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A method for enhancing randomization
in algebraic signature algorithms

on non-commutative algebras

Alexandr A. Moldovyan and Nikolay A. Moldovyan

Abstract. The paradigm of algebraic signature schemes security of which is based on
the computational difficulty of solving large systems of power equations is attractive
for developing practical post-quantum signature algorithms. A significant drawback of
the known algorithms of the mentioned type is the limited signature randomization,
which creates preconditions for a decrease in security. A method for enhancing signature
randomization is proposed and used for developing a digital signature algorithm that is
free of the said drawback. The method is based on the use of three hidden commutative
groups, such that in the general case the elements of one of them are non-commutative
with the elements of the other two groups.

1. Introduction

The computational difficulty of solving large systems of power equations un-
derlies the paradigm of developing post-quantum public-key cryptographic
algorithms on nonlinear mappings with a secret trapdoor [2, 15]. Within this
paradigm (known as multivariate public-key cryptography (MPKC)), post-
quantum digital signature algorithms with a small signature size have been
developed. However, they use an extremely large public key [4, 14], which
makes them quite impractical. Even a recently proposed method [13, 8] for
10 to 100 times reducing the size of the public key does not completely elim-
inate this drawback. In general, in algorithms on hard-to-reverse mappings
the public-key size is significantly larger than in other types of post-quantum
algorithms.
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A recently proposed new concept for developing algebraic digital signa-
ture algorithms based on the difficulty of solving large systems of power
equations allows for relatively small sizes of the public key and signa-
ture [3, 6, 10]. Finite non-commutative associative algebras (FNAAs) of
the dimensions m > 4 are used as algebraic support in those algorithms,
the signature having the form (e, S), where e is a natural number represent-
ing a randomization parameter and S is an m-dimensional vector playing
the role of a fitting parameter that has unique value computed depending
on the value of e. A distinctive feature of algorithms [6, 10, 3] (that can
be attributed to algebraic MPKC algorithms) is the use of a verification
equation with multiple entry of the vector S as a multiplier.

The mentioned concept is of interest for the development of practical
post-quantum digital signature algorithms, however, as shown in paper [5],
the signature randomization mechanism used in the algorithms [6, 10] cre-
ates prerequisites for a significant decrease in security level compared to the
expected one. Paper [5] proposed a method for enhancing randomization,
but this method requires the use of a doubled verification equation, which
leads to an increase in the size of the public key and a decrease in the
performance of the digital signature generation and verification procedures.
Thus, the task of developing a mechanism for enhancing randomization that
does not require doubling the verification equation seems relevant.

This paper introduces a new mechanism for enhancing signature ran-
domization in algebraic algorithms based on the computational difficulty of
solving systems of many power equations with many unknowns. A new post-
quantum digital signature algorithm implementing the proposed method is
also presented.

2. Preliminaries

In an m-dimensional vector space over a finite field GF (pz), where p is
a prime and the integer z > 1, we have two operations, addition and
scalar multiplication. Defining additionally a vector multiplication oper-
ation which is closed and distributive at the left and at the right relatively
addition operation, one gets an m-dimensional algebra. The multiplication
of two vectors A = (a0, a1, . . . am−1) = a0e0 + a1e1 + . . . , am−1em−1 and
B = (b0, b1, . . . bm−1) = b0e0+b1e2+. . . , bm−1em−1 , where e0, e1, . . . , em−1

are basis vectors, posessing the said properties can be specified by the next
formula:
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AB =
m−1∑
i,j=0

aibj (eiej) ,

where every product eiej is to be replaced by a one-component vector µek
indicated in the cell at the intersection of the ith row and jth column of so
called basis vector multilication table (BVMT).

In the algebraic MPKC signature algorithms the exponentiation opera-
tions to a large-size degree are used, therefore, the finite non-commutative
associative algebras (FNAAs) with global two-sided unit E are used as alge-
braic support. For the case of associative multiplication and unknown form
of the E unit one can very efficiently perform the exponentiation opera-
tion, for example, using the fast exponentiation algorithm described in [7],
which is free from the use of an explicit unit vector. For the development
of the algebraic MPKC signature algorithms and evaluating their security
the information about structure of the FNAAs (from the point view of their
decomposition into a set of commutative subalgebras) is very significant. A
sufficiently complete picture of the structure of FNAAs is currently known
only for the case m = 4 and z = 1. Therefore, in this article we consider
the case of using four-dimensional FNAAs set over GF (p) (where prime
p = 2q + 1 with prime q) as an algebraic support, although it is of interest
to use higher-dimensional algebras (m > 6) to increase the security of the
developed post-quantum signature algorithm.

A number of studied four-dimensional FNAAs [9] (including the FNAA
set by Table 1) have a typical structure that can be described as follows:

1. There are only three types of the commutative subalgebras of order
p2:

i) η1 = p(p−1)
2 different subalgebras of the first type characterized in that

their multiplicative group is cyclic and has order Ω1 = (p2 − 1);

ii) η2 = p(p+1)
2 different subalgebras of the second type characterized

in that their multiplicative group is generated by a minimum generator
system containing two vectors of order p− 1, the order of the group being
Ω2 = (p− 1)2;

iii) η3 = p + 1 different subalgebras of the third type characterized in
that their multiplicative group is cyclic and has order Ω3 = p(p− 1).

2. Arbitrary two subalgebras intersect exactly in the set of scalar vectors
L = λE, where λ ∈ GF (p).

3. A given non-scalar vector A contained in some subalgebra Ψ (the
vector A is called a representative of Ψ) defines all vectors contained in
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Ψ. Namely, the coordinates of every of the lasts are determined by four
coordinates of the representatve A and unique pair of integer values i, j ∈
{0, 1, . . . p− 1}.

The four-dimensional FNAA [9] set by Table 1 contains the global two-
sided unit E = (0, 0, 1, 1) and all vectors contained in a subalgebra of the
first type or of the second type are described via coordinates of its repre-
sentative A = (a0, a1, a2, a3) by the following formula [9]:

X = (x0, x1, x2, x3) =

(
i,
a1

a0
i, j, j +

a3 − a2

a0
i

)
. (1)

Formula (1) is taken into account when estimating security of the de-
veloped post-quantum signature algorithm.

Table 1

A sparse BVMT (λ 6= 0) defining a four-dimensional FNAA [9].

· e0 e1 e2 e3

e0 0 λe3 e0 0
e1 λe2 0 0 e1

e2 0 e1 e2 0
e3 e0 0 0 e3

3. Technique for inhancing the signature
randomization

The algebraic MPKC signature algorithms [10, 3] belong to the type of
randomized cryptalgorithms and the randomization mechanism used is im-
portant to ensure a sufficient level of security. The signature calculation
procedure begins with generating a random vector R (called fixator), for
example, by the formula

R = AGkHtB, (2)

where k and t are random natural numbers (k, t < p − 1); A, B, G, and
H are secret vectors, the pair <G,H> being a minimum generator system
of the multiplicative group of a C2-subalgebra (subalgebra of the second
type). The fixator R is attached to the document M to be signed and
the randomization signature element e is calculated as the hash value e =
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Φ(M, R), where Φ is a collision resistant hash function. The fitting signature
element S, satisfying the verification equation with multiple entry of the
vector S as a factor, is computed by the following formula

S = CGnHdD, (3)

where n and d are random natural numbers (n, d < p − 1) pre-calculated
depending on the value of e; vectors C and D are elements of the secret
key. Formulas (2) and (3) describes the signature randomization mechanism
used in [6, 10].

During the signature verification process, the value of the fixator vector
R is calculated, therefore, every valid signature defines a pair of vector
equations specified by formulas (2) and (3), in which the unknowns A,B,C,
andD are fixed for all known signatures and the unknown vectors GkHt and
GnHd are unique unknowns. Since the last two vectors are contained in the
hidden commutative group of the order ≈p2, for some number α of known
signatures it becomes potentially possible to find the secret key elements
A,B,C, and D. Indeed, consider a representative X of the hidden group
as the fifth unknown. Then the system of power vector equations can be
reduced to a system of power scalar equations in which you have 8α scalar
equations with 20 fixed scalar unknowns (coordinates of the fixed vector
unknowns A,B,C,D and X) and 4α unique scalar unknowns (two pairs of
scalar values i and j that decribe by formula (1) the unknown vectors GkHt

and GnHd ).
It is easy to see that the specified system of vector equations is divided

into two independent systems, including i) equations defined by formula
(1), and ii) equations defined by formula (2). For example, for the first case
we have α vector equations with 3α fixed vector unknowns and α unique
vector unknowns. When reduced to a system of scalar equations, we obtain
4α scalar equations and 3α fixed scalar unknowns (coordinates of the vectors
A,B, and X) and 2(α − 1) unique unknowns (minus 1 takes into account
the fact that the unknown vector GkHt in the first signature is considered
as a representative X of the hidden group).

For the first case, to perform an attack based on known signatures, the
required value of α can be estimated from the condition of equality of the
number of equations (4α) and the number of unknowns (12+2(α−1)) in the
solved system of power scalar equations. In accordance with this condition,
we obtain the equation 4α = 10 + 2α from which we have the value α = 5
and a system of 20 power scalar equations, which should be solved to find
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the secret vectors A and B. Computational complexity of such attack is
rather low, therefore, one should conclude that the signature randomization
in algorithms [6, 10] is not satisfactory.

Consider the case of using the four-dimensional FNAA set over GF (p),
where p = 2q + 1 with 128-bit prime q. To enhance the signature random-
ization, the following formula can be proposed for calculating the fixator
vector R:

R = AP uGkQtB, (4)

where u, k, and t are random natural numbers (u, t < p2 − 1 and k <
q); P and Q are non-scalar vectors of the order p2 − 1, such that PQ 6=
QP ; G is a non-scalar vector of the order q (such vectors are contained in
the multiplicative group of the C2-subalgebras that have order 4q2). The
corresponding formula for calculating the fitting signature element is as
follows:

S = CP bGnQdD, (5)

where b, n, and d are random natural numbers (b, d < p2 − 1 and n <
q) which are calculated depending on the fixator vector R and electronic
document M to be signed.

In a known signature attack, each known signature specifies by formula
(4) a vector equation with a unique vector unknown P uGkQt and also speci-
fies by formula (5) a vector equation with a unique vector unknown P bGnQd.
These unique unknowns take on values within the entire FNAA used as an
algebraic support of the digital signature algorithm. When reducing a sys-
tem of vector equations to a system of scalar equations, each unique vector
unknown specifies four unique scalar unknowns. Given the presence of fixed
unknowns, it is easy to see that in the systems of scalar equations formed
during a known signature attack, the number of unknowns will exceed the
number of equations. Therefore, the system will have multiple solutions for
arbitrary value of α. For the system including equations set by formula (4)
or (5), you can estimate roughly the number of solutions as ≈p4g, where g
is the number of fixed vector unknowns.

The share of solutions associated with elements of the secret key and
elements of potentially possible equivalent keys is presumably negligibly
small for the case p > 2100. The latter gives grounds for the assumption
that the level of signature randomization specified by formulas (4) and (5) is
sufficient. The following section presents a digital signature algorithm that
implements this method of signature randomization and uses the signature
verification equation with two entries of the fitting signature element S.
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4. A candidate for a practical post-quantum
signature algorithm

Formation of the public key begins with generation of the secret vectors P,
Q, and G. The first two are generators of two different multiplicative groups
of the subalgebras of the first type. Since the portion of the lasts is ≈ 50%,
the vectors P and Q can be selected at random untill each of them has
order p2 − 1 and the inequality PQ 6= QP holds true. The vectors of the
order q are contained in the C2-subalgebras the portion of which is ≈50%.
Besides, the portion of the vectors of order q in some fixed multiplicative
group of the C2-subalgebras is ≈50% (note that the multiplicative group
of a C2-subalgebra contains vectors of orders 2, q, and 2q), therefore the
vector G can be selected at random (from the set of invertible non-scalar
vectors) with checking its order.

Suppose we have generated the secret vectors P, Q, and G. The rest
of the secret key represents the random vectors A, B, C, D, F that are
pairwise non-commutative (and non-commutative with the vectors P, Q,
and G) and three natural numbers w < p2 − 1, x < p2 − 1, and v < q.
The total size of the secret key equals to 592 bytes. The 576-byte public
key includes nine vectors Y, T, Z, N, U, K, V, J, and W computed by the
following formulas:

Y = APA−1; T = AP xC−1; Z = D−1QD;

N = D−1QwF−1; U = FGF−1; K = FGvPwC−1;

V = CPC−1, J = D−1QxB; W = B−1QwB.

(6)

Using some specified 256-bit hash-function Φ, one can generate a signa-
ture to the electronic document M as follows:

The signature generation procedure.
1. Generate three random natural numbers k (k < q), t (t < p2 − 1),

and u (u < p2 − 1). Then calculate the fixator vector by formula (4):

R = AP uGkQtB.

2. Compute the hash-function value e = e1||e2 (the first signature
element), where || denotes the concatenation operation, from the document
M to which the vector R is concatenated: e = e1||e2 = Φ (M, R) , where e1

and e2 are 128-bit integers.
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3. Calculate the integers b, d, and n by the following formulas (where
δ = p2 − 1):

b = u− e− x mod δ; d = −e1e2 − w mod δ.

n =
k − e1 − v

2
mod q.

4. Calculate the fitting signature element S:

S = CP bGnQdD.

5. Calculate the hash value from the from the signature element S to
which the randomization signature element e is concatenated:

ρ = Φ (S, e) .

6. Calculate the auxiliary fitting elements s and σ of the signature:

s = −b− w mod δ; σ =
t− d− x− ρ

w
mod δ.

The size of the output signature (e, s, σ, S) is equal to ≈ 160 bytes.
Computational difficulty µ of the signature generation procedure is roughly
equal to six exponentiation operations in the four-dimensional FNAA used
as algebraic support of the signature algorithm (four exponentiations to
the 256-bit degree and two exponentiations to the 128-bit degree), i. e., to
≈ 15, 400 multiplications modulo a 129-bit prime p. The verification of the
signature (e, s, σ, S) to the document M is performed using the public key
(Y, T, Z,N,U,K, V, J,W ) as folows:

The signature verification procedure.
1. Calculate the vector R′:

R′ = Y eTSZe1e2NU e2KV sSZΦ(S,e)JW σ. (7)

2. Compute the hash-function value e′ from the document M to which
the vector R′ is concatenated: e′ = Φ (M, R′) .

3. If e′ = e, then the signature is genuine. Otherwise reject the signa-
ture.

At the first step of the signature verification algorithm the computations
are performed in accordance with a verification equation with two entries of
the signature element S. The computational complexity µ′ of the signature
verification procedure is roughly equal to six exponentiation operations in
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the four-dimensional FNAA used as algebraic support, one exponentiation
to the 128-bit degree e1 and five exponentiations to the 256-bit degree, i. e.,
we have µ′ ≈ 16, 900 multiplications modulo a 129-bit prime.

Correctness proof. Suppose (e, s, σ, S) is a correctly calculated signature
to document M. Then you have:

R′1 =
(
APA−1

)e (
AP xC−1

) (
CP bGnQdD

) (
D−1QD

)e1e2 ×
×
(
D−1QwF−1

) (
FGF−1

)e1 (FGvPwC−1
) (
CPC−1

)s×
×
(
CP bGnQdD

) (
D−1QD

)ρ (
D−1QxB

) (
B−1QwB

)σ
=

= AP eP xP bGnQdQe1e2QwGe1GvPwP sP bGnQdQρQxQwσB =

= AP e+x+bGnQd+e1e2+wGe1+vPw+s+bGnQd+ρ+x+wσB =

= AP e+x+u−e−xGnQ0Ge1+vP 0GnQd+ρ+x+t−d−x−ρB =

= (AP uG2n+e1+vQtB = AP uGkQtB = R ⇒ e′ = e.

The last equality means that the signature calculated correctly in ac-
cordance with the signature generation algorithm passes the verification
procedure as a genuine signature, i. e., the introduced signature algorithm
performs correctly.

5. Discussion

In terms of a hidden group [3, 5] you can say that the proposed signature
randomization method and the algorithm on its base use three different
hidden groups contained in different commutative subalgebras of the FNAA
set by Table 1. The known signature attack on the introduced algorithm
is prevented due to the used strengthened signature randomization method
described in Section 4. This attack relates to the structural attacke exploit-
ing design features of the signature algorithm. Consider the direct attack
that consists in solving the computationally difficult problem put into the
base of the algorithm. In our case we have a system of power vector equa-
tions defined by formulas (6) connecting the public-key elements with the
secret-key elements, the latter being the vector unknowns. Formulas (6) set
the following system of power vector equations:

Y A = AP ; TC = AP x; DZ = QD;

DNF = Qw; UF = FG; KC = FGvPw;

V C = CP, DJ = QxB; BW = QwB.

(8)

When solving such a system of nine power vector equations with nine
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vector unknowns (vectors A, B, C, D, F, N, G, P, and Q), we must de-
termine the unknown 128-bit natural numbers x, v, and w. If we consider
them unknown, then our system will already be a system of exponential
equations, the complexity of the solution of which seems to be significantly
greater than the complexity of the system of power vector equations (at
least the authors do not know of any computationally efficient ways to solve
large systems involving power and exponential equations, like that present
in system (8)). Therefore, consider the system of power vector equations in
which the vectors Px = P x, Pw = Pw, Qx = Qx, Qw = Qw, and Gv = Gv

are unknown vectors satisfying the following five equations: PxP = PPx,
PwP = PPw, QxQ = QQx, QwQ = QQw, and GvG = GGv. Adding the
last five equations to system (8) we have a large system including 14 power
vector equations with 14 vector unknowns. Such system reduces to a system
of 56 power scalar equations with 56 scalar unknowns. Computational dif-
ficulty of solving such system determins the security Θ (to a direct attack)
of the developed signature algorithm 2128 < Θ < 2192 (see table 1 in [1]).

To reduce computational complexity of the direct attack, you can use
formula (1) to set selection of the vectors Pw and Px from the hidden group
generated by the vector P as well as selection of the vectors Qw and Qx from
the hidden group generated by Q and selection of the vector Gv from the
hidden group generated by G.With this technique, the consideration of five
vector unknowns is reduced to the consideration of only ten independent
scalar unknowns (five different pairs (i, j) of independent scalar unknowns
in formula (1) with coefficients determined by coodinates of the vectors P,
Q, and G).

This allows us to exclude from consideration five vector equations de-
scribing the selection of unknown vectors from hidden groups and reduce
the direct attack to solving a system that includes 36 scalar equations with
46 scalar unknowns. Since the number of equations is less than the number
of unknowns, the algorithm is characterized by the presence of equivalent
keys. However, to calculate one of the equivalent keys, it is necessary to
find at least one solution. For example, you can fix the values of 10 scalar
unknowns and proceed to solving a system with 36 scalar unknowns. In
this case, you can use estimates [1] of the value of the security Θ to direct
attacks, which depends on the number of power equations in the system.
Taking into account the estimates by [1], you get 2100 < Θ < 2128.

It is of interest to evaluate the security to forging signature attack per-
formed by solving the verification equation (7) with respect to the vector
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unknown S. Forgery is performed by selecting and fixing a certain value of
the fixator vector R′ and scalar values s and σ. After that, the value of the
randomizing parameter of the signature is calculated: e = e1||e2 = Φ(M, R).
As a result, we obtain a verification equation with specific values of the
factors and powers, except for the power Φ(S, e), which depends on the un-
known vector S. However, such an attack is computationally infeasible due
to the two-fold entry of the unknown vector S into the verification equation
which includes the exponentiation operation to the power Φ(S, e) that de-
pends on the unknown S. Thus, the introduced MPKC signature algorithm
appears to be secure to the forging signature attack.

To develop a version of the introduced algorithm with enhanced secu-
rity level (> 2128; up to 2256) you can use as algebraic support the FNAAs
having dimensions m = 6, 8, 10, 12 (a method for setting FNAA of arbitrary
even dimensions is described in [11]). Indeed, the number of power scalar
equations which are solved simultaneously in framework of the direct at-
tack (and in framework of the attack based on using known signatures) is
proportional to the value of m. However, to perform a security estimation
you should study preliminary the structure of such FNAAs from the point
of view of their decomposition into a set of commutative subalgebras.

A comparison of the developed algorithm with other known algebraic
MPKC signature algorithms on four-dimensional FNAAs is presented in Ta-
ble 2 (where µ and µ′ denotes computational complexity in multiplications
modulo a 129-bit prime). The comparison shows that the proposed algo-
rithm implementing enhanced signature randomization looks rather practi-
cal as a candidate for a practical post-quantum cryptoscheme.

Table 2

Comparison of the proposed and known algebraic MPKC signature algorithms.

Signature signature public-key private-key signature signature
algorithm size, size, size, generation verification

bytes bytes bytes µ µ′

[6] 160 768 290 ≈12,300 ≈9,200
[10] 160 768 896 ≈49,150 ≈24,600
[3] 97 387 451 ≈12,300 ≈6,150
[5] 192 768 1,104 ≈31,500 ≈20,700
[12] 160 258 290 ≈12,300 ≈9,200

Proposed 160 576 592 ≈15,400 ≈16,900
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6. Conclusion

A new method for enhancing the randomization in algebraic MPKC signa-
ture algorithms based on computational complexity of solving large systems
of power equations has been developed. The main feature of the method is
the use of three different hidden commutative groups such that the vectors
contained in every one of them are non-commutative with vectors contained
in other two hidden groups, the signature being calculated depending on the
product of three random representatives of the hidden groups. Based on
the new randomization mechanism, a novel candidate for practical post-
quantum signature algorithm has been proposed, in which the sizes of the
public key and signature are rather small. The algorithm uses one veri-
fication equation with two entries of the fitting signature element S. Two
auxiliary signature elements s and σ and auxiliary randomization parameter
ρ (calculated as a hash value from S) are used as powers in the verifica-
tion equation. Performed security evaluation shows that the introduced
algebraic signature algorithm is resistant to direct attacks, to known signa-
ture attacks, and to forging signature attacks. Compared with the known
MPKC signature algorithms on hard-to-reverse mappings the proposed one
is more attractive as a practical post-quantum cryptoscheme. However the
design of the algebaraic MPKC signature algorithm is principally differ-
ent and more detailed study of its security is to be performed. Another
task for future research is to study the structure of FNAAs of dimensions
m = 6, 8, 10, 12 from the point of view of their decomposition into a set
of commutative subrings, which will allow us to establish the values of the
orders of hidden groups when developing algorithms that implement the
considered randomization method on FNAAs of dimensions m > 6.

References

[1] J. Ding, A. Petzoldt, Current state of multivariate cryptography, IEEE
Security and Privacy Magazine, 15 (2017), no. 4, 28− 36.

[2] J. Ding, A. Petzoldt, D.S. Schmidt, Multivariate Public Key Cryptosys-
tems. Advances in Information Security, Springer. New York. 80 (2020).

[3] M.T. Duong, D.N. Moldovyan, B.V. Do, M.H. Nguyen, Post-quantum
signature algorithms on noncommutative algebras, using difficulty of solving
systems of quadratic equations, Computer Standards & Interfaces. 86 (2023),
103740.



A method for enhancing randomization 83

[4] GeMSS, A Great Multivariate Short Signature. [Online]. Available:
https://www-polsys.lip6.fr/Links/NIST/GeMSS.html.

[5] A.A. Moldovyan, Complete signature randomization in an algebraic cryp-
toscheme with a hidden group, Quasigroups and Related Systems. 32 (2024),
95− 108.

[6] A.A. Moldovyan, D.N. Moldovyan, A new method for developing signa-
ture algorithms, Bull. Acad. Sci. Moldova, Mathematics, 1(94) (2022),46−60.

[7] A.A. Moldovyan, N.A. Moldovyan, Post-quantum algebraic signature
algorithms with a hidden group, Informatsionno-upravliaiushchie sistemy [In-
formation and Control Systems]. (2023) no. 1, 29− 40.

[8] A.A. Moldovyan, N.A. Moldovyan, Vector finite fields of characteris-
tic two as algebraic support of multivariate cryptography, Computer Sci. J.
Moldova, 32 (2024), no. 1(94), 46− 60.

[9] A.A. Moldovyan, D.N. Moldovyan, N.A. Moldovyan, Structure of a
finite non-commutative algebra set by a sparse multiplication table, Quasi-
groups and Related Systems. 30 (2022), 133− 140.

[10] D.N. Moldovyan, A new type of digital signature algorithms with a hidden
group, Computer Sci. J. Moldova, 31 (2023), 111− 124.

[11] N.A. Moldovyan, Unifed method for defining finite associative algebras of
arbitrary even dimensions, Quasigroups and Related Systems. 26 ( 2018),
263− 270.

[12] N.A. Moldovyan, Algebraic signature algorithms with a hidden group, based
on hardness of solving systems of quadratic equations, Quasigroups and Re-
lated Systems. 30 (2022), 287− 298.

[13] N.A. Moldovyan, Finite algebras in the design of multivariate cryptography
algorithms, Bull. Acad. Sci. Moldova. Mathematics, 3(103) (2023), 80− 89.

[14] Rainbow Signature, One of three NIST Post-quantum Signature Finalists,
2021. [Online]. Available: https://www.pqcrainbow.org/.

[15] Q. Shuaiting, H. Wenbao, Li Yifa, J. Luyao, Construction of extended
multivariate public key cryptosystems, International J. Network Security, 18
(2016), no. 1, 60− 67.

Received February 20, 2025

St. Petersburg Federal Research Center of the Russian Academy of Sciences
14-th line 39, 199178, St. Petersburg, Russia
e-mail: nmold@mail.ru


