https://doi.org/10.56415/qrs.v33.02

On the simple Suzuki groups Sz(8)by the average orders

Behnam Ebrahimzadeh

Abstract. We prove that simple suzuki group Sz(8), can be uniquely determined by its average order.

1. Introduction

Throughout this paper G is a finite group, $\pi(G)$ be the set of prime divisors of order of G and $\pi_e(G)$ be the set of elements order in G. Next, the sum of element orders in a group G denoted by $\psi(G) = \sum_{g \in G} o(g)$ where o(g) denotes the order of $g \in G$ and also we define average order of G as $o(G) = \frac{\psi(G)}{|G|}$. In the way, the function $\psi(G)$ was introduced by Amiri, Jafarian and Isaacs [2]. They proved that if G is a non-cyclic group of order n, then $\psi(G) < \psi(Z_n)$. In fact Z_n is characterized by $\psi(Z_n)$ and $|Z_n|$. In this paper we goal discuss about average order of group. We show that the group G is characterized by o(G), when ever there exist the group H, so that if o(G) = o(H), then $G \cong H$. In the way, for example the authors in [1, 3, 5, 6, 8, 12, 15] proved that PSL(2; 5) and PSL(2; 7) are uniquely determined by their orders and the sum of the element orders. But only some of groups is characterized by average order. For example, in [17] and [21] is proved the alternating group A_5 and the symmetric group S_4 can be determined by average order.

In this paper, we prove that the simple Suzuki group Sz(8), can be uniquely determined by its average order. Namely, we prove

Main Theorem. Let SZ(8) be the simple Suzuki group and G be a droup such that o(G) = o(Sz(8)). Then $G \cong Sz(8)$.

²⁰¹⁰ Mathematics Subject Classification: 20D06, 20D60.

Keywords: element order, sum of elements order, average order.

Notation and preliminaries

Let $m_i(G)$ be the number of elements of order *i* and $\pi_e(G)$ denotes the set of element orders of G. We define $\psi(G) = \sum_{i \in \pi_e(G)} im_i(G)$ and |G| = $\sum_{i \in \pi_e(G)} m_i(G)$ and $o(G) = \frac{\psi(G)}{|G|}$

Lemma 2.1. [9] Let G be a Frobenius group of even order with kernel Kand complement H. Then

- 1. t(G) = 2, $\pi(H)$ and $\pi(K)$ are vertex sets of the connected components of $\Gamma(G)$;
- 2. |H| divides |K| 1;
- 3. K is nilpotent.

Definition 2.2. A group G is called a 2-Frobenius group if there is a normal series $1 \triangleleft H \triangleleft K \triangleleft G$ such that G/H and K are Frobenius groups with kernels K/H and H respectively.

Lemma 2.3. [4] Let G be a 2-Frobenius group of even order. Then 1. $t(G) = 2, \pi(H) \cup \pi(G/K) = \pi_1 \text{ and } \pi(K/H) = \pi_2;$

2. G/K and K/H are cyclic groups satisfying |G/K| divides |Aut(K/H)|. In particular, every 2-Frobenius group is soluble group.

Lemma 2.4. [21] Let G be a group and H a non-trivial normal subgroup of G.

- 1. For each $x \in G$ and $h \in H$, $o(xH) \mid o(xh)$,
- 2. $\frac{\psi(H) |H|}{|G|} + o(\frac{G}{H}) \leq o(G)$. In particular o(G/H) < o(G).

Lemma 2.5. [20] Let G be a non-solvable group. Then G has a normal series $1 \leq H \leq K \leq G$ such that K/H is a direct product of isomorphic non-abelian simple groups and |G/K| | |Out(K/H)|

Lemma 2.6. [2] Let $P \in Syl_p(G)$, and assume that $P \leq G$ and that P is cyclic. Then $\psi(G) \leq \psi(P)\psi(G/P)$, with equality if and only if P is central in G.

Lemma 2.7. [11] Let G_1 , G_2 be finite groups, p be a prime number and let a, b be positive integers. Then the following hold:

- 1. $\psi(G_1 \times G_2) = \psi(G_1) \times \psi(G_2)$ if and only if $(|G_1|, |G_2|) = 1$ i.e. ψ is multiplicative; 2. $\psi(p^a) = \frac{p^{2a+1}+1}{p+1}$,
- 3. $\psi(p^a) \mid \psi(p^b)$ if and only if $2a + 1 \mid 2b + 1$,
- 4. $(\psi(p), \psi(p^2)) = (\psi(p), \psi(p^3)) = (\psi(p^2), \psi(p^3)) = 1.$

Theorem 2.8. [17] Let G be a finite group. If $o(G) < \frac{211}{60}$ then G is solvable.

PROOF OF THE MAIN THEOREM

First, assume $|Sz(8)| = 2^6.5.7.13$ and $o(Sz(8)) = \frac{219311}{29120} = o(G) = 7.53$. Now, by Theorem 2.8 *G* is not soluble group. Since $o(G) > \frac{211}{60}$. Therefore *G* is not 2-Frobenius group. Now, we prove *G* is not a Frobenius group. On opposite, assume *G* be a Frobenius group. so t(G) = 2, t(G) = 2, $\pi(H)$ and $\pi(K)$ are vertex sets of the connected components of $\Gamma(G)$. Since 13 is an isolated vertex in $\Gamma(G)$. So case (i) |H| = 13 and $|K| = \frac{|G|}{13}$ and case (ii) |K| = 13 and $|H| = \frac{|G|}{13}$. We can see easily case(ii) not be accurs. Hence, we consider case (i). Since that |H| divided |K| - 1 so $13|\frac{29120}{13} - 1$, where this is impossible. Hence *G* is not a Frobenius group. Now, by Lemma 2.5 and Lemma 2.4 then o(G/H) < o(G). On the other hand, we know, suzuki group Sz(q) is only group where 3 not divided order of it. So $G/H \cong Sz(q')$, where $q' = 2^{2m+1}$ and o(G/H) < 7.53 in special case q' = 8. In other words, $G/H \cong Sz(8)$, on the other hand *G* has a normal series $1 \leq H \leq K \leq G$ as H = 1, so $G \cong Sz(8)$, the proof be completed.

References

- H. Amiri and S.M.J. Amiri, Sum of element orders of maximal subgroups of the symmetric group, Comm. Algebra, 40 (2012), 770 – 778.
- [2] H. Amiri, S.M. Jafarian Amiri and I.M. Isaacs, Sums of element orders in finite groups, Comm. Algebra, 37 (2009), 2978 – 2980.
- [3] M. Baniasad Azad, B. Khosravi, On the sum of element orders of PSL(2; p) for some p, Italian J. Pure Appl. Math., 42 (2019), 18 – 24.
- G.Y. Chen, On the structure of Frobenius groups and 2-Frobenius groups, Southwest China Normal Univ., 20 (1995), 485 - 487.
- [5] S.M. Jafarian Amiri, Characterization of A_5 and PSL(2;7) by sum of element orders, Int. J. Group Theory, 2 (2013), 35 39.
- [6] M. Jahania, Y. Marefat, H. Refaghat and B.V. Fasaghandisi, A nilpotency criterion for finite groups by the sum of element orders, Int. J. Nonlinear Anal. Appl, 14 (2023), 2931 – 2937.
- [7] G. Frobenius, Verallgemeinerung des sylowschen satze, Berliner sitz, (1895), 981 – 983.

- [8] M. Gholami, Y. Marefat, H. Doostie and H. Refaghat, Remarks on the sum of element orders of non-group semigroups, J. Algebra and Related Topics, 10 (2022), no.2, 113 – 129.
- [9] D. Gorenstein, *Finite groups*, Harper and Row, New York, (1980).
- [10] J.B. Li, Finite groups with special conjugacy class sizes or generalized permutable subgroups, (Chongqing: Southwest Univ., (2012).
- M.S. Lazorec, A graph related to the sum of element orders of a finite group, Math.GR, (2022), 1 – 19.
- [12] Y. Marefat, A. Iranmanesh and A. Tehranian, On the sum of element orders of finite simple groups, J. Algebra Appl., 12 (2013), no.7, Article ID 1350026.
- [13] V. D. Mazurov, E.I. Khukhro, Unsolved problems in group theory, The Kourovka Notebook, 16 ed. Inst. Mat. Sibirsk. Otdel. Akad. Novosibirsk 2006.
- [14] J. Moori, B.G. Rodrigues, A. Saedi and S. Zandi, Designs from maximal subgroups and conjugacy classes of ree groups, Adv. Math. Commun., 14 (2020), 603 - 611.
- [15] H. Rashidi, M. Etezadi, Characterization of $Alt(5) \times Z_p$, where $p \in \{17, 23\}$, by their product element orders, Algebraic Structures Appl., 10 (2023), no.2, 99 105.
- [16] G.R. Rezaeezadeh, M.R. Darafsheh, M. Bibak and M. Sajjadi, *OD*-characterization of almost simple groups related to $D_4(4)$, Iran. J. Math. Sci. Inform, **10** (2015), no.1, 23 43.
- [17] M. Tarnauceanu, A characterization of A_5 by its average order, Int. J. Group Theory, 14 (2025), no.3, 117 123.
- [18] G.E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral. Math. Soc., 3 (1963), 1 – 62.
- [19] J.S. Williams, Prime graph components of finite groups, J. Algebra, 69(1961), no.2,487 - 513.
- [20] H. Xu, G. Chen and Y. Yan, A new characterization of simple K₃-groups by their orders and large degrees of their irreducible characters, Comm. Algebra, 42 (2014), 5374 – 5380.
- [21] A. Zarezadeh, B.Khosravi, Z. Akhlaghi, Characterizing some finite groups by the average order, Math. GR, (2023), 1-9.

Received February 25, 2025 Department of Mathematics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran Email: behnam.ebrahimzadeh@gmail.com