https://doi.org/10.56415/qrs.v33.12

On Q_r -ordered semigroups

Pisan Summaprab and Napaporn Sarasit

Abstract. Ordered semigroups in which every proper right ideal is a power joined subsemigroup, namely Q_r -ordered semigroups, are investigated. We also give characterizations of archimedean weakly commutative Q_r -ordered semigroups.

1. Introduction and preliminaries

The concept of commutative Q-semigroups studied by T. E. Nordhl in [10] and his results were extended to quasi-commutative semigroups by C. S. H. Nagore in [9]. The Putcha's Q-semigroups were studied by A. Cherubini-Spoletini and A. Varisco in [4]. The concept of Q_r -semigroups was introduced by S. Bogdanović [1]. In this paper, we extend the notion of Q_r -semigroups to ordered semigroups. We prove that S is an archimedean weakly commutative Q_r -ordered semigroup if and only if Sis a power joined or S is an ideal extension of a power joined archimedean weakly commutative subsemigroup containing ordered idempotent by a nil ordered semigroup.

A semigroup (S, \cdot) together with a partial order \leq that is *compatible* with the semigroup operation, meaning that for any x, y, z in $S, x \leq y$ implies $zx \leq zy$ and $xz \leq yz$, is called a *partially ordered semigroup*, or simply an *ordered semigroup*. Under the trivial relation, $x \leq y$ if and only if x = y, it is observed that every semigroup is an ordered semigroup.

Let (S, \cdot, \leq) be an ordered semigroup. For A, B nonempty subsets of S, we write AB for the set of all elements xy in S where $x \in A$ and $y \in B$, and write (A] for the set of all elements x in S such that $x \leq a$ for some a in A, i.e.,

²⁰¹⁰ Mathematics Subject Classification: 06F05

 $^{{\}sf Keywords}:$ ordered semigroup, power joined, archimedean, weakly commutative, right ideal, ideal extension

$$(A] = \{ x \in S \mid x \leqslant a \text{ for some } a \in A \}.$$

In particular, we write Ax for $A\{x\}$, and xA for $\{x\}A$. It was shown in [3] that the following hold: (1) $A \subseteq (A]$ and ((A]] = (A]; (2) $A \subseteq B \Rightarrow$ $(A] \subseteq (B];$ (3) ((A](B]] = ((A]B] = (A(B)]] = (AB]; (4) (A](B] \subseteq (AB]; (5) $(A]B \subseteq (AB]$ and $A(B] \subseteq (AB];$ (6) If $\{A_k\}_{k \in K}$ is a family of nonempty subsets of S, then $(\bigcup_{k \in K} A_k] = \bigcup_{k \in K} (A_k]$ and $(\bigcap_{k \in K} A_k] \subseteq \bigcap_{k \in K} (A_k]$.

Let (S, \cdot, \leq) be an ordered semigroup. A nonempty subset A of S is called a *left* (resp., *right*) *ideal* of S if it satisfies the following conditions:

(i) $SA \subseteq A$ (resp., $AS \subseteq A$);

(ii)
$$A = (A]$$
, that is, for any x in A and y in S, $y \leq x$ implies $y \in A$.

A is called a (two-sided) ideal of S if it is both a left and a right ideal of S.

Let (S, \cdot, \leq) be an ordered semigroup. A left ideal A of S is said to be *proper* if $A \subset S$. A proper right and two-sided ideals are defined similarly. S is *simple* if it does not contain proper ideals. A proper ideal A of S is said to be *maximal* if for any ideal B of S such that $A \subset B \subseteq S$, then B = S.

A nonempty subset Q of S is called a *quasi-ideal* of S if it satisfies the following conditions:

(i) $(QS] \cap (SQ] \subseteq Q;$

(ii) Q = (Q], that is, for any x in Q and y in S, $y \leq x$ implies $y \in Q$ [2].

A nonempty subset B of S is called a *bi-ideal* of S if it satisfies the following conditions:

(i) $BSB \subseteq B$;

(ii) B = (B], that is, for any x in B and y in S, $y \leq x$ implies $y \in B$ [5].

As it is easily to see, any one-sided ideal is a quasi-ideal and any quasiideal is a bi-ideal.

A subsemigroup F is called a *filter* of S if

- (i) $a, b \in S, ab \in F$ implies $a \in F$ and $b \in F$;
- (ii) if $a \in F$ and b in S, $a \leq b$, then $b \in F$ [6].

For an element x of S, we denote by N(x) the filter generated by x.

Let (S, \cdot, \leq) be an ordered semigroup. An ideal I of S is said to be *prime* if for any ideals A, B of $S, AB \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$. An ideal I of S is said to be *completely prime* if for any elements a, b of $S, ab \in I$ implies $a \in I$ or $b \in I$. An ideal I of S is said to be *semiprime* if for any ideal A of $S, A^2 \subseteq I$ implies $A \subseteq I$. An ideal I of S is said to be *completely*

semiprime if for any element a of S and for any positive integer $n, a^n \in I$ implies $a \in I$ [12].

An element e of an ordered semigroup (S, \cdot, \leq) is called an *ordered idem*potent if $e \leq e^2$. We call an ordered semigroup S idempotent ordered semigroup if every element of S is an ordered idempotent [8].

An element *a* of an ordered semigroup (S, \cdot, \leq) is said to be *left regular* (resp., *right regular*, *regular*, *intra-regular*) if there exist x, y in S such that $a \leq xa^2$ (resp., $a \leq a^2x$, $a \leq axa$, $a \leq xa^2y$) [12].

The zero element of an ordered semigroup (S, \cdot, \leq) , defined by Birkhoff, is an element 0 of S such that $0 \leq x$ and 0x = 0 = x0 for all $x \in S$. The set of all positive integers denoted by \mathbb{N} .

An element a of an ordered semigroup (S, \cdot, \leq) having a zero 0 is called *nilpotent* if there exists $n \in \mathbb{N}$ such that $a^n = 0$. An ordered semigroup (S, \cdot, \leq) having a zero 0 is called *nil* if every element of S is nilpotent, that is, for every $a \in S$, there exists $n \in \mathbb{N}$ such that $a^n = 0$ [7].

Let (S, \cdot, \leq_S) , $(T, *, \leq_T)$ be an ordered semigroups, $f: S \to T$ a mapping from S into T. The mapping f is called *isotone* if $x, y \in S$, $x \leq_S y$ implies $f(x) \leq_T f(y)$ and reverse *isotone* if $x, y \in S$, $f(x) \leq_T f(y)$ implies $x \leq_S y$. The mapping f is called a *homomorphism* if it is isotone and satisfies f(xy) = f(x) * f(y) for all $x, y \in S$. The mapping f is called a *isomorphism* if it is reverse isotone onto homomorphism. The ordered semigroups S and T are called *isomorphic*, in symbols $S \cong T$ if there exists an isomorphism between them.

An ordered semigroup V is called an *ideal extension*(or just an *extension*) of an ordered semigroup S by an ordered semigroup Q, if Q has a zero 0, $S \cap (Q \setminus \{0\}) = \emptyset$, and there exists an ideal K of V such that $K \cong S$ and $V/K \cong Q$ [7].

Let (S, \cdot, \leq) be an ordered semigroup and K an ideal of S. S/K is called the *Rees quotient ordered semigroup* of S, where 0 is an arbitrary element of K. It is observed that $K \cap [(S/K) \setminus \{0\}] = \emptyset$, $K \cong K$ and $S/K \cong S/K$ under the identity mapping and so S is an ideal extension of K by S/K.

2. Main results

We begin this section with the following definition.

Definition 2.1. An ordered semigroup (S, \cdot, \leq) is called *right* (resp., *left*) archimedean if for every $a, b \in S$, there exists $n \in \mathbb{N}$ such that $a^n \in (bS]$

(resp., $a^n \in (Sb]$). An ordered semigroup (S, \cdot, \leq) is called *archimedean* if for every $a, b \in S$, there exists $n \in \mathbb{N}$ such that $a^n \in (SbS]$.

Definition 2.2. An ordered semigroup (S, \cdot, \leq) is called *weakly commutative* if for every $a, b \in S$, there exists $n \in \mathbb{N}$ such that $(ab)^n \in (bSa]$.

Lemma 2.3. Let (S, \cdot, \leq) be a weakly commutative ordered semigroup. The following statements are equivalent:

- (1) S is a left archimedean;
- (2) S is a right archimedean;
- (3) S is an archimedean.

Proof. The implications $(1) \Rightarrow (3)$ and $(2) \Rightarrow (3)$ are obvious.

 $(1) \Rightarrow (2)$. Let $a, b \in S$. Then there exists $n \in \mathbb{N}$ such that $a^n \leq xb$ for some $x \in S$. Since S is a weakly commutative, $(xb)^m \in (bSx]$ for some $m \in \mathbb{N}$. We have $a^{nm} \leq (xb)^m \in (bSx] \subseteq (bS]$. Thus S is a right archimedean.

Similarly, we have $(3) \Rightarrow (1)$.

Theorem 2.4. Let (S, \cdot, \leq) be an ordered semigroup. Then S is a weakly commutative and S has no proper completely semiprime ideals if and only if S is a left and right archimedean.

Proof. Let S be a weakly commutative and S has no proper completely semiprime ideals. Let $x \in S$. Suppose that $S \setminus N(x) \neq \emptyset$. Since N(x) is a subsemigroup of S, we have $S \setminus N(x)$ is proper completely prime ideal by Lemma 3.7 in [11]. It follows that $S \setminus N(x)$ is proper completely semiprime ideal. This is a contradiction. Thus $S \setminus N(x) = \emptyset$ and so S = N(x). This implies that S is a left and right archimedean by remark in [6]. Conversely, if S is a left and right archimedean, then obviously S is a weakly commutative. Let A be any completely semiprime ideal of S, $a \in A$ and $b \in S$. Then there exists $n \in \mathbb{N}$ such that $b^n \in (Sa] \subseteq A$. This implies $b \in A$ and so S = A. \Box

Lemma 2.5. Let (S, \cdot, \leq) be an ordered semigroup and K an ideal of S. If K is an archimedean weakly commutative subsemigroup of S and S/K is nil, then S is a weakly commutative.

Proof. Let $a, b \in S$. Since S/K is nil, then there exists $h, k, t \in \mathbb{N}$ such that $a^h, b^k, (ab)^t \in K$. Since K is an archimedean weakly commutative subsemigroup, $(ab)^{nt} \in (b^k K]$ and $(ab)^{mt} \in (Ka^h]$ for some $n, m \in \mathbb{N}$ by Lemma 2.3. We have $(ab)^{nt+mt} \in (b^k K](Ka^h] \subseteq (bKa] \subseteq (bSa]$. Thus S is a weakly commutative.

Theorem 2.6. Let (S, \cdot, \leq) be an ordered semigroup. If S is an archimedean weakly commutative containing ordered idempotent, then S is an ideal extension of an archimedean weakly commutative subsemigroup K containing ordered idempotent by a nil ordered semigroup S/K. Conversely, if S is an ideal extension of an archimedean weakly commutative subsemigroup K by a nil ordered semigroup S/K, then S is an archimedean weakly commutative.

Proof. Assume that S is an archimedean weakly commutative and e an ordered idempotent element. We set K = (SeS]. Then K is an ideal of S and $e \in K$. Let $a, b \in K$. Since S is an archimedean, then there exists $n \in \mathbb{N}$ such that $e \leq e^n \in (SbS]$. We have $a^3 \in K(SeS|K \subseteq (KeK] \subseteq KeK)$ $(K(SbS]K] \subset (KbK]$. Thus K is an archimedean subsemigroup. Since S is an archimedean weakly commutative, then there exists $n, m \in \mathbb{N}$ such that $(ab)^n \in (b^2S] \subseteq (bK]$ and $(ab)^m \in (Sa^2] \subseteq (Ka]$ by Lemma 2.3. We have $(ab)^{n+m} \in (bK](Ka] \subseteq (bKa]$. Thus K is a weakly commutative subsemigroup. Let $x \in S/K$. Since S is an archimedean, then there exists $n \in \mathbb{N}$ such that $x^n \in (SeS] = K$. Thus S/K is a nil ordered semigroup. Conversely, assume that S is an ideal extension of an archimedean weakly commutative subsemigroup K by a nil ordered semigroup S/K. We have S is a weakly commutative by Lemma 2.5. Let $a, b \in S$. Since S/K is nil, then there exists $h, k \in \mathbb{N}$ such that $a^h, b^k \in K$. Since K is an archimedean subsemigroup, $a^{nh} \in (Kb^k K] \subseteq (KbK] \subseteq (SbS)$ for some $n \in \mathbb{N}$. Thus S is an archimedean.

Corollary 2.7. An ordered semigroup S is an archimedean weakly commutative containing ordered idempotent if and only if S is an ideal extension of an archimedean weakly commutative subsemigroup containing ordered idempotent by a nil ordered semigroup.

Lemma 2.8. Let (S, \cdot, \leq) be an archimedean weakly commutative ordered semigroup without ordered idempotent. Then for every $a \in S$, $a \notin (aS](a \notin (Sa])$.

Proof. Let $a \in S$. If $a \in (aS]$. Then $a \leq ax$ for some $x \in S$. Since S is an archimedean weakly commutative, we have $x^n \in (Sa]$ for some $n \in \mathbb{N}$ by Lemma 2.3. This implies $a \leq ax^n \in (aSa]$ and so a is a regular. It follows that S has an ordered idempotent. This is a contradiction. Thus $a \notin (aS]$.

Definition 2.9. An ordered semigroup (S, \cdot, \leq) is called a *power joined* if for every $a, b \in S$, there exists $n, m \in \mathbb{N}$ such that $a^n = b^m$.

Example 2.10. Let $S = \{a, b\}, \in \{(a, a), (b, b), (a, b)\}$ and xy = b for all $x, y \in S$. It is clear that S is a power joined ordered semigroup.

Obviously, a power joined ordered semigroup is an archimedean weakly commutative.

Remark 2.11. An ordered semigroup S is a power joined if and only if for any two subsemigroups A, B of $S, A \cap B \neq \emptyset$.

We immediately have the following:

Lemma 2.12. Let (S, \cdot, \leq) be an ordered semigroup. The following statements are equivalent:

- (1) S is a power joined;
- (2) every ideal of S is a power joined subsemigroup;
- (3) every left(right) ideal of S is a power joined subsemigroup;
- (4) every quasi-ideal of S is a power joined subsemigroup;
- (5) every bi-ideal of S is a power joined subsemigroup.

Definition 2.13. An ordered semigroup (S, \cdot, \leq) is called *Q*-ordered semigroup if for every proper ideal of S is a power joined subsemigroup.

Definition 2.14. An ordered semigroup (S, \cdot, \leq) is called Q_r -ordered semigroup (resp., Q_l -ordered semigroup) if for every proper right(resp., left) ideal of S is a power joined subsemigroup.

Clearly $Q_r(Q_l)$ -ordered semigroup is Q-ordered semigroup. The converse is not true.

Example 2.15. Let (S, \cdot, \leq) be an ordered semigroup such that the multiplication and the order relation are defined by: xy = x for y = c, and xy = a for others, and $\leq = \{(a, a), (a, b), (a, c), (b, b), (c, c)\}$.

The ideals of S are: $\{a\}, \{a, b\}$ and S. Obviously, S is a Q-ordered semigroup. But the right ideal $\{a, c\}$ of S is not power joined subsemigroup and so S is not Q_r -ordered semigroup.

Theorem 2.16. Let (S, \cdot, \leq) be an ordered semigroup. Then S is an archimedean weakly commutative $Q_r(Q_l)$ -ordered semigroup if and only if one of the following conditions satisfied:

(1) S is a power joined;

(2) S is an ideal extension of a power joined archimedean weakly commutative subsemigroup K containing ordered idempotent by a nil ordered semigroup S/K.

Proof. Assume that S is an archimedean weakly commutative Q_r -ordered semigroup. Suppose that S does not contain an ordered idempotent element. Let $a, b \in S$. We have $a \notin (aS]$ by Lemma 2.8. Thus (aS] is a proper right ideal of S. Since S is Q_r -ordered semigroup, (aS) is a power joined subsemigroup. Since S is an archimedean weakly commutative, there exists $n \in \mathbb{N}$ such that $b^n \in (aS]$ and obviously there exists $m \in \mathbb{N}$ such that $a^m \in (aS]$. Then there exists $s, t \in \mathbb{N}$ such that $a^{ms} = b^{nt}$. Thus S is a power joined. If S has an ordered idempotent, then S is an ideal extension of a power joined archimedean weakly commutative subsemigroup Kcontaining ordered idempotent by a nil ordered semigroup S/K by Theorem 2.6. Conversely, it is clear, if S is a power joined. Assume that Sis an ideal extension of a power joined archimedean weakly commutative subsemigroup K containing ordered idempotent by a nil ordered semigroup S/K. We have S is an archimedean weakly commutative by Theorem 2.6. Let A be a proper right ideal of S and $a, b \in A$. Since S/K is nil, there exists $n, m \in \mathbb{N}$ such that $a^n, b^m \in K$. Since K is a power joined subsemigroup, we have $a^{ns} = b^{mt}$ for some $s, t \in \mathbb{N}$. Thus A is a power joined subsemigroup and so S is a Q_r -ordered semigroup.

Definition 2.17. An ordered semigroup (S, \cdot, \leq) is called Q_q -ordered semigroup (resp., Q_b -ordered semigroup) if for every proper quasi-(resp., bi-)ideal of S is a power joined subsemigroup.

The classes of all power joined ordered semigroups, will denoted by \mathbf{P} , the classes of all Q_q -ordered semigroups, will denoted by \mathbf{Q}_q , the classes of all Q_b -ordered semigroups, will denoted by \mathbf{Q}_b , the classes of all Q_r -ordered semigroups, will denoted by \mathbf{Q}_r , the classes of all Q_l -ordered semigroups, will denoted by \mathbf{Q}_r , the classes of all Q_l -ordered semigroups, will denoted by \mathbf{Q}_l and the classes of all Q-ordered semigroups, will denoted by \mathbf{Q}_l .

We have the following lemma:

Lemma 2.18. $\mathbf{P} \subset \mathbf{Q_b} \subset \mathbf{Q_q} \subset \mathbf{Q_l} \cup \mathbf{Q_r} \subset \mathbf{Q}$.

The following theorem can be obtained from Theorem 2.16 its dual theorem and Lemma 2.18.

Theorem 2.19. Let (S, \cdot, \leq) be an archimedean weakly commutative ordered semigroup without ordered idempotent. The following statements are equivalent:

- (1) S is a power joined;
- (2) S is Q_b -ordered semigroup;
- (3) S is Q_q -ordered semigroup;
- (4) S is Q_r -ordered semigroup;
- (5) S is Q_l -ordered semigroup.

References

- [1] S. Bogdanović, Q_r -semigroups, Publ. lnst. Math., 43 (1981), 15 21.
- [2] Y. Cao, Characterizations of regular ordered semigroups by quasi-ideals, Vietnam J. Math., 30 (2002), 239 – 250.
- [3] T. Changphas, P. Luangchaisri and R. Mazurek, On right chain ordered semigroups, Semigroup Forum, 96 (2018), 523 – 535.
- [4] A. Cherubini-Spoletini and A. Varisco, On Putcha's Q-semigroups, Semigroup Forum, 18 (1979), 313 – 317.
- [5] N. Kehayopulu, On completely regular poe-semigroups, Math. Japonica, 37 (1992), 123 - 130.
- [6] N. Kehayopulu and M. Tsingelis, On weakly commutative ordered semigroups, Semigroup Forum, 56 (1998), 32 – 35.
- [7] N. Kehayopulu and M. Tsingelisa, Archimedean ordered semigroups as ideal extensions, Semigroup Forum, 78 (2009), 343 – 348.
- [8] S. Mallick and K. Hansda, On idempotent ordered semigroups, Quasigroups and Related Systems, 32 (2024), 59 - 67.
- [9] C. S. H. Nagore, Quasicommutative Q-semigroups, Semigroup Forum, 15 (1978), 189-193.
- [10] T. E. Nordahl, Commutative semigroups whose proper subsemigroups are power joined, Semigroup Forum, 6 (1973), 35 – 41.
- P. Summaprab, On primary ordered semigroups, Quasigroups and Related Systems, 32 (2024), 129 – 140.
- [12] P. Summaprab and T. Changphas, Generalized kernels of ordered semigroups, Quasigroups and Related Systems, 26 (2018), 309 – 316.

Received May 1, 2024

Department of Mathematics, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000 Thailand e-mail: pisansu9999@gmail.com, napaporn.sr@rmuti.ac.th