loss of generality
we assume s > t, where s and t are number of prime factors of n and m
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respectively. Then |V (Inp(Zn)| > |V (Inp(Zm)|, a contradiction. Therefore
n and m have same number of prime factors.

Conversely, Let n and m have same number of prime factors. Now we
define a map f : Inp(Zn) −→ Inp(Zm) by f(PΛ) = QΛ, where Λ is an
indexed subset of [s] = [t] and QΛ is the prime ideal

⋃t
i=1(qi). One can

easily see that f is a bijection and two vertices in Inp(Zn) are adjacent if
and only if their f -images are adjacent in Inp(Zm). Hence the two graphs
are isomorphic.

Lemma 2.22. Let Λ1 and Λ2 be two indexed subset of [k]. If |Λ1| = |Λ2|,
then PΛ1 � PΛ2.

Proof. For different Λ1 and Λ2 there exists s ∈ Λ1 − Λ2 and t ∈ Λ2 − Λ1.
Hence PΛ1 � PΛ2 .

Theorem 2.23. The clique number of the graph Inp(Zn) is ω(Inp(Zn))=k.

Proof. Clearly L = {P1, P12, . . . , P12...k} is a clique of size k in Inp(Zn). If
possible let L ∪ {P} be a clique containing L. Then P = PΛ, where Λ is
an indexed subset of [k]. Since PΛ is different from elements of L, we have
either 1 /∈ Λ or there exists s, t ∈ [k] with s < t and s /∈ Λ but t ∈ Λ. Now
if 1 ∈ Λ, then P1 � PΛ, contradicts that L ∪ {P} is a clique in Inp(Zn).
Again considering the second case we have P12...s � PΛ, a contradiction.
Hence L is a maximal clique in Inp(Zn).

Now if possible let L′ be a clique of size greater than equals to k + 1.
Then there exists i, J ∈ L′ such that I = PΛ1 and J = PΛ2 where |Λ1| =
|Λ2| = t for some 1 6 t 6 k. Hence from Lemma 2.22, we have I � J , a
contradiction. Therefore ω(Inp(Zn)) = k.

Theorem 2.24. The chromatic number of Inp(Zn)) is χ(Inp(Zn)) = k.

Proof. Since the inclusion ideal graph is perfect ([16], Theorem 1), clearly
Inp(Zn) is perfect. Therefore we have χ(Inp(Zn)) = ω(Inp(Zn)) = k.

Also we know χ(Inp(Zn)) > ω(Inp(Zn)) = k. Here we demonstrate a
proper k-coloring of Inp(Zn). Let us define Ai = {PΛ : Λ is an indexed
subset of cardinality i ∈ [k]}. Now put the colour i to the set of vertices
in Ai, this is a proper k-coloring. Hence χ(Inp(Zn)) 6 k. Consequently,
χ(Inp(Zn)) = ω(Inp(Zn)) = k.

A vertex cover of a graph G is a set of vertices that covers all the edges
of G. The minimum cardinality of a vertex cover in G is called the vertex
cover number of G, denoted by τ(G).
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Theorem 2.25. The vertex cover number of Inp(Zn) is given by τ(Inp(Zn))
= 2k − 1− kCr, where k = 2r or 2r + 1 and r ∈ N.

Proof. First we need to define a cover set C for the graph Inp(Zn). Now
to cover highest number of edges with less number of vertices, we need
to start adding vertices in C one by one that having highest number of
neighbourhoods.

Since the vertex P12...k is of highest degree it must be in C. Now we look
into the vertices which is of second highest degree and these vertices is of
the form {PΛ : |Λ| = 1 or k− 1} (see Theorem 2.16). Now to cover the rest
of the edges incident with the vertices {PΛ : |Λ| = 1} and {PΛ : |Λ| = k−1},
we have to add all these vertices. By continuing this way, the final step of
adding the vertices in C is the set of vertices {PΛ : |Λ| = r − 1 and r + 1}
if k is even or {PΛ : |Λ| = r or r+ 1} if k is odd. Hence the vertex cover of
Inp(Zn) is given by C = V (Inp(Zn)) − {PΛ : |Λ| = r}. Consequently the
vertex cover number of Inp(Zn) is given by

τ(Inp(Zn) = kC1 + · · ·+ kCr−1 + kCr+1 + . . . kCk =
k∑
i=1

kCi −k Cr

= 2k − 1−k Cr.

We know a set I is independent if and only if it’s complement is a vertex
cover. Hence the number of vertices of a graph G is the sum of independence
number and vertex cover number of G. So we have the following immediate
result.

Corollary 2.26. The independence number of Inp(Zn) is kCr, where k =
2r or 2r + 1.

If k = 2 then Inp(Zn) ∼= P3, a path of length three and hence not a
hamiltonian graph. For k = 3, P1 ∼ P12 ∼ P2 ∼ P23 ∼ P3 ∼ P13 ∼ P123 ∼
P1 is a Hamiltonian cycle in Inp(Zn) and if k = 4 then P1 ∼ P12 ∼ P123 ∼
P13 ∼ P3 ∼ P23 ∼ P234 ∼ P34 ∼ P4 ∼ P24 ∼ P2 ∼ P124 ∼ P14 ∼ P134 ∼
P1234 ∼ P1 is a Hamiltonian cycle in Inp(Zn). Also for k = 5, P1 ∼ P12 ∼
P123 ∼ P1234 ∼ P124 ∼ P24 ∼ P2 ∼ P23 ∼ P234 ∼ P2345 ∼ P235 ∼ P35 ∼
P3 ∼ P34 ∼ P345 ∼ P1345 ∼ P134 ∼ P14 ∼ P4 ∼ P45 ∼ P145 ∼ P1245 ∼
P245 ∼ P25 ∼ P5 ∼ P15 ∼ P125 ∼ P1235 ∼ P135 ∼ P13 ∼ P12345 ∼ P1 is a
Hamiltinian cycle in Inp(Zn). In a similar way we can find a Hamiltonian
cycle k = 6, 7 and so on. Hence we are in a position to make the following
conjecture

Conjecture 2.27. The graph Inp(Zn) is Hamiltonian if and only if k > 3.
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Theorem 2.28. The following statements about Inp(Zn) are equivalent:
(1) Inp(Zn) is an outer-planar graph.
(2) k = 2.
(3) Inp(Zn) is a ring graph.

Proof. (1) ⇔ (2). If k = 2, then Inp(Zn) ∼= P3, a path of order three
and hence outer-planar. Now it is easy to observe from Figure 1(a) with
v1 = P1, v2 = P13, v3 = P3, v4 = P23, v5 = P123, v6 = P12, v7 = P2 that
if k = 3, then Inp(Zn) contains a subdivision of the complete graph K4

and hence not an outer-planar graph. Again if k > 4, then the induced
subgraph formed by the set of vertices {P1, P12, P123, P1234} is the complete
graph K4 and hence not outer-planar.

(2) ⇔ (3). Since every outer-planar graph is a ring graph, it is clear
that Inp(Zn) is a ring graph for k = 2. Now if k = 3, then from Figure 1(a)
it is clear that rank(Inp(Zn)) = 6 6= 7 =frank(Inp(Zn)) (see Figure 1(a))
and hence not a ring graph ([14], Theorem 2.13). Also it is clear that for
k > 3, Inp(Zn) contains a subdivision of the complete graph K4 and hence
not a ring graph.

Figure 1: (a) Inp(Z∏3
i=1 p

αi
i

), (b) Subgraph of Inp(Z∏4
i=1 p

αi
i

) homeomorphic
to K3,3

Theorem 2.29. The graph Inp(Zn) is planar if and only if 2 6 k 6 3.

Proof. Since every ring graph is planar, it is clear that Inp(Zn) is planar for
k = 2. Since there is no crossing of edges in drawing the graph Inp(Zn) for
k = 3 in the plane (see Figure 1(a)), clearly it is planar. Now if k = 4, then
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Inp(Zn) contains a complete bipartiate graph K3,3 as a minor (see Figure
1(b) with v1 = P1, v2 = P2, v3 = P3, v4 = P14, v5 = P13, v6 = P12, v7 =
P123, v8 = P1234, v9 = P124, v10 = P134) and hence not planar. Again if k >
5, then the subgraph forms by the set of vertices {P1, P12, P123, P1234, P12345}
is the complete graph K5 and hence not planar.

Theorem 2.30. The graph Inp(Zn) has thickness one if and only if 2 6
k 6 3 and has thickness two if and only if k = 4.

Proof. We know that a graph has thickness one if and only if it is planar.
Therefore Inp(Zn) has thickness one if and only if 2 6 k 6 3 (see Theorem
2.29).

Let us consider the case for k = 4. It is easy to calculate that for k = 4,
Inp(Zn) has 15 vertices and 50 edges (cf. Theorem 2.18). Therefore we
have θ(Inp(Zn))k=4 > 2 ([23], Lemma 2.3). The planar decomposition of
Inp(Zn))k=4 as shown in Figure 2, we have θ(Inp(Zn))k=4 = 2.

Now if k = 5, then Inp(Zn) has 31 vertices and 180 edges (cf. Theorem
2.18). Therefore θ(Inp(Zn))k=5 > 3 ([23], Lemma 2.3). Also for k > 5, the
graph Inp(Zn) has a subgraph isomorphic to Inp(Zm) where m =

∏5
i=1 p

αi
i .

Therefore for k > 5, θ(Inp(Zn)) > 3 ([23], Lemma 2.1). Hence the result
follows.

Proposition 2.31. The graph Inp(Zn) is never toroidal and is not bitoroidal
for k > 4.

Proof. We complete the proof by considering the following cases:
Case (i). Let k 6 3. Then we have γ(Inp(Zn)) = 0 (see Theorem 2.29).
Case (ii). Let k = 4. Then the graph Inp(Zn) has n = 15 vertices and
e = 50 edges (see Theorem 2.18). Therefore by applying Proposition 4.4.4
of [20], we have

g(Inp(Zn)) > d50

6
− 15

2
+ 1e = 2 (2)

Case (iii). Let k = 5. Then Inp(Zn) has n = 31 vertices and e = 180 edges
(see Theorem 2.18). Therefore g(Inp(Z∏5

i=1 p
αi
i

)) > 16 ([20], Proposition
4.4.4). Now if k > 6, then Inp(Zn) contains a subgraph isomorphic to
Inp(Zm) where m =

∏5
i=1 P

αi
i and hence g(Inp(Zn)) > 16. Combining all

the above cases we have the desired result.

Now we recall the following result which is important to determine the
metric dimension of Inp(Zn).
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Figure 2: A planar decomposition of Inp(Z∏4
i=1 p

αi
i

)

Theorem 2.32 ([9], Theorem 1). If G is a connected graph of order n and
diameter d, then f(n, d) 6dim(G) 6 n−d, where f(n, d) is the least positive
integer k such that k + dk > n.

Theorem 2.33. The metric dimension of Inp(Zn) is

dim(Inp(Zn)) =

{
1 if k = 2

k, if k > 3

Proof. Case (1). Let k = 2. Then Inp(Zn) ∼= P3. Hence dim(Inp(Zn)) = 1
([9], Theorem 2). Moreover any of the pendent vetrices P1 or P2 is a metric
basis for Inp(Zn).
Case (2). Let k > 3. Since Inp(Zn) has 2k − 1 vertices and is of diameter
2, so by Theorem 2.32 we have f(n, d) 6 dim(Inp(Zn)) 6 2k − 3, where
f(n, d) is the least positive integers l such that l+ 2l > 2k − 1. Clearly k is
the least positive integers such that k + 2k > 2k − 1. Therefore

k 6 dim(Inp(Zn)) 6 2k − 3, for k > 3. (3)

Now we prove that W = {P1, P2, . . . , Pk} is a resolving set for Inp(Zn).
On the contarary, if possible let there exists distinct vertices PΛ1 and
PΛ2 ∈ V (Inp(Zn))−W such that r(PΛ1 ,W ) = (a1, . . . , ak) = (b1, . . . , bk) =
r(PΛ2 ,W ) where ai = bi = 1 or 2 for i ∈ [k].
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We claim that |Λ1| = |Λ2|. If not, without loss of generality, let |λ1| <
|Λ2|. Then there exists t ∈ Λ2 − Λ1, t ∈ [k].Then (a1, . . . , at = 2, . . . ak) 6=
(b1, . . . , bt = 1, . . . bk), a contradiction. Therefore |Λ1| = |Λ2|. Now since
PΛ1 and PΛ2 are distinct there exists i1 ∈ Λ1 −Λ2 and i2 ∈ Λ2 −Λ1, where
i1, i2 ∈ [k].

Then (a1, . . . , ai1 = 1, . . . ai2 = 2, . . . , ak) = (b1, . . . , bi1 = 2, . . . , bi2 =
1, . . . bk), a contradiction. Hence PΛ1 = PΛ2 . Therefore distinct vertices of
Inp(Zn) has distinct representations with respect toW . SoW is a resolving
set of Inp(Zn), which implies

dim(Inp(Zn)) 6 k (4)

Now combining equation (3) and (4) we have dim(Inp(Zn)) = k for k > 3
with W as metric basis.

To determine the strong metric dimension of Inp(Zn) we recall the fol-
lowing result.

Theorem 2.34 ([19], Theorem 2.2). For any graph G with diameter 2,
sdim(G) = |V (G)| − ω(RG), where RG is the reduced graph of G.

Theorem 2.35. The strong metric dimension is sdim(Inp(Zn)) = 2k−k−1
where k > 2.

Proof. Let PΛ1 and PΛ2 be any two vertices of Inp(Zn). Now if N [PΛ1 ] =
N [PΛ2 ] then we must have deg(PΛ1) =deg(PΛ2), which is possible only if
|Λ1| = |Λ2| or |Λ1|+ |Λ2| = k (see Lemma 2.15).
Case 1. Let |Λ1| = |Λ2|. Then PΛ1 ∈ N [PΛ1 ] but PΛ2 /∈ N [PΛ1 ]. Also
PΛ2 ∈ N [PΛ2 ] but PΛ2 /∈ N [PΛ2 ]. Therefore N [PΛ1 ] 6= N [PΛ2 ].
Case 2. Let |Λ1| + |Λ2| = k. Without loss of generality, let |Λ1| < |Λ2|.
Then there exists a ∈ [k] such that a ∈ Λ2 − Λ1. Then Pa ∈ N [PΛ2 ] but
Pa /∈ N [PΛ1 ] and hence N [PΛ1 ] 6= N [PΛ2 ].

Thus in any cases N [PΛ1 ] 6= N [PΛ2 ] and since PΛ1 and PΛ2 are arbi-
trary, we have RInp(Zn) = Inp(Zn). We know that Inp(Zn) is a graph with
2k − 1 vertices and ω(Inp(Zn)) = k. Therefore by Theorem 2.34 we have
sdim(Inp(Zn)) = 2k − k − 1.

The above result can be proved in a different way, which is as follows:
If N [PΛ1 ] = N [PΛ2 ] then we must have PΛ1 ∼ PΛ2 otherwise PΛ1 ∈ N [PΛ1 ]
but PΛ2 /∈ N [PΛ1 ] and PΛ1 /∈ N [PΛ2 ] but PΛ2 ∈ N [PΛ2 ]. Now since PΛ1 ∼
PΛ2 , either Λ1 ⊂ Λ2 or Λ2 ⊂ Λ1. Without loss of generality , let Λ1 ⊂ Λ2.
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So there exists t ∈ Λ2 but t /∈ Λ1 and hence Pt ∼ PΛ2 but Pt � PΛ1 which
implies N [PΛ1 ] 6= N [PΛ2 ], a contradiction. Therefore RInp(Zn) = Inp(Zn).
Hence the result follows.
Now we are interested to find the partition dimension of the graph Inp(Zn).

Theorem 2.36 ([10], Theorem 3.1). If G is a graph of order n > 3 and
diameter d, then g(n, d) 6pd(G) 6 n−d+1, where g(n, d) is the least positive
integer k for which (d+ 1)k > n for integers n and d with n > d > 2.

Since for k = 2, Inp(Zn) ∼= P3, we have pd(Inp(Zn)) = 2 ([10], Propo-
sition 2.1).

Theorem 2.37. The partition dimension of the graph Inp(Zn) satisfy the
inequality k − 1 6 pd(Inp(Zn)) 6 k for k > 3.

Proof. Let k > 3. Since Inp(Zn) is a graph of diameter 2, by applying
Theorem 2.36 we have g(n, 2) 6 pd(Inp(Zn)), where g(n, 2) is the least
positive integer l for which (2 + 1)l = 3l > n = 2k − 1. Clearly l = k − 1.
Therefore we have the inequality

pd(Inp(Zn)) > k − 1 (5)

Now we present a k-resolving partition Π = (S1, S2, . . . , Sk) of V (Inp(Zn))
where
S1 = N [P1],
S2 = {P2, {PΛ2 : |Λ2| = 2 and 2 ∈ Λ2 but 1 /∈ Λ2}, . . . , {PΛk−1

: |Λk−1| =
k − 1 and 2 ∈ Λk−1 but 1 /∈ Λk−1}},
. . .
Sk−1 = {Pk−1, Pk−1k},
Sk = {Pk}.

Let v1 ∈ S1. Then v1 = PΛ such that 1 ∈ Λ and r(v1,Π) = (0, a2, . . . , ak),
where ai = 1 if i ∈ Λ otherwise ai = 2.

Let v2 ∈ S2. Then v2 = PΛ2 such that 2 ∈ Λ2 but 1 /∈ Λ2. Then
r(v2,Π) = (1, 0, a3, . . . , ak) where ai = 1 if i ∈ Λ2 otherwise ai = 2.

. . .
Let vt ∈ St, t ∈ [k]. Then vt = PΛt such that t ∈ Λt but 1, 2, . . . , t− 1 /∈

Λt. Then r(vt,Π) = (1, a2, . . . , at = 0, . . . , ak) where ai = 1 if i ∈ Λt
otherwise ai = 2.

. . .
Similarly as above for vk = Pk ∈ Sk we have r(vk,Π) = (0, 1, 1 . . . , 1).
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Since representations of all vertices with respect to the partition Π
of V (Inp(Zn)) are distinct, clearly Π is a resolving partition of Inp(Zn).
Therefore

pd(Inp(Zn)) 6 k (6)

Combining equation (5) and (6) we have the required result.

Remark 2.38. Also note that for k = 3, no 2-partition can be a resolving
partition of Inp(Zn)k=3. Since for k = 3, Inp(Zn) has seven vertices so one
set of a 2-partitions of V (Inp(Zn)) must contain at least four vertex but
we cannot have four distinct representations with respect to Π for this four
vertices. So pd(Inp(Zn))k=3 = 3.

In a similar way we can prove that pd(Inp(Zn))k=4 = 4.

3. Inclusion prime ideal graph of a ring

Throughout this section, by a ring R, we mean a commutative ring with
unity and domain is a commutative ring with unity having no zero divisors.
Here we consider the inclusion prime ideal graph of a ring R, denoted by
Inp(R), is a graph with vertices are nontrivial prime ideals of R and two
distinct vertices are adjacent if and only if one is contained in the other. We
denote the Jacobson radical, set of all nonzero prime ideals and the set of
all maximal ideals of a ring R by J(R), spec(R) and Max(R) respectively.
For a prime ideal P of R, we define M(P ) = {Mi ∈ Max(R) : P ⊆ Mi}.
For undefined terminology in commutative ring theory, see[6] and [24].

Theorem 3.1. Let R be a ring. Then the following statements are equiva-
lent:
(1) Inp(R) is an empty graph.
(2) R is a field.
(3) In(R) is an empty graph.

Proof. (1) ⇔ (2). Let Inp(R) be an empty graph but R is not a field.
Then I = (0) is not a maximal ideal of R. Hence there exists a maximal
ideal M containg (0) ([6], Corollary 1.4), which is prime also. Therefore
M ∈ V (Inp(R)), which contradicts that Inp(R) is empty. Consequently R
is a field. The converse is obvious.
(2)⇔ (3). The proof is clear as every simple commutative ring with unity
is a field.
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Theorem 3.2. Let R be a ring which is not an integral domain. Then the
following statements are equivalent:
(1) Inp(R) is a null graph.
(2) Prime ideals of R are maximal as well as minimal.
(3) R is a zero dimensional ring.
(4) Any quotient ring of R that is an integral domain is also a field.

Proof. (1)⇔ (2). Let Inp(R) be a null graph and P be a nontrivial prime
ideals of R which is not maximal. Since R has identity, P must be contained
in some maximal ideal M of R ([6], Corollary 1.4). Since M is prime also,
we have P ∼M , which contradicts that Inp(R) is a null graph. Hence every
nontrivial prime ideals are maximal. Also if possible let there exists a prime
ideal P1 which is not minimal. Then there exists another non zero prime
ideal P2 of R such that P2 ⊂ P1. Then P1 ∼ P2, which is a contradiction.
Consequently every nontrivial prime ideals of R are minimal.

Conversely, let P1, P2 ∈ V (Inp(R)). Then by hypothesis P1 and P2 are
maximal as well as minimal. Therefore P1 � P2 and hence Inp(R) is a null
graph.
(2)⇔ (3)⇔ (1) It is clear.
(2)⇔ (4). The proof is clear by just recalling that an ideal I of a commuta-
tive ring R with unity is prime (resp. maximal) if and only if the quotient
ring R/I is an integral domain (resp. field).

Example 3.3. The graph Inp(R) of a regular ring R is a null graph since
every prime ideals of R is maximal ([18]). The graph Inp(R) of an Artinian
ring R is a null graph as R is zero dimensional ([6], Theorem 8.5).

Theorem 3.4. Let R be an integral domain which is not a field. Then the
following statements are equivalent:
(1) Inp(R) is a null graph.
(2) Every non zero prime ideals of R are maximal.
(3) Semiprimary ideals of R are primary.
(4) Valuation ideals are primary.

Proof. (1)⇔ (2). The proof is straightforward.
(2) ⇔ (3). Let J be a semiprimary ideal of R. If J = (0), then J is prime
and hence semiprimary. Again, if J 6= 0, then

√
J is a maximal ideal of R.

Therefore J is primary ([24], p. 153) and hence semiprimary. The proof of
the converse part follows from Corollary 3.2 of [12].
(2)⇔ (4). It is clear from Theorem 3.1 of [13].
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Remark 3.5. Clearly if R is a principal ideal domain, then Inp(R) is a
null graph. Moreover, rings R in which nonzero prime ideals are maximal,
the graph Inp(R) is complete or connected if and only if R is local if and
only if R has exactly one nonzero prime ideal. So we have the following
immediate result.

Corollary 3.6. Let R be an Artinian ring. Then the following statements
are equivalent:
(1) Inp(R) is a complete graph.
(2) Inp(R) is a connected graph.
(3) Inp(R) ∼= K1.
(4) R is local.

Theorem 3.7. Let R be a commutative ring with unity. Then the following
statements are equivalent:
(1) Inp(R) is a complete graph.
(2) prime ideals of R are linearly ordered.
(3) radical ideals of R are linearly ordered.
(4) each proper radical ideal are prime.
(5) The radical ideals of principal ideals of R are linearly ordered.
(6) For each a, b ∈ R, there exists k ∈ N such that a|bk or b|ak.
(7) Intersection of two prime ideals of R is a prime ideal.
(8) 2-absorbing primary ideals of R are semiprimary.
(9) R is local with incomparable prime ideals are co-maximal.

Proof. (1)⇔ (2). It is clear.
(2)⇔ (3)⇔ · · · ⇔ (6). It follows from Theorem 1 of [7].
(2)⇔ (7). It is clear.
(2) ⇔ (8). Let I be a 2-absorbing primary ideal of R. Since prime ideals
of R are linearly ordered, clearly

√
I is a prime ideal and hence I is a

semiprimary ideal of R.
Conversely, let P1 and P2 be two distinct prime ideals of R. Then P1∩P2

is a 2-absorbing primary ideal ([5], Theorem 1) and hence semiprimary by
hypothesis. Since

√
P1 ∩ P2 = P1 ∩ P2, clearly P1 ∩ P2 is a prime ideal of

R. Therefore prime ideals of R are linearly ordered.
(1)⇔ (9). Let Inp(R) be a complete graph. Then clearly R is local and as
there is no incomparable prime ideals in R, vacuosly they are comaximal.
For converse part, let P1 and P2 be two distinct nontrivial prime ideals of
R. Since R is a local, P1 and P2 must be contained in the unique maximal
ideal M of R. Now if they are incomparable, then P1 +P2 = R, contradicts



The inclusion prime ideal graph 295

that they both contained in M . Therefore P1 ∼ P2 and hence Inp(R) is a
complete graph.

Theorem 3.8. Let R be a domain which is not a field. Then the following
statements are equivalent:
(1) Inp(R) is a complete graph.
(2) R is a local treed domain.

Proof. (1) ⇔ (2). It is clear by applying Theorem 3.7 and recalling that a
treed domain is a domain in which incomparable prime ideals are comaxi-
mal.

Theorem 3.9. Let R be an arithmetical ring. Then
(1) a vertex P ∈ V (Inp(R)) is universal if and only if P ⊆ J(R).
(2) Inp(R) is a complete graph if and only if R is local.
(3) The independence number of Inp(R) is α(Inp(R)) = |Max(R)|.
(4) gr(Inp(R))

=

{
3 , if M(P1) ∩M(P2) 6= φ for some P1, P2 ∈ spec(R)−Max(R)

∞, otherwise.

(5) Inp(R) is a star graph if and only if J(R) contains a prime ideal P of
R such that spec(R)−Max(R) = {P}.

Proof. (1). Let P ∈ V (Inp(R)) be a universal vertex. Then P ⊆ Mi for
every Mi ∈Max(R) and hence P ⊆ J(R).

Conversely, let P ⊆ J(R) and Q ∈ V (Inp(R)) − {P}. Clearly M(P ) ∩
M(Q) 6= φ and hence there exists Mi ∈ Max(R) such that P , Q ⊆ Mi.
Since incomparable prime ideals of an arithmetical ring are comaximal,
clearly P ∼ Q. Since Q is arbitrary, clearly P is a universal vertex in
Inp(R).
(2). Let Inp(R) be a complete graph. Then clearly R is local.

Conversely, let R be a local ring with maximal ideal M and P1, P2

be two distinct vertices in Inp(R). Clearly P1, P2 ⊆ M and hence not
comaximal. Since in an arithmetical ring incomparable prime ideals are
comaximal, clearly P1 ∼ P2. Therefore Inp(R) is a complete graph.
(3). Since no two maximal ideals of R adjacent in Inp(R), clearlyMax(R) is
an independent set in Inp(R). Now if there is an independent set I such that
Max(R) ⊂ I, then there exists a prime ideal P1 ∈ I such that P1 ∼ M for
some maximal ideal M ∈Max(R), which is a contradiction. Now we prove



296 B. Khanra, M. Mandal, S. Mukherjee (Goswami)

that there does not exists any independent set of cardinality strictly greater
than |Max(R)|. If possible, let I1 be such an independent set in Inp(R).
Then there must exists two prime ideals which are contained in some unique
maximal ideal of R and hence adjacent, which is a contradiction. Therefore,
α(Inp(R)) = |Max(R)|.
(4). If there exists two prime ideals P1, P2 ∈ spec(R)−Max(R) such that
M(P1) ∩M(P2) 6= φ, then P1 and P2 must be contained in some maximal
ideal Mi ∈ Max(R). Therefore P1 ∼ P2 ∼ Mi ∼ P1 is a 3-cycle in Inp(R)
and hence gr(Inp(R)) = 3, otherwise gr(Inp(R)) =∞.
(5). Let Inp(R) be a star graph with P as universal vertex. Then by (1),
P ⊆ J(R). Now if there exists another prime ideal P1 ∈ spec(R)−Max(R),
then P1 and P must be contained in some maximal idealM of R. Therefore
P1 ∼ P ∼ M ∼ P1 is a cycle in Inp(R), contradicts that Inp(R) is a star
graph. Hence spec(R)−Max(R) = {P}.

Conversely, let J(R) contains a prime ideal P such that spec(R) −
Max(R) = {P}. Then P is a universal vertex in Inp(R) and no two prime
ideal ideals in spec(R)− {P} are adjacent. Consequently, Inp(R) is a star
graph.

Theorem 3.10. The graph Inp(R) is a perfect graph. Moreover,
ω((Inp(R)) = χ(Inp(R)) ={

dim(R) or dim(R) + 1 , if R is a domain or not with dim(R) <∞
∞, if dim(R) =∞

Proof. In a similar way as in Theorem 2.8 of [16], we can prove that Inp(R)
is a comparability graph and hence perfect. To compute the clique number
of Inp(R), we consider the following cases:
Case (1). dim(R) = ∞. Since any chain of nonzero prime ideals of length
k is a clique with k vertices, clearly ω(Inp(R)) =∞.
Case (2). Let dim(R) = k < ∞. Then clearly ω(Inp(R)) > k or k + 1
according as R is an domain or not. Now we assume that W = {Pi : 1 6
i 6 ω(Inp(R))} is the set of vertex of a clique in Inp(R). We now prove
by method of induction, that the prime ideals P1, P2, . . . , Pt form a chain,
where t = ω(Inp(R)). The statement is clear for t = 1. Now let the prime
ideals in A1 = {P1, P2, . . . , Pr}, where 1 < r < t, form a chain. We now
show that prime ideals in A2 = {P1, P2, . . . , Pr+1} also form a chain. Let
Pi1 ⊂ Pi2 ⊂ · · · ⊂ Pir , where ij ∈ [r], be the chain of elements in A1. If
Pr+1 ⊂ Pi1 , then there exists the chain Pr+1 ⊂ Pi1 ⊂ Pi2 ⊂ · · · ⊂ Pir in
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A2. Otherwise, let Pit be the maximal element of A1 which is a subset of
Pr+1. Then easily Pr+1 ⊂ Pit+1 . Therefore we have the chain Pi1 ⊂ Pi2 ⊂
Pit ⊂ Pr+1 ⊂ Pit+1 ⊂ · · · ⊂ Pir . Therefore ω(Inp(R)) 6 k or k + 1 as R is
a domain or not. Since Inp(R) is perfect, we have the desired result.
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