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Construction of gyrogroups of order 2n

by cyclic 2-groups

Mohammad Ali Salahshour, Kurosh Mavaddat Nezhaad
and Abraham Albert Ungar

Abstract. Gyrogroups abound in group theory. They possess a rich group-like structure
that forms a natural generalization of groups. A prominent example is provided by
Einstein’s addition law of relativistically admissible velocities. Being nonassociative, it
turns out that Einstein addition is a nongroup gyrogroup binary operation. A gyrogroup
is a rich structure constituting a non-empty set with a binary operation that obeys an
associative-like law called the gyroassociative law. The aim of this article is to present a
method of constructing novel gyrogroups of order 2n, n > 3, by a cyclic 2-group that is
Z2n .

1. Definitions and history

Seemingly structureless, Einstein addition of relativistically admissible ve-
locities is neither commutative nor associative. However, more than 80
years after the appearance of the theory of special relativity in one of the
anni mirabiles (1905), A.A. Ungar discovered in 1988 that Einstein addition
is both gyrocommutative and gyroassociative [17, 18], a discovery that sig-
naled the birth of gyrogroup theory [20] along lines parallel to group theory.
Gyrogroups turn out to be generalized groups in which associativity (com-
mutativity) is generalized to gyroassociativity (gyrocommutativity). The
formal gyrogroup definition follows.

A pair (G,⊕) consisting of a non-empty set G and a binary operation
⊕ in G is called a groupoid. Let (G,⊕) be a groupoid. A bijection from
G to itself is called an automorphism of G if φ(a⊕ b) = φ(a)⊕ φ(b) for all
a, b ∈ G. The set of all automorphisms of G, denoted by Aut (G,⊕), forms
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a group under function composition. A groupoid (G,⊕) is a gyrogroup if
the following axioms hold:

(G1) (left identity) there exists an element 0 ∈ G such that for all x ∈ G,
0⊕ x = x;

(G2) (left inverse) for each a ∈ G, there exists b ∈ G such that b⊕ a = 0;

(G3) (left gyroassociative law) there exists a function gyr : G × G −→
Aut (G,⊕) such that for every a, b, c ∈ G, a ⊕ (b ⊕ c) = (a ⊕ b) ⊕
gyr[a, b]c, where gyr[a, b]c = gyr(a, b)(c);

(G4) (left reduction property, or left loop property) for each a, b ∈ G,
gyr[a, b] = gyr[a⊕ b, b].

Note that the gyrogroup axioms (G1) – (G4) imply their right coun-
terparts [23]. The axiom loop property in the gyrogroup definition is also
known as the reduction property since it triggers a remarkable reduction in
complexity [21].

For every a, b ∈ G, the mapping gyr[a, b] is called the gyroautomorphism
generated by a and b. Gyroautomorphisms are also known as gyrations.
The gyrogroup rich structure is demonstrated, for instance, in the study
of Lorentz groups in [21, 17]. Finally, a gyrogroup (G,⊕) is said to be
gyrocommutative if for all a, b ∈ G,

a⊕ b = gyr[a, b](b⊕ a) .

Any group is a gyrogroup of which the gyroautomorphisms are trivial, that
is, they are the identity automorphism.

Throughout this paper, our notation is standard, taken mainly from
[6, 23]. We refer interested readers to consult the survey [20] for a complete
account of the history of the gyrogroup concept. We also refer to [14, 15]
for the study of subgyrogroups, gyrogroup homomorphisms, and quotient
gyrogroup.

The concept of a gyrogroup is a natural extension of the traditional
notion of a group, as demonstrated by Chen and Ungar in their work [2].
This generalization further extends to the concept of a bi-gyrogroup, as
explored in the work of Ungar [19]. Subsequent studies by Foguel and Ungar
[4, 5], as well as Feder [3], reveal the close interrelation between gyrogroups
and left gyrogroups with concepts derived from group theory.
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As Suksumran showed in his paper [12], there is a correspondence be-
tween the class of gyrogroups and triples components being groups and
twisted subgroups. He used these triples, arising from the theory of gy-
rogroups, to study the generalized Heisenberg group [10]. This underscores
the integral role of gyrogroup theory in the broader context of group theory.

The classification of gyrogroups of small orders, of orders at most 31 up
to isomorphism, except for 24, 27, and 30, is found in [1]. By calculations
and methods rooted in the theory of quasigroups and loops, we know that
there are 1995 gyrogroups of order 16, 179 of which are gyrocommutative
[1]. It is worthwhile to mention that there is a history of constructing
gyrogroups of order 16 in the literature that begins with Zhang in 1996,
[24] where Zhang proposed the dual of a gyrocommutative gyrogroup of
order 16 (duality of a loop in the sense of [11]). This history of constructing
finite gyrogroups continues by Foguel and Ungar works in 2000 and 2001
where they created and developed a method for constructing gyrogroups by
twisted subgroups of a group [4, 5]. This leads our story to a work by Ungar
in 2000 [22] where he proposed a nongyrocommutative gyrogroup of order
16 constructed by the mentioned method. In 2021 Mahdavi et al. proposed
a construction of nongyrocommutative gyrogroups of order 2n [8]. Then,
in 2022, Maungchang and Suksumran proposed a new way of constructing
gyrogroups of finite orders and constructed a gyrogroup of order 16 in [9].
Finally, in 2022 Suksumran proposed a method for constructing gyrogroups
and constructed three gyrogroups of order 16 [13].

In this article we present a new method of constructing gyrocommuta-
tive gyrogroups of orders 2n, n > 3, which isomorphically yields different
gyrogroups. Specifically, we present a way of constructing gyrogroups of
order 2n by the cyclic 2-group Z2n for n > 3 that is denoted by G2(n). In
contrast, Mahdavi et al. constructed in [8] a gyrogroup G(n) of order 2n

that we denote in this paper by G1(n).

2. Preliminaries

In this section we introduce the notation and concepts that we use later for
the construction. Our calculations are done with the aid of GAP [16].

Notation 2.1. For n > 3, let P (n) = {0, 1, 2, . . . , 2n−1 − 1}, H(n) =
{2n−1, 2n−1+1, . . . , 2n−1} andG2(n) = P (n)∪H(n). It is clear that P (n) ∼=
Z2n−1 and H(n) = P (n) + m where m = 2n−1. Hence G2(n) = P (n) ∪
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(P (n) +m). Let OP = {i ∈ P (n) | i is odd}, EP = {i ∈ P (n) | i is even},
OH = {i ∈ H(n) | i is odd} and EH = {i ∈ H(n) | i is even}.

Define the binary operation ⊕ on G2(n) as follows:

i⊕j =



t : (i, j) ∈ (P (n)× P (n)) ∪
[
(H(n)×H(n))− (EH ×OH)

]
t+m : (i, j) ∈ (P (n)×H(n)) ∪

[
(H(n)× P (n))− (EH ×OP )

]
s : (i, j) ∈ EH ×OH

s+m : (i, j) ∈ EH ×OP

where t, s ∈ P (n) and t ≡ i+ j(modm)

s ≡ i+ j +
m

2
(modm)

Clearly, the operation ⊕ is well defined.

Denoting the greatest common divisor of positive integers r and s by
(r, s), we have the following simple lemma.

Lemma 2.2 ([8]). Assume Notation 2.1.

(I) (m2 − 1,m) = (m2 + 1,m) = 1.

(II) Suppose x ≡ y(modm). If x, y ∈ P (n) or x, y ∈ H(n), then x = y.

Lemma 2.3. Assuming Notation 2.1, let A : G2(n)→ G2(n) be a map on
G2(n) given by

A(i) =


r : i ∈ OP ,

r +m : i ∈ OH ,

i : otherwise,

where r ∈ P (n) and r ≡ i+ m

2
(modm). Then A ∈ Aut (G2(n),⊕).

Proof. Clearly A is a well defined bijective map on G2(n). It is enough
to show that A is a homomorphism on (G2(n),⊕). To do this, assume
i, j ∈ G2(n) be two arbitrary elements. We consider four distinct cases:

1. i, j ∈ P (n). This condition is the first case we consider in the four
subcases:
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(a). i, j ∈ OP . By the definition of ⊕, i ⊕ j = t1 ∈ EP such that t1 ≡
i+ j(modm). By assumption

A(i⊕ j) = A(t1) = t1 ≡ i+ j(modm). (2.1)

Also, A(i) = r1, A(j) = r2, so that

r1 ≡ i+
m

2
(modm) and r2 ≡ j +

m

2
(modm).

Since r1, r2 ∈ OP , it follows from the last equations and the definition
of ⊕ that

A(i)⊕A(j) = r1 ⊕ r2 ≡ r1 + r2 ≡ i+ j(modm). (2.2)

Since A(i)⊕ A(j), A(i⊕ j) ∈ P (n), it follows from equations 2.1, 2.2
and Lemma 2.2 that A(i⊕ j) = A(i)⊕A(j).

(b). i, j ∈ EP . By the definition of ⊕, i⊕ j = t1 ∈ EP , t1 ≡ i+ j(modm).
By assumption

A(i⊕ j) = A(t1) = t1 ≡ i+ j(modm). (2.3)

We also have A(i) = i, A(j) = j. Hence, by the definition of ⊕,

A(i)⊕A(j) = i⊕ j ≡ i+ j(modm). (2.4)

Since A(i)⊕ A(j), A(i⊕ j) ∈ P (n), it follows from equations 2.3, 2.4
and Lemma 2.2 that A(i⊕ j) = A(i)⊕A(j).

(c). i ∈ OP and j ∈ EP . By the definition of ⊕, i⊕ j = t1 ∈ OP such that
t1 ≡ i+ j(modm). By assumption

A(i⊕ j) = A(t1) = r1 ≡ t1 +
m

2
≡ i+ j +

m

2
(modm). (2.5)

Also A(j) = j and A(i) = r1 such that r1 ≡ i + m
2 (modm). By the

definition of ⊕,

A(i)⊕A(j) = r1 ⊕ j ≡ r1 + j ≡ i+ m

2
+ j(modm). (2.6)

Since A(i)⊕ A(j), A(i⊕ j) ∈ P (n), it follows from equations 2.5, 2.6
and Lemma 2.2 that A(i⊕ j) = A(i)⊕A(j).



324 M.A. Salahshour, K. Mavaddat Nezhaad, and A.A. Ungar

(d). i ∈ EP and j ∈ OP . The proof is similar to (c) and so it is omitted.

2. i, j ∈ H(n). This condition is the second case we consider in the four
subcases:

(a) . i, j ∈ OH . By the definition of ⊕, i ⊕ j = t1 ∈ EP such that
t1 ≡ i+ j(modm). By assumption

A(i⊕ j) = A(t1) = t1 ≡ i+ j(modm). (2.7)

Also, A(i) = r1 +m, A(j) = r2 +m such that

r1 ≡ i+
m

2
(modm) and r2 ≡ j +

m

2
(modm).

Since r1, r2 ∈ OP , by the last equations and the definition of ⊕, we
get

A(i)⊕A(j) = (r1 +m)⊕ (r2 +m) ≡ r1 + r2 ≡ i+ j(modm). (2.8)

Since A(i)⊕ A(j), A(i⊕ j) ∈ P (n), it follows from equations 2.7, 2.8
and Lemma 2.2 that A(i⊕ j) = A(i)⊕A(j).

(b). i, j ∈ EH . The proof is similar to 1 (b) and so it is omitted.

(c). i ∈ OH and j ∈ EH . By the definition of ⊕, i ⊕ j = t1 ∈ OP such
that t1 ≡ i+ j(modm). By assumption

A(i⊕ j) = A(t1) = r1 ≡ t1 +
m

2
≡ i+ j +

m

2
(modm). (2.9)

Also A(j) = j and A(i) = r1+m ∈ OH such that r1 ≡ i+ m
2 (modm).

By the definition of ⊕,

A(i)⊕A(j) = (r1+m)⊕j ≡ (r1+m)+j ≡ i+m

2
+j(modm). (2.10)

Since A(i)⊕A(j), A(i⊕ j) ∈ P (n), it follows from equations 2.9, 2.10
and Lemma 2.2 that A(i⊕ j) = A(i)⊕A(j).

(d). i ∈ EH and j ∈ OH . By the definition of ⊕, i⊕ j = s ∈ OP such that
s ≡ i+ j + m

2 (modm). By assumption

A(i⊕ j) = A(s) = r ≡ s+ m

2
≡ i+ j(modm). (2.11)
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Also A(i) = i and A(j) = r1+m ∈ OH such that r1 ≡ j+ m
2 (modm).

By the definition of ⊕,

A(i)⊕A(j) = i⊕(r1+m) ≡ i+(r1+m)+
m

2
≡ i+j(modm). (2.12)

Since A(i)⊕A(j), A(i⊕j) ∈ P (n), if follows from equations 2.11, 2.12
and Lemma 2.2 that A(i⊕ j) = A(i)⊕A(j).

3. i ∈ P (n) and j ∈ H(n). This condition is the third case we consider in
the four cases:

(a). i ∈ OP and j ∈ OH . By the definition of ⊕, i⊕ j = t+m ∈ EH such
that t ∈ P (n) and t ≡ i+ j(modm). By assumption

A(i⊕ j) = A(t+m) = t+m ≡ i+ j(modm). (2.13)

Also A(i) = r1 ∈ OP and A(j) = r2 +m ∈ OH such that

r1 ≡ i+
m

2
(modm) and r2 ≡ j +

m

2
(modm).

By the definition of ⊕,

A(i)⊕A(j) = r1⊕ (r2 +m) ≡ r1 + (r2 +m) ≡ i+ j(modm). (2.14)

Since A(i) ⊕ A(j), A(i ⊕ j) ∈ H(n), it follows from equations 2.13,
2.14 and Lemma 2.2 that A(i⊕ j) = A(i)⊕A(j).

(b). i ∈ EP and j ∈ EH . Clearly, A(i) = i and A(j) = j. By the definition
of ⊕, i ⊕ j = t +m ∈ EH such that t ∈ P (n) and t ≡ i + j(modm).
Therefore,

A(i⊕ j) = A(t+m) = t+m = i⊕ j = A(i)⊕A(j).

(c). i ∈ OP and j ∈ EH . By the definition of ⊕, i⊕ j = t+m ∈ OH such
that t ∈ P (n) and t ≡ i+ j(modm). By assumption

A(i⊕ j) = A(t+m) ≡ (t+m) +
m

2
≡ i+ j +

m

2
(modm). (2.15)

Also A(j) = j and A(i) = r ∈ OP such that r ≡ i + m
2 (modm). By

the definition of ⊕,

A(i)⊕A(j) = r ⊕ j ≡ r + j ≡ i+ m

2
+ j(modm). (2.16)

Since A(i) ⊕ A(j), A(i ⊕ j) ∈ H(n), it follows from equations 2.15,
2.16 and Lemma 2.2 that A(i⊕ j) = A(i)⊕A(j).
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(d). i ∈ EP and j ∈ OH . The proof is similar to the proof above case (c).

4. i ∈ H(n) and j ∈ P (n). This condition is the fourth case we consider in
the four cases as follows:

(a). i ∈ OH and j ∈ OP . The proof is similar to 3 (a) and so it is omitted.

(b). i ∈ EH and j ∈ EP . The proof is similar to 3 (b) and so it is omitted.

(c). i ∈ OH and j ∈ EP . The proof is similar to 3 (c) and so it is omitted.

(d). i ∈ EH and j ∈ OP . By the definition of ⊕, i⊕ j = s+m ∈ OH such
that s ∈ P (n) and s ≡ i+ j + m

2 (modm). By assumption

A(i⊕ j) = A(s+m) ≡ (s+m) +
m

2
≡ i+ j(modm). (2.17)

Also A(i) = i and A(j) = r ∈ OP such that r ≡ j + m
2 (modm). By

the definition of ⊕,

A(i)⊕A(j) = i⊕ r ≡ i+ r +
m

2
≡ i+ j(modm). (2.18)

Since A(i) ⊕ A(j), A(i ⊕ j) ∈ H(n), it follows from equations 2.17,
2.18 and Lemma 2.2 that A(i⊕ j) = A(i)⊕A(j).

This completes the proof.

Notation 2.4. Assume Notation 2.1. Set M = [OP × (OH ∪EH)]
⋃
[OH ×

(OP∪EH)]
⋃
[EH×(OP∪OH)]. Define gyr : G2(n)×G2(n)→ Aut (G2(n),⊕)

as follows:

gyr(a, b) = gyr[a, b] =

{
A : (a, b) ∈M,

I : otherwise,

where I, A ∈ Aut (G2(n),⊕), I being the identity automorphism and A
being the automorphism defined in Lemma 2.3. Obviously, the map gyr is
well defined.

3. Main result

The aim of this section is to characterize gyrogroups of order 2n constructed
by the cyclic 2-group Z2n , for n > 3.
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Theorem 3.1. Assuming Notations 2.1 and 2.4, the pair (G2(n),⊕) is a
gyrogroup.

Proof. By Lemma 2.3, gyr[a, b] ∈ Aut (G,⊕). By the definition of ⊕, 0⊕i =
i for all i ∈ G2(n) and so 0 is the left identity element of G2(n). The inverse,
	x, of any element x ∈ G2(n) is given by

	x =

{
−x : x ∈ P (n),
−t+m : x = t+m ∈ H(n),

where −x and −t are, respectively, the inverse of x and t in P (n).

We now prove the left loop property. Let (a, b) be an arbitrary element
of G2(n)×G2(n). We have four cases:

1. (a, b) ∈ P (n)× P (n). Then a⊕ b ∈ P (n). Clearly (a⊕ b, b), (a, b) 6∈M .
By the definition of gyr,

gyr[a⊕ b, b] = I = gyr[a, b].

2. (a, b) ∈ H(n)×H(n). In this case, we have two subcases:

(a). In the case (a, b) ∈ (OH ×OH)∪ (EH ×EH) we have a⊕ b ∈ EP and
(a, b), (a⊕ b, b) 6∈M . Therefore, gyr[a⊕ b, b] = I = gyr[a, b].

(b). If (a, b) ∈ (OH × EH) ∪ (EH ×OH), then a⊕ b ∈ OP and (a, b), (a⊕
b, b) ∈M . Therefore, gyr[a⊕ b, b] = A = gyr[a, b].

3. (a, b) ∈ P (n)×H(n). In this case, a⊕ b ∈ H and a⊕ b ≡ a+ b(modm).
Thus we have two subcases:

(a). If (a, b) ∈ (EP×OH)∪(EP×EH), then (a, b), (a⊕b, b) 6∈M . Therefore,
gyr[a⊕ b, b] = I = gyr[a, b].

(b). If (a, b) ∈ (OP×OH)∪(OP×EH), then (a, b), (a⊕b, b) ∈M . Therefore,
gyr[a⊕ b, b] = A = gyr[a, b].

4. (a, b) ∈ H(n)×P (n). In this case, a⊕ b ∈ H and a⊕ b ≡ a+ b(modm).
Thus we have two subcases:

(a). If (a, b) ∈ (OH×EP )∪(EH×EP ), then (a, b), (a⊕b, b) 6∈M . Therefore,
gyr[a⊕ b, b] = I = gyr[a, b].
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(b). If (a, b) ∈ (OH×OP )∪(EH×OP ), then (a, b), (a⊕b, b) ∈M . Therefore,
gyr[a⊕ b, b] = A = gyr[a, b].

Therefore, the left loop property is valid.

Finally, we investigate the left gyroassociative law. We have four cases:

1. (a, b) ∈ P (n)× P (n). Then a⊕ b ∈ P (n) and gyr[a, b] = I.
We have two subcases:

(a) c ∈ P (n). Thus b⊕ c ∈ P (n) and by the definition of ⊕:

(a⊕ b)⊕ gyr[a, b]c = (a⊕ b)⊕ c(modm)

≡ (a⊕ b) + c(modm)

≡ a+ b+ c(modm)

≡ a+ (b⊕ c)(modm)

≡ a⊕ (b⊕ c)(modm).

By Lemma 2.2, a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c.

(b) c ∈ H(n). Thus b⊕ c ∈ H(n) and the proof of this case is similar to
the previous case.

2. (a, b) ∈ H(n)×H(n). By Notation 2.4,

gyr[a, b] =

{
A : (a, b) ∈ N,
I : otherwise,

in which N = (OH × EH) ∪ (EH ×OH) ⊆M . We consider two subcases:

(a). (a, b) 6∈ N . In this subcase, gyr[a, b] = I and (a, b ∈ OH or a, b ∈ EH).
If a, b ∈ OH , then a⊕ b ∈ EP . So we have the following subcases:

(i). c ∈ P (n). Thus b⊕ c ∈ H(n) and the proof of this case is similar
to 1(a).

(ii). c ∈ H(n). Thus b⊕ c ∈ P (n) and the proof of this case is similar
to 1(a).

If a, b ∈ EH , then a⊕ b ∈ EP . So we have the following cases:
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(iii). c ∈ OP . Thus b⊕ c ∈ OH and by the definition of ⊕:

(a⊕ b)⊕ gyr[a, b]c = (a⊕ b)⊕ c
≡ (a⊕ b) + c(modm)

≡ a+ b+ c(modm)

≡ a+ (b+ c+
m

2
) +

m

2
(modm)

≡ a+ (b⊕ c) + m

2
(modm)

≡ a⊕ (b⊕ c)(modm).

By Lemma 2.2, a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c.

(iv). If c ∈ EP , then b ⊕ c ∈ EH . The proof of this case is similar to
1(a).

(v). If c ∈ OH , then b ⊕ c ∈ OP . The proof of this case is similar to
2(a)(iii).

(vi). If c ∈ EH , then b⊕ c ∈ EP . So, the proof is similar to 1(a).

(b). (a, b) ∈ N . In this subcase gyr[a, b] = A, also (a ∈ OH & b ∈ EH) or
(a ∈ EH & b ∈ OH). If (a ∈ OH & b ∈ EH), then a⊕ b ∈ OP . So we
have the following cases:

(i). c ∈ OP . Thus b⊕ c ∈ OH and gyr[a, b](c) ∈ OP . By Lemma 2.3
and the definition of ⊕ we have

(a⊕ b)⊕ gyr[a, b](c) ≡ (a⊕ b) + gyr[a, b](c)(modm)

≡ a+ b+ c+
m

2
(modm)

≡ a+ (b⊕ c)(modm)

≡ a⊕ (b⊕ c)(modm).

By lemma 2.2, a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b](c).

(ii). c ∈ EP . Thus b⊕ c ∈ EH and gyr[a, b](c) = c. The proof of this
case is similar to 1(a).

(iii). c ∈ OH . Then b ⊕ c ∈ OP and gyr[a, b](c) ∈ OH . The proof of
this case is similar to 2(b)(i).

(iv). c ∈ EH . Then b ⊕ c ∈ EP and gyr[a, b]c = c. The proof of this
case is similar to 1(a).
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If (a ∈ EH & b ∈ OH) then a ⊕ b ∈ OP . So we have the following
cases:

(v). c ∈ OP . Thus b⊕ c ∈ EH and gyr[a, b](c) ∈ OP . By Lemma 2.3
and the definition of ⊕ we have

(a⊕ b)⊕ gyr[a, b](c) ≡ (a⊕ b) + gyr[a, b](c)(modm)

≡ a+ b+
m

2
+ c+

m

2
(modm)

≡ a+ b+ c(modm)

≡ a+ (b⊕ c)(modm)

≡ a⊕ (b⊕ c)(modm).

By Lemma 2.2, a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b](c).

(vi). c ∈ EP . Thus b⊕ c ∈ OH and gyr[a, b](c) = c. By the definition
of ⊕ we have

(a⊕ b)⊕ gyr[a, b](c) = (a⊕ b)⊕ c(modm)

≡ (a⊕ b) + c(modm)

≡ a+ b+
m

2
+ c(modm)

≡ a+ (b⊕ c) + m

2
(modm)

≡ a⊕ (b⊕ c)(modm).

By Lemma 2.2, a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b](c).

(vii). c ∈ OH . Then b ⊕ c ∈ EP and gyr[a, b](c) ∈ OH . The proof of
this case is similar to 2(b)v).

(viii). c ∈ EH . Then b⊕ c ∈ OP and gyr[a, b](c) = c. The proof of this
case is similar to 2(b)(vi).

3. (a, b) ∈ P (n)×H(n). By Notation 2.4, clearly

gyr[a, b] =

{
A : a ∈ OP ,

I : a 6∈ OP .

We consider two subcases:

(a). a 6∈ OP . In this case gyr[a, b] = I. If b ∈ OH , then a ⊕ b ∈ OH .
So we have the following cases:
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(i). c ∈ P (n). Thus b⊕c ∈ H(n). So, the proof is similar to 1(a).
(ii). c ∈ H(n). Thus b⊕c ∈ P (n). So, the proof is similar to 1(a).

If b ∈ EH , then a⊕ b ∈ EH . So we have the following cases:

(iii). c ∈ OP . Thus b⊕c ∈ OH and by the definition of ⊕ we have

(a⊕ b)⊕ gyr[a, b](c) = (a⊕ b)⊕ c

≡ (a⊕ b) + c+
m

2
(modm)

≡ a+ b+ c+
m

2
(modm)

≡ a+ (b⊕ c)(modm)

≡ a⊕ (b⊕ c)(modm).

By Lemma 2.2, a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b](c).
(iv). c ∈ EP . Thus b⊕ c ∈ EH and the proof is similar to 1(a).
(v). c ∈ OH . Thus b⊕c ∈ OP and the proof is similar to 3(a)(iii).
(vi). c ∈ EH . Thus b⊕ c ∈ EP and the proof is similar to 1(a).

(b). a ∈ OP . In this case gyr[a, b] = A. If b ∈ OH , then a⊕ b ∈ EH .
So we have the following cases:

(i). c ∈ OP . Thus b⊕ c ∈ EH and gyr[a, b](c) ∈ OP . By Lemma
2.3 and the definition of ⊕ we have

(a⊕ b)⊕ gyr[a, b](c) ≡ (a⊕ b) + gyr[a, b](c) +
m

2
(modm)

≡ a+ b+ c+
m

2
+
m

2
(modm)

≡ a+ b+ c(modm)

≡ a+ (b⊕ c)(modm)

≡ a⊕ (b⊕ c)(modm).

By Lemma 2.2, a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b](c).
(ii). c ∈ EP . Thus b⊕ c ∈ OH and gyr[a, b](c) = c. The proof of

this case is similar to 1(a).
(iii). c ∈ OH . Thus b⊕ c ∈ EP and gyr[a, b](c) ∈ OH . The proof

of this case is similar to 3(b)(i).
(iv). c ∈ EH . Thus b⊕ c ∈ OP and gyr[a, b](c) = c. The proof of

this case is similar to 1(a).
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If b ∈ EH , then a⊕ b ∈ OH . So we have the following cases:

(v). c ∈ OP . Thus b⊕ c ∈ OH and gyr[a, b](c) ∈ OP . The proof
of this case is similar to 2(b)(i).

(vi). c ∈ EP .Thus b ⊕ c ∈ EH and gyr[a, b](c) = c. The proof of
this case is similar to 1(a).

(vii). c ∈ OH . Thus b⊕ c ∈ OP and gyr[a, b](c) ∈ OH . The proof
of this case is similar to 2(b)(i).

(viii). c ∈ EH . Thus b⊕ c ∈ EP and gyr[a, b](c) = c. and the proof
of this case is similar to 1(a).

4. (a, b) ∈ H(n)× P (n). By Notation 2.4, clearly

gyr[a, b] =

{
A : b ∈ OP ,

I : b 6∈ OP .

We consider two subcases:

(a). b 6∈ OP . In this case gyr[a, b] = I. If a ∈ OH , then a ⊕ b ∈ OH .
So we have the following subcases:

(i). c ∈ P (n). Thus b ⊕ c ∈ P (n) and the proof of this case is
similar to 1(a).

(ii). c ∈ H(n). So b ⊕ c ∈ H(n) and the proof of this case is
similar to 1(a).

If a ∈ EH , then a⊕ b ∈ EH . So we have the following cases:

(iii). c ∈ OP . Thus b⊕ c ∈ OP and by the definition of ⊕ we have

(a⊕ b)⊕ gyr[a, b](c) = (a⊕ b)⊕ c

≡ (a⊕ b) + c+
m

2
(modm)

≡ a+ b+ c+
m

2
(modm)

≡ a+ (b⊕ c) + m

2
(modm)

≡ a⊕ (b⊕ c)(modm).

By Lemma 2.2, a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b](c).
(iv). c ∈ EP .Thus b⊕ c ∈ EP and the proof of this case is similar

to 1(a).
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(v). c ∈ OH . Thus b⊕c ∈ OH and the proof of this case is similar
to 4(a)(iii).

(vi). c ∈ EH . Thus b⊕c ∈ EH and the proof of this case is similar
to 1(a).

(b). b ∈ OP . In this case gyr[a, b] = A. If a ∈ OH , then a⊕ b ∈ EH .
So we have the following cases:

(i). c ∈ OP . Thus b ⊕ c ∈ EP and gyr[a, b](c) ∈ OP . The proof
of this case is similar to 3(b)(i).

(ii). c ∈ EP . Thus b⊕ c ∈ OP and gyr[a, b](c) = c. The proof of
this case is similar to 1(a).

(iii). c ∈ OH . Thus b⊕ c ∈ EH and gyr[a, b](c) ∈ OH . The proof
of this case is similar to 3(b)(i).

(iv). c ∈ EH . Thus b⊕ c ∈ OH and gyr[a, b](c) = c. The proof of
this case is similar to 1(a).

If a ∈ EH , then a⊕ b ∈ OH . So we have the following cases:

(v). c ∈ OP . Thus b ⊕ c ∈ EP and gyr[a, b](c) ∈ OP . The proof
of this case is similar to 2(b)(v).

(vi). c ∈ EP . Thus b⊕ c ∈ OP and gyr[a, b](c) = c. The proof of
this case is similar to 2(b)(vii).

(vii). c ∈ OH . Thus b⊕ c ∈ EH and gyr[a, b](c) ∈ OH . The proof
of this case is similar to 2(b)(v).

(viii). c ∈ EH . Thus b⊕c ∈ OH and gyr[a, b](c) = c. and the proof
of this case is similar to 2(b)(vi).

By the above mentions, (G2(n),⊕) is a gyrogroup and this completes the
proof.

Mahdavi et al. in [8, Theorem 2] proved that the gyrogroup G1(n) is
non-gyrocommutative. In contrast, in the following theorem we show that
the gyrogroup G2(n) is gyrocommutative. Consequently, the gyrogroups
G1(n) and G2(n) are not isomorphic.

Theorem 3.2. The gyrogroup (G2(n),⊕) is gyrocommutative.

Proof. Suppose (a, b) is an arbitrary member of G2(n)×G2(n). We consider
two cases:
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1. (a, b) 6∈M . In this case gyr[a, b]=I. By the definition of ⊕,

gyr[a, b](b⊕ a) = b⊕ a ≡ a+ b ≡ a⊕ b(modm).

By Lemma 2.2, gyr[a, b](b⊕ a) = a⊕ b.

2. (a, b) ∈ M . In this case gyr[a, b] = A. If b ⊕ a is an even number,
then (a, b) ∈ S ∪S−1 in which S = OP ×OH . By Lemma 2.3 and the
definition of ⊕ we have

gyr[a, b](b⊕ a) = b⊕ a ≡ a+ b ≡ a⊕ b(modm).

By Lemma 2.2, gyr[a, b](b⊕ a) = a⊕b. If b⊕a is an odd number, then
(a, b) ∈ T ∪ T−1 in which T = EH × (OP ∪ OH). Now, we consider
two subcases:

(i). (a, b) ∈T. So (b, a)∈T−1. Thus, by Lemma 2.3 and the definition
of ⊕,

gyr[a, b](b⊕ a) ≡ b⊕ a+ m

2
≡ a+ b+

m

2
≡ a⊕ b(modm).

By Lemma 2.2, gyr[a, b](b⊕ a) = a⊕ b.
(ii). (a, b)∈T−1. So (b, a)∈T. Thus, by Lemma 2.3 and the definition

of ⊕,

gyr[a, b](b⊕ a) ≡ b⊕a+m
2
≡ a+b+m

2
+
m

2
≡ a+b ≡ a⊕b(modm).

By Lemma 2.2, gyr[a, b](b⊕ a) = a⊕ b.

This completes the proof of gyrocommutativity.

Example 3.3. We investigate the gyrogroup G2(3) of order 8 constructed
by the cyclic group Z8. By definition, G2(3) = {0, 1, 2, 3, 4, 5, 6, 7} and the
binary operation ⊕ is defined as follows:

i⊕ j =



t : (i, j) ∈ (P (3)× P (3)) ∪
[
(H(3)×H(3))− (EH ×OH)

]
,

t+ 4 : (i, j) ∈ (P (3)×H(3)) ∪
[
(H(3)× P (3))− (EH ×OP )

]
,

s : (i, j) ∈ EH ×OH ,

s+ 4 : (i, j) ∈ EH ×OP
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in which P (3) = {0, 1, 2, 3}, H(3) = {4, 5, 6, 7} and t, s ∈ P (3). Also{
t ≡ i+ j(mod 4),

s ≡ i+ j + 2(mod 4).

The resulting addition table and the gyration table for G2(3) are presented
in Table 1 in which A is the unique non-identity gyroautomorphism of G2(3)
given by A = (1, 3)(5, 7).

Table 1:

(a) The Cayley table of G2(3)

⊕ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 2 3 0 5 6 7 4
2 2 3 0 1 6 7 4 5
3 3 0 1 2 7 4 5 6
4 4 7 6 5 0 3 2 1
5 5 6 7 4 1 2 3 0
6 6 5 4 7 2 1 0 3
7 7 4 5 6 3 0 1 2

(b) The gyration table of G2(3)

gyr 0 1 2 3 4 5 6 7

0 I I I I I I I I
1 I I I I A A A A
2 I I I I I I I I
3 I I I I A A A A
4 I A I A I A I A
5 I A I A A I A I
6 I A I A I A I A
7 I A I A A I A I

Example 3.4. In this example, we investigate the gyrogroup G2(4) of order
16 constructed by the cyclic group Z16. By definition,

G2(4) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

and the binary operation ⊕ is defined by

i⊕ j =



t : (i, j) ∈ (P (4)× P (4)) ∪
[
(H(4)×H(4))− (EH ×OH)

]
,

t+ 8 : (i, j) ∈ (P (4)×H(4)) ∪
[
(H(4)× P (4))− (EH ×OP )

]
,

s : (i, j) ∈ EH ×OH ,

s+ 8 : (i, j) ∈ EH ×OP ,

where P (4) = {0, 1, 2, 3, 4, 5, 6, 7}, H(4) = {8, 9, 10, 11, 12, 13, 14, 15} and
t, s ∈ P (4). Also {

t ≡ i+ j(mod 8),

s ≡ i+ j + 4(mod 8).
.
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The resulting addition table and the gyration table for G2(4) are presented
in Tables 2 and 3, respectively, in which A is the unique non-identity gy-
roautomorphism of G2(4) given by A = (1, 5)(3, 7)(9, 13)(11, 15).

Table 2: The Cayley table of G2(4)

⊕ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 4 5 6 7 0 9 10 11 12 13 14 15 8
2 2 3 4 5 6 7 0 1 10 11 12 13 14 15 8 9
3 3 4 5 6 7 0 1 2 11 12 13 14 15 8 9 10
4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 5 6 7 0 1 2 3 4 13 14 15 8 9 10 11 12
6 6 7 0 1 2 3 4 5 14 15 8 9 10 11 12 13
7 7 0 1 2 3 4 5 6 15 8 9 10 11 12 13 14
8 8 13 10 15 12 9 14 11 0 5 2 7 4 1 6 3
9 9 10 11 12 13 14 15 8 1 2 3 4 5 6 7 0
10 10 15 12 9 14 11 8 13 2 7 4 1 6 3 0 5
11 11 12 13 14 15 8 9 10 3 4 5 6 7 0 1 2
12 12 9 14 11 8 13 10 15 4 1 6 3 0 5 2 7
13 13 14 15 8 9 10 11 12 5 6 7 0 1 2 3 4
14 14 11 8 13 10 15 12 9 6 3 0 5 2 7 4 1
15 15 8 9 10 11 12 13 14 7 0 1 2 3 4 5 6

Table 3: The gyration table of G2(4)

gyr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 I I I I I I I I I I I I I I I I
1 I I I I I I I I A A A A A A A A
2 I I I I I I I I I I I I I I I I
3 I I I I I I I I A A A A A A A A
4 I I I I I I I I I I I I I I I I
5 I I I I I I I I A A A A A A A A
6 I I I I I I I I I I I I I I I I
7 I I I I I I I I A A A A A A A A
8 I A I A I A I A I A I A I A I A
9 I A I A I A I A A I A I A I A I
10 I A I A I A I A I A I A I A I A
11 I A I A I A I A A I A I A I A I
12 I A I A I A I A I A I A I A I A
13 I A I A I A I A A I A I A I A I
14 I A I A I A I A I A I A I A I A
15 I A I A I A I A A I A I A I A I

Remark 3.5. By using the identity, gyr[a, b]c=	(a ⊕ b) ⊕ (a ⊕ (b ⊕ c)),
one can simply calculate the group of all gyroautomorphisms of G2(n) con-
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taining Z2. The group of gyroautomorphisms of G2(4) is isomorphic to Z2,
by which we calculated the gyrosemidirect product of this gyrogroup with
the following structure, Z2 × (Z8 o Z2).

In the next theorem, we will see that all proper subgyrogroups of G2(n)
have trivial gyroautomorphisms and, hence, they are subgroups.

Theorem 3.6. Let G2(n) be the 2-gyrogroup, by the means of the definition
of p−gyrogroups in [7], of order 2n. H is subgyrogroup of G2(n) if and only
if it has one of the following forms:

1. H = 〈2s〉 is a subgroup of P (n) such that 0 6 s 6 n− 1.

2. H = 〈2s,m〉 such that 0 6 s 6 n − 1 and m = 2n−1. All H’s are
subgroups of G2(n) except H = 〈1,m〉 = G2(n)

3. H = 〈m + 2s〉 is a subgroup of G2(n) such that 0 6 s 6 n − 2 and
m = 2n−1.

Proof. We know thatG = P (n)∪H(n) such that P (n)∩H(n) = ∅. Since the
restriction of ⊕ to P (n) is the group addition, P (n) ∼= Zm where m = 2n−1.
Suppose H is a subgyrogroup of G(n). If H ⊆ P (n), then H will be a
subgroup of P (n) and H = 〈2s〉 such that 0 6 s 6 n− 1, as desired. But if
H * P (n), then H = H1 ∪H2 in which H1 ⊆ P (n) and H2 ⊆ H(n). It is
easy to see that H1 is a subgroup of P (n). We consider two cases as follows:

1. m ∈ H2. In this case, the map Lm : H1 → H2 defined by Lm(x) = m⊕
x is bijective. Therefore, H2 = m⊕H1. Since H1 6 P (n) ∼= Zm, H =
H1∪H2 = H1∪(m⊕H1) = 〈2s,m〉 such that 0 6 s 6 n−1. For s = 0
and s = n−1, 〈1,m〉 = G(n) and 〈0,m〉 = 〈m〉, respectively. If s 6= 0,
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then by the definition of the gyroautomorphisms of G2(n), all the
gyroautomorphisms of H are the identity automorphism. Therefore,
H’s are subgroups of G2(n) and H ∼= 〈2s〉 × 〈m〉.

2. m 6∈ H2. There exists an integer i ∈ Zm such that i 6= 0 and i is the
smallest number in which m+ i ∈ H2. Also, the map Lm+i : H1 → H2

defined by Lm+i(x) = (m+ i)⊕ x is bijective. Therefore H2 = (m+
i)⊕H1. By the definition of ⊕, (m+ i)⊕ (m+ i) = 2i ∈ H1. Since i is
the smallest number that has been chosen and H1 6 P (n) ∼= Zm, then
H1 = 〈2i〉 and H = H1 ∪H2 = H1 ∪

(
(m+ i)⊕H1

)
= 〈2i,m+ i〉 =

〈m+ i〉 such that i = 2s and 0 6 s 6 n− 2.

Clearly, 〈2s〉 6 〈2s,m〉, 〈m + 2s〉 6 〈2s,m〉 and 〈m〉 6 〈2n−2,m〉 6
〈2n−3,m〉 6 · · · 6 〈2,m〉 6 〈1,m〉.

Remark 3.7. As one can see from Figure 3 all proper subgyrogroups of
G2(n) are included in subgyrogroups of G2(n+ 1).
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