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Gyrotransversals of order p2

Ratan Lal, Ramjash Gurjar and Vipul Kakkar

Abstract. The isomorphism classes of gyrotransversals of order p2 is calculated in the
group Zp n Zp2 corresponding to a fixed subgroup of order p, where p is an odd prime.
As a consequence, a lower bound for the non-isomorphic right gyrogroups of order p2

is obtained. Also, we obtain a lower bound for the non-isomorphic right gyrogroups of
order p2 of nilpotency class 2.

1. Introduction

Let H be a fixed subgroup of a group G and S be a right transversal to H
in G with e ∈ S, where e is the identity of the group G. Then the set S
together with the induced binary operation ◦ defined by {x ◦ y} = S ∩Hxy
becomes a right loop with identity e (see [10]). Also, S is a right transversal
in the group 〈S〉 to the subgroup 〈S〉 ∩ H of 〈S〉 (see [4]). Identifying S
with the set of all right cosets of H in G, we get a group homomorphism
λ : G −→ Sym(S) defined by {λ(g)(x)} = S ∩ Hxg for all g ∈ G and
x ∈ S. The kernel of λ is CoreG(H), the core of H in G. The group
GS = λ(〈S〉 ∩H) is called the group torsion of S (see [4, Definition 3.1]).
Identifying S with λ(S), we get λ(〈S〉) = GSS. Note that, the group GSS
depends only on S and not on H. Also, S is a right transversal to the
subgroup GS in the group GSS (see [4]). Moreover, S is a group if and only
if GS is trivial.

Gyrogroups are special loops which are the generalization of the groups.
Most of the properties of groups are shared with gyrogroups. The first ex-
ample of gyrogroup structure is given by Ungar [13] which is the relativistic
gyrogroup (R3

1,
⊕

) consisting of the unit ball R3
1 in the Euclidean 3-space

R3 with Einstein’s addition. In [1], [13] and [14] Ungar and Foguel described
the properties of gyrogroups and introduced the gyrotransversals in a group
to a subgroup of it (see [1, Definition 2.9]).

2010 Mathematics Subject Classification: 20N05
Keywords: Gyrotransversal, right gyrogroup, Cauchy-Frobenius Formula, right loop.
The second author is supported by the Senior Research Fellowship of UGC, India.



58 R. Lal, R. Gurjar and V. Kakkar

In [8], Lal and Yadav studied the right gyrogroups, gyrotransversals and
their deformations. They proved that right gyrogroups and gyrotransversals
are same in some sense (see [1, Theorem 2.12]). In this paper, we have
used the Cauchy-Frobenius Formula to find the number of gyrotransversals
upto isomorphism in the group G = Zp n Zp2 to a fixed subgroup H of
order p, where p is an odd prime. For this, we take the natural action of
AutH(G) on the set of all the gyrotransversals to the subgroup H in G,
where AutH(G) = {θ ∈ Aut(G) | θ(H) = H}.

Let S and T be two right transversals to the subgroup H in G such that
〈S〉 = G = 〈T 〉 and S ' T . Then by the Proposition [7, Proposition 2.7],
there exists θ ∈ AutH(G) such that θ(S) = T . Also, AutH(G) acts transi-
tively on the set of all right transversals isomorphic to the right transversal
S. Since |H| = p, if S is a right transversal to H in G, then either S is
a subgroup of G or 〈S〉 = G. Therefore, the number of orbits under the
action of AutH(G) is equal to the number of isomorphism classes of right
loops. This gives us a lower bound for the number of gyrotransversals of
order p2 upto isomorphism in the group G. Lal and Yadav [8] have shown
that S is a right gyrogroup precisely when S is a gyrotransversal to GS
in the group GSS. Thus, we get a lower bound for non-isomorphic right
gyrogroups of order p2. In [11], it is proved that any gyrogroup of order p2

is a group. But a right gyrogroup of order p2 may not be a group. In this
paper, we have found the lower bound of non-isomorphic right gyrogroups
of order p2. Also, a lower bound for the non-isomorphic right gyrogroups
of nilpotency class 2 is obtained.

Throughout the paper, Zn denotes the cyclic group of order n and U(n)
denotes the group of units of (mod n). d(n) denotes the set of non-trivial
divisors of n, that is, not including 1 and o(a) denotes the order of an
element a in a group. φ(n) denotes the Euler phi function for any positive
integer n.

2. Preliminaries

In this section, we give the preliminaries that we will use throughout the
paper.

Definition 2.1. [1, Definition 2.3] Let (S, ◦) be a groupoid with a right
identity e and a right inverse a′ for each element a ∈ S such that a ◦ a′ = e.
Then (S, ◦) is called a right gyrogroup if,
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(i) for any x, y, z ∈ S, there exists a unique element f(y, z)(x) ∈ S such
that

(x ◦ y) ◦ z = f(y, z)(x) ◦ (y ◦ z),

(ii) the map f(y, z) : S −→ S given by x 7→ f(y, z)(x) is an automorphism
of (S, ◦),

(iii) for all y ∈ S,
f(y, y′) = IS .

By [8, Corollary 5.7], (S, ◦) is a right loop with identity e and a′ is also
the left inverse for each a ∈ S.

Definition 2.2. [1, Definition 2.9] A right transversal S in a group G to a
subgroup H is called a gyrotransversal if
(i) e ∈ S, where e is the identity of the group G,
(ii) x−1 ∈ S, for all x ∈ S,
(iii) h−1xh ∈ S, for all x ∈ S, h ∈ H.

Theorem 2.3. [Representation Theorem for Right Gyrogroups] [1, p. 33]
A right loop (S, ◦) is a right gyrogroup if and only if it is a gyrotransversal
to GS in its group extension GSS.

Proposition 2.4. [8, Lemma 5.11] Let S be a gyrotransversal to a subgroup
H in a group G and g : S −→ H be a map such that g(e) = e. Then the
transversal Sg = {g(x)x | x ∈ S} is a gyrotransversal if and only if

g(x−1) = g(x)−1

and
g(h−1xh) = h−1g(x)h,

for all x ∈ S and h ∈ H.

The map g : S −→ H such that g(e) = e and satisfying the conditions
in the Proposition 2.4 is defined as the deformation map and the gyro-
transversal Sg is called the deformed gyrotransversal corresponding to the
fixed gyrotransversal S to the subgroup H in a group G. The map g induces
a binary operation ◦g on S defined as, x ◦g y = xg(y) ◦ y for all x, y ∈ S
such that (Sg, ◦) ' (S, ◦g).

Two right transversals are said to be isomorphic if their induced right
loop structures are isomorphic. If S is a gyrotransversal to H in G and T
is isomorphic transversal, then T is also gyrotransversal to H in G.
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Theorem 2.5. [Cauchy-Frobenius Formula] [10, Theorem 3.1.2]
Let a group P acts on a set Y . Then the number of orbits of P on Y is
equal to the average number of points left fixed by the elements of G, that
is,

number of orbits =
1

|P |
∑
p∈P

Fix(p),

where Fix(p) = {y ∈ Y | p · y = y}.

3. Gyrotransversals in the Group Zp n Zp2

Let G = H nK be a group, where H is abelian and K be any group. Let
S be a gyrotransversal to the subgroup H in the group G and g : S −→ H
be a deformation map. Then for all s ∈ S and h ∈ H, we have

g(h−1sh) = h−1g(s)h = g(s). (1)

Let H acts on the set S \ {1} by the action defined as (h, s) 7→ h−1sh.
Then for any s ∈ S \ {1}, the orbit of s is given as s = {h−1sh | h ∈ H}.
Using the Equation (1), one can easily observe that it is sufficient to find the
images of the representatives of the H-orbits on S\{1}. Let {s1, s2, · · · , sn}
be the set of representatives of the H-orbits on S \ {1}. Note that, for all
h, hj ∈ H, h−1(hjsi)h = hj(h

−1sih) = hjsi. Thus, h−1sh ∈ S, for all h ∈ H
and s ∈ S holds trivially. Therefore, we only have to check the condition
that S−1 = S for S to be a gyrotransversal to H in G. Now, we calculate
the total number of gyrotransversals to the subgroup H in the group G.

Theorem 3.1. Let G = H nK be a group, where H is abelian and K be
any group. Then, the total number of gyrotransversals to the subgroup H in
the group G is

=

{
|H|

n
2 , if n is even

|H|
n+1
2 , if n is odd

,

where n is the number of H-orbits on S \ {1}.

Proof. Note that, any right coset of H in G is of the form Hk, where k ∈ K.
Thus using the discussion above the Theorem 3.1, a right transversal S of
H in G satisfying the condition h−1Sh ⊆ S is given by

S =

n⋃
i=1

{1} ∪ hjisi,
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where hji ∈ H and 1 6 i 6 n. Note that, if hjsi ∈ S, then (hjsi)
−1 =

s−1i h−1j = h−1j (hjs
−1
i h−1j ) ∈ h−1j s−1i . Therefore, S−1 = S if and only if

h−1j s−1i ⊆ S whenever hjsi ⊆ S. Thus, if n is even, then we have to choose
only half of the orbits, that is n2 orbits and if n is odd, then we have to choose
n−1
2 + 1 = n+1

2 orbits. Thus, if S is a gyrotransversal to the subgroup H in
the group G, then

S =
N⋃
i=1

{1} ∪ hjisi ∪ h−1ji s
−1
i ,

where N = n
2 or n+1

2 accordingly as n is even or odd respectively.
Therefore, the total number of gyrotransversals to the subgroup H in

the group G is equal to all the possible choices of the sets hjisi, for all
hji ∈ H and 1 6 i 6 N . Hence, the total number of gyrotransversals are

=

N∑
r=0

NCr × (|H| − 1)r

=(1 + (|H| − 1))N

=|H|N .

Now, let G denotes the group Zp n Zp2 with the presentation

G = 〈a, b | ap2 = 1 = bp, bab−1 = a1+p〉, (2)

where p is an odd prime. From now onwards, G will denote the group as
represented in the Equation (2) and H will denote the subgroup 〈b〉 of G.
Then one can easily observe that if S is a gyrotransversal to H in G which
is not a group, then H ' GS and G ' GSS.

Lemma 3.2. (bjai)n = bnjani−
n(n−1)

2
pij, for all n, 0 6 j 6 p − 1 and

0 6 i 6 p2 − 1.

Theorem 3.3. The total number of gyrotransversals to the subgroup H in
the group G is equal to pp−1.

Proof. Note that, Hai (0 6 i 6 p2 − 1) are all the right cosets of H in G.
Thus, a right transversal of H in G is given by

S =

p−1⋃
i=1

({1} ∪ bjiai ∪ {bj′iapi}), (3)



62 R. Lal, R. Gurjar and V. Kakkar

where 0 6 ji, j
′
i 6 p− 1.

Now, for all 0 6 j, k 6 p − 1 and 1 6 i 6 p − 1, bj(bkai)b−j =
bk(bjaib−j) = bkai(1+p)

j
= bkai+pij = bkai+pl, where l ≡ ij (mod p). Then,

under the action (h, s) 7→ h−1sh of H on the set S \ {1}, the orbit of an
element bkai is given as

bkai = {bkai+pl | 0 6 l 6 p− 1}.

Thus, if S is a gyrotransversal to H in G, then

S =

p−1
2⋃
i=1

({1} ∪ bjiai ∪ b−jia−i ∪ {bj′iapi} ∪ {b−j′ia−pi}). (4)

So, the set of representatives of orbits is

{a, a2, a3, · · · , ap−1} ∪ {ap, a2p, · · · , ap(p−1)}.

Thus total number of orbits is equal to n = 2(p − 1) and so, N = p − 1.
Hence, using the Theorem 3.1, the total number of gyrotransversals are
pp−1.

Now, we calculate the isomorphism classes of gyrotransversals to the
subgroup H in the group G. We will use the Cauchy-Frobenius Formula
to find the isomorphism classes of gyrotransversals. Let X denotes the
collection of all the gyrotransversals to the subgroup H in the group G. As
given in [6], any automorphism θ ∈ AutH(G) is given by

θ(a) = bjai and θ(b) = b,

where 0 6 j 6 p− 1 and i ∈ Zp2 such that gcd(p, i) = 1. One can easily
observe that the map θ ∈ AutH(G) fixes the elements of H. The restriction
map of the map θ to S will give an isomorphism between S and θ(S). In
this way, AutH(G) acts naturally on the set X of all gyrotransversals. Note
that, the image of any map θ ∈ AutH(G) depends only on the images of
the elements of the subgroup 〈a〉 of G. So, we will only look at the image
of the subgroup 〈a〉 for any θ ∈ AutH(G). Therefore, whenever we take
θ ∈ AutH(G), we will define only θ(a), because θ(b) = b. Now, we find the
set Fix(θ) = {S ∈ X | θ(S) = S}, for all θ ∈ AutH(G).

Lemma 3.4. Let S be a gyrotransversal to the subgroup H in the group G
and θ, θl be two automorphisms in AutH(G) defined by θ(a) = bjak and
θl(a) = bjak+pl, for all 1 6 l 6 p − 1. Then θ(S) = S if and only if
θl(S) = S.
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Proof. Let θ, θl ∈ AutH(G) be defined by θ(a) = bjak and θl(a) = bjak+pl,
for all 1 6 l 6 p − 1. Then using the Lemma 3.2, for all 1 6 i 6 p − 1,

we have, θ(ai) = θ(ai) = (bjak)i = bijaki−
i(i−1)

2
pjk = bijaki and θ(api) =

(bjak)pi = akpi. Also, θl(ai) = θl(ai) = (bjak+pl)i = bija(k+pl)i−
i(i−1)

2
pj(k+pl) =

bijaki and θl(a
pi) = (bjak+pl)pi = akpi. Hence, θ(S) = S if and only if

θl(S) = S.

Lemma 3.5. Let θi ∈ AutH(G) be defined by θi(a) = ai, where i ≡
1 (mod p). Then |Fix(θi)| = |X|, for all i ∈ {1, 1 + p, · · · , 1 + p(p− 1)}.

Proof. Let θi(a) = ai, where i ≡ 1 (mod p). Then for any bjak+pk′ ∈ bjak,
we have θi(bjak+pk

′
) = bjak+pk

′i ∈ bjak, as i ≡ 1 (mod p). Thus, θi(bjak) =

bjak and so, θi(S) = S, for all S ∈ X. Hence, using the Lemma 3.4, we get
Fix(θi) = X, for all i ∈ {1, 1 + p, · · · , 1 + p(p− 1)}.

Lemma 3.6. Let θij ∈ AutH(G) be defined by θij(a) = bjai, where i ≡
1 (mod p), 1 6 j 6 p− 1. Then |Fix(θij)| = 0.

Proof. Let θij(a) = bjai, where i ≡ 1 (mod p), 1 6 j 6 p − 1 and S be a
gyrotransversal to the subgroup H in the group G such that θij(S) = S.
Then for any bkal ∈ bkal ⊆ S, θij(bkal) = bk(bjai)l ∈ bk+jlail = bk+jlal,
as i ≡ 1 (mod p). Thus bkal and bk+jlal both are subsets of S which is
possible only if bjl = 1 which implies p divides jl. Since gcd(j, p) = 1,
l = 0, which is a contradiction. Therefore, in this case, Fix(θij) = ∅, for all
i ∈ {1, 1 + p, · · · , 1 + p(p− 1)} and 1 6 j 6 p− 1.

Lemma 3.7. Let θij ∈ AutH(G) be defined by θij(a) = bjai, where i 6≡
1 (mod p), 0 6 j 6 p− 1 and order of i (mod p) is m. Then

|Fix(θij)| = Γm =

{
1, if m is even
p2α, if m is odd ,

where α = p−1
2 gcd( p−1

2
,m)

.

Proof. Let θij(a) = bjai, where i 6≡ 1 (mod p), 0 6 j 6 p − 1 and the
order of i (mod p) be m. Let S be a gyrotransversal to H in G such that
θij(S) = S. Using the Equation (4), elements of the set S are either of the
form bkapl or the elements in the sets bkal, where 1 6 l 6 p−1 and 0 6 k 6
p− 1. Now, we find the images of these elements under the map θij . Then,
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θij(b
kapl) = bkaipl and θij(bkaipl) = bkai

2pl and so on. Similarly, if bkal ⊆ S,
then θij(bkal) = bk+jlail ⊆ S. Again, θij(bk+jlail) = bk+jl+ijlai2l ⊆ S and
so on. Thus, we get the sets

T(k,l) = bkal ∪
m−1⋃
r=1

bk+jl(1+i+···+i
r−1)airl ⊆ S (5)

and
T ′(k,l) = {bkapl, bkaipl, bkai2pl, · · · , bkaim−1pl} ⊆ S

such that S is the union of all such sets T(k,l) and T ′(k,l), θij(T(k,l)) = T(k,l)
and θij(T

′
(k,l)) = T ′(k,l). Now, we find all such sets T(k,l) and T ′(k,l). Then

all the possible combinations of these sets will give all the gyrotransversals
that are fixed by the map θij . For this, we consider two cases, first, when
m is even and second, when m is odd.

Case(i). Let m be even. Then note that, i
m
2 ≡ −1 (mod p) and

m
2 + u ≡ −(m2 − u) (mod m), for all u. Now, bk+jl(1+i+···+i

m
2 −1)ai

m
2 l =

bk+jl(1+i+···+i
m
2 −1)a−l and (bkal)−1 = b−ka−l. Therefore, using S−1 = S,

we have

k + jl(1 + i+ i2 + · · ·+ i
m
2
−1) ≡ −k (mod p)

=⇒ 2k + jl

(
i
m
2 − 1

i− 1

)
≡ 0 (mod p)

=⇒ 2k + jl

(
−2

i− 1

)
≡ 0 (mod p)

=⇒ k(i− 1) ≡ jl (mod p).

Since for given l and j, k is unique that satisfies the above congruence
relation, there is only one set T(k,l) such that θij(T(k,l)) = T(k,l) and the
number of such sets T(k,l) is equal to α = p−1

2 gcd( p−1
2
,m)

. By the similar

argument, we get θij(T ′(k,l)) = T ′(k,l) if and only if k = 0 and the total
number of such sets T ′(k,l) is equal to α = p−1

2 gcd( p−1
2
,m)

. Since k is unique, in

this case, Fix(θij) = {S}.
Case(ii). Let m be odd. Note that, if bk′al′ and b−k′a−l′ both lies in the

set T(k,l), then using θij(T(k,l)) = T(k,l), we get |T(k,l)| = m = even, which
is a contradiction. Therefore, only one of bk′al′ or b−k′a−l′ lies in the set
T(k,l). Thus, we only have to focus on half of such sets T(k,l), that is p−1

2
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sets, as other p−1
2 sets are the inverses of these sets. Now, the number of

such sets T(k,l) is α = p−1
2 gcd( p−1

2
,m)

. By the similar argument, we have the

number of sets T ′(k,l) is α = p−1
2 gcd( p−1

2
,m)

. Let us denote such sets as T(k,l)r
and T ′(k,l)s , where 1 6 r, s 6 α. Then, such a gyrotransversal S is given by

S =
⋃

16r,s6α

({1} ∪ T(k,l)r ∪ T(k,l)r
−1 ∪ T ′(k,l)s ∪ T

′
(k,l)s

−1
).

Also, there are p choices of k for each set T(k,l)r and T ′(k,l)s . Hence, the
total number of gyrotransversals fixed by the map θij is equal to pα× pα =
p2α.

Theorem 3.8. The number of isomorphism classes of gyrotransversals to
the subgroup H in the group G is equal to

1

p− 1

pp−2 +
∑

m∈d(p−1)

φ(m)Γm

 , (6)

where Γm is defined as in the Lemma 3.7.

Proof. Using the Lemmas 3.4, 3.5, 3.6, 3.7 and the Cauchy - Frobenius
Formula, we have, the number of isomorphism classes of gyrotransversals is
equal to the number of orbits, that is,

=
1

|AutH(G)|
∑

θ∈AutH(G)

Fix(θ)

=
1

p2(p− 1)

p× pp−1 + 0 + p2 ×
∑

16=i∈U(p)
o(i)=m

Γm


=

1

p− 1

pp−2 +
∑

m∈d(p−1)

φ(m)Γm

 .

Corollary 3.9. The lower bound for the number of right gyrogroups of order
p2 is given by the number in (6).

Proof. Using the Theorems 2.3 and 3.8, the result holds.
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Next, we will find the lower bound of non-isomorphic gyrotransversals
such that the corresponding right gyrogroup is of nilpotency class 2. Note
that, the center of the group G, Z(G) = 〈ap〉. Now, we will find the
deformations of the gyrotransversals such that g(Z(G)) = 1, that is, a
gyrotransversal of the form given below,

T = ap ∪
p−1⋃
i=1

bjai.

Theorem 3.10. Let T be any gyrotransversal to the subgroup H in the
group G such that g(Z(G)) = 1. Then T is of nilpotency class 2.

Proof. Note that S = {1, a, a2, · · · , ap2−1} is a gyrotransversal to the sub-
group H in the group G. Let g : S −→ H be a deformation map such that
g(Z(G)) = 1. Then, a corresponding gyrotransversal T is given as,

T = Z(G) ∪

p−1
2⋃
i=1

(bjai ∪ b−ja−i).

Since Z(G) defines a unique maximal central congruence on the group
G, Z(G) also defines a unique maximal central congruence on the right
loop T (see [2, Definition 2.3, p. 5123]). Therefore, Z(G) is the center
of the right loop T and T/Z(G) is a right loop of order p. The map
η : T −→ T/Z(G) is a natural right loop homomorphism defined by
η(x) = Z(G) ◦ x. Now, the map η induces a group homomorphism η :
GTT −→ GT/Z(G)T/Z(G). Then the restriction map η|GT

: GT −→
GT/Z(G) is an onto group homomorphism. Since |GT | = p, |GT/Z(G)| = 1
or p. If |GT/Z(G)| = p, then |GT/Z(G)T/Z(G)| = p2 and so, the group
GT/Z(G)T/Z(G) is an abelian group. Therefore, the core of the group
GT/Z(G) in the group GT/Z(G)T/Z(G) is GT/Z(G) 6= {1}, which is a contra-
diction to the fact that CoreGTT (GT ) is always trivial (see [9, Proposition
1.8, p. 2683]). Thus, |GT/Z(G)| = 1 and so, T/Z(G) is a group of order p.
Hence, we have a central extension

0 Z(G) T T/Z(G) 1i η
.

Since, T/Z(G) is an abelian group, T is a nilpotent right loop of class 2.
Thus, T is a gyrotransversal of nilpotency class 2.
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Now, we find the total number of such gyrotransversals to the subgroup
H in the group G.

Theorem 3.11. The total number of gyrotransversals in the group G to the
subgroup H such that g(Z(G)) = 1 is equal to p

p−1
2 .

Proof. The proof is similar to the proof of the Theorem 3.3.

Theorem 3.12. The number of isomorphism classes of gyrotransversals to
the subgroup H in the group G such that g(Z(G)) = 1 is equal to

1

p− 1

p p−3
2 +

∑
m∈d(p−1)

φ(m)Γ′m

 , (7)

where

Γ′m =

{
1, if m is even
pα, if m is odd

Proof. The proof is similar to the proof of the Theorem 3.8.

Corollary 3.13. The lower bound for the number of right gyrogroups of
order p2 having the nilpotency class 2 is given by the number in (7).

Proof. Using the Theorems 2.3, 3.12 and 3.10, the proof follows immedi-
ately.

3.1 Examples

Example 1. Consider the group G = Z3nZ9 = 〈a, b | a9 = 1 = b3, bab−1 =
a4〉 and the subgroup H = 〈b〉 of order 3. Then there are 33−1 = 9 gyro-
transversals to the subgroup H in the group G listed as follows,

S1 = {1, a, a2, a3, a4, a5, a6, a7, a8},
S2 = {1, a, a2, ba3, a4, a5, b2a6, a7, a8},
S3 = {1, a, a2, b2a3, a4, a5, ba6, a7, a8},
S4 = {1, ba, b2a2, a3, ba4, b2a5, a6, ba7, b2a8},
S5 = {1, ba, b2a2, ba3, ba4, b2a5, b2a6, ba7, b2a8},
S6 = {1, ba, b2a2, b2a3, ba4, b2a5, ba6, ba7, b2a8},
S7 = {1, b2a, ba2, a3, b2a4, ba5, a6, b2a7, ba8},
S8 = {1, b2a, ba2, ba3, b2a4, ba5, b2a6, b2a7, ba8},
S9 = {1, b2a, ba2, b2a3, b2a4, ba5, ba6, b2a7, ba8}.
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Now, any map θ ∈ AutH(G) is given by

θ(a) = bjai and θ(b) = b,

where j = 0, 1, 2 and i ∈ U(9). So, |AutH(G)| = 18. Now, one can easily
check that the maps θi(a) = ai, where i ∈ {1, 4, 7} fixes all the gyrotransver-
sals. Therefore, |Fix(θi)| = 9, for all i ∈ {1, 4, 7}. The maps θl(a) = al,
where l ∈ {2, 5, 8} fixes only one gyrotransversal S1. So, |Fix(θl)| = 1, for
all l ∈ {2, 5, 8}. The maps θij(a) = bjai, where i ∈ {1, 4, 7}, j ∈ {1, 2} do
not fix any gyrotransversal. Therefore, |Fix(θij)| = 0. At last, the maps
θl(a) = bal, where l ∈ {2, 5, 8} fixes only one gyrotransversal S4 and the
maps θl(a) = b2al, where l ∈ {2, 5, 8} fixes only one gyrotransversal S7.
Thus,

∑
θ∈AutH(G)

Fix(θ) = (3× 9) + (3× 1) + 0 + (3× 1) + (3× 1) = 36.

Hence, using the Cauchy - Frobenius Formula, we get, the number of
orbits is equal to 36

18 = 2.
On the other hand, one can easily check that under the map defined as

θ(ai) = (ba)i, θ(b) = b, S1 ' S4 ' S7, S2 ' S5 ' S8 and S3 ' S6 ' S9.
Also, under the map defined as θ(ai) = a2i, θ(b) = b, S2 ' S3. Hence, we
get two classes of isomorphism of gyrotransversals given as {S1, S4, S7} and
{S2, S3, S5, S6, S8, S9}.

Also, the number of gyrotransversals of H in the group G such that
g(Z(G)) = 1 is equal to 3, namely S1, S4 and S7 which are isomorphic to
each other as shown above, where Z(G) = {1, a3, a6}. Hence, the number of
isomorphism classes of gyrotransversals of order 9 having nilpotency class
2 is equal to 1. Also, by the Theorem 3.12, number of orbits is equal to
3+1+2×1

6 = 1.

Example 2. Using the similar process as in the above example, we have
checked that the number of isomorphism classes of gyrotransversals in the
group Zp n Zp2 to the subgroup Zp, for p = 5, 7, 11 and 13, is equal to
32, 2818, 235794818 and 149346704264 respectively. Also, the number of
isomorphism classes of gyrotransversals of order 25, 49, 121 and 169 having
nilpotency class 2 is equal to 2, 11, 1469 and 30970 respectively.
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4.Discussion on the lower bound of gyrotransversals

Let Sym(n) denotes the symmetric group of degree n. In [5], it is observed
that all non-isomorphic groups of order n can be realized as right transver-
sals in Sym(n) to the subgroup Sym(n − 1) of Sym(n). In [9, Theorem
3.7, p. 2693], it is observed that all non-isomorphic right loops(in particular
all non-isomorphic loops) of order n can be realized as right transversals in
Sym(n) to the subgroup Syn(n − 1). But, it is not true for the right gy-
rogroups. In [8, Corollary 5.13, p. 3570] it is observed that there is a unique
gyrotransversal in Sym(n) to the subgroup Sym(n − 1). This prompts us
to pose the following problem.

Problem: Classify the pair (G,H) of group G and its subgroup H with
index [G : H] = n, which contains all non-isomorphic right gyrogroups of
order n as gyrotransversals.

By Theorem 2.3, a right loop (S, ◦) is a right gyrogroup if and only
if it is a gyrotransversal in GSS to the subgroup GS . By [7, Proposition
1.9, p. 647], the core, CoreGSS(GS) of GS in GSS is trivial. This implies
that GSS is realized as a subgroup of Sym(m), where |S| = m. To get the
information of right gyrogroups of order 9, we have searched various possible
subgroups G of Sym(9) and a subgroup H of G with [G : H] = 9. Using
GAP [12], we found the isomorphism classes of gyrotransversals in G to the
subgroup H, for various possible cases. We found that there is a subgroup
G of Sym(9) isomorphic to Z6 × Sym(3) and H ' Z2 × Z2 such that the
number of isomorphism classes of gyrotransversals in G ' Z6 × Sym(3)
to H ' Z2 × Z2 is 75. We are not sure that these are all non-isomorphic
right gyrogroups of order 9. But there are at least 75 non-isomorphic right
gyrogroups of order 9.
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