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On Qr-ordered semigroups

Pisan Summaprab and Napaporn Sarasit

Abstract. Ordered semigroups in which every proper right ideal is a power
joined subsemigroup, namely Qr-ordered semigroups, are investigated. We
also give characterizations of archimedean weakly commutative Qr-ordered
semigroups.

1. Introduction and preliminaries

The concept of commutative Q-semigroups studied by T. E. Nordhl in
[10] and his results were extended to quasi-commutative semigroups by
C. S. H. Nagore in [9]. The Putcha,s Q-semigroups were studied by A.
Cherubini-Spoletini and A. Varisco in [4]. The concept of Qr-semigroups
was introduced by S. Bogdanović [1]. In this paper, we extend the no-
tion of Qr-semigroups to ordered semigroups. We prove that S is an
archimedean weakly commutative Qr-ordered semigroup if and only if S
is a power joined or S is an ideal extension of a power joined archimedean
weakly commutative subsemigroup containing ordered idempotent by a nil
ordered semigroup.

A semigroup (S, ·) together with a partial order 6 that is compatible
with the semigroup operation, meaning that for any x, y, z in S, x 6 y
implies zx 6 zy and xz 6 yz, is called a partially ordered semigroup, or
simply an ordered semigroup. Under the trivial relation, x 6 y if and only
if x = y, it is observed that every semigroup is an ordered semigroup.

Let (S, ·,6) be an ordered semigroup. For A, B nonempty subsets of
S, we write AB for the set of all elements xy in S where x ∈ A and y ∈ B,
and write (A] for the set of all elements x in S such that x 6 a for some a
in A, i.e.,
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(A] = {x ∈ S | x 6 a for some a ∈ A}.

In particular, we write Ax for A{x}, and xA for {x}A. It was shown in
[3] that the following hold: (1) A ⊆ (A] and ((A]] = (A]; (2) A ⊆ B ⇒
(A] ⊆ (B]; (3) ((A](B]] = ((A]B] = (A(B]] = (AB]; (4) (A](B] ⊆ (AB]; (5)
(A]B ⊆ (AB] and A(B] ⊆ (AB]; (6) If {Ak}k∈K is a family of nonempty
subsets of S, then (

⋃
k∈K Ak] =

⋃
k∈K(Ak] and (

⋂
k∈K Ak] ⊆

⋂
k∈K(Ak].

Let (S, ·,6) be an ordered semigroup. A nonempty subset A of S is
called a left (resp., right) ideal of S if it satisfies the following conditions:

(i) SA ⊆ A (resp., AS ⊆ A);

(ii) A = (A], that is, for any x in A and y in S, y 6 x implies y ∈ A.

A is called a (two-sided) ideal of S if it is both a left and a right ideal of S.
Let (S, ·,6) be an ordered semigroup. A left ideal A of S is said to be

proper if A ⊂ S. A proper right and two-sided ideals are defined similarly.
S is simple if it does not contain proper ideals. A proper ideal A of S is said
to be maximal if for any ideal B of S such that A ⊂ B ⊆ S, then B = S.

A nonempty subset Q of S is called a quasi-ideal of S if it satisfies the
following conditions:

(i) (QS] ∩ (SQ] ⊆ Q;

(ii) Q = (Q], that is, for any x in Q and y in S, y 6 x implies y ∈ Q [2].

A nonempty subset B of S is called a bi-ideal of S if it satisfies the
following conditions:

(i) BSB ⊆ B;

(ii) B = (B], that is, for any x in B and y in S, y 6 x implies y ∈ B [5].

As it is easily to see, any one-sided ideal is a quasi-ideal and any quasi-
ideal is a bi-ideal.

A subsemigroup F is called a filter of S if

(i) a, b ∈ S, ab ∈ F implies a ∈ F and b ∈ F ;

(ii) if a ∈ F and b in S, a ≤ b, then b ∈ F [6].

For an element x of S, we denote by N(x) the filter generated by x.
Let (S, ·,6) be an ordered semigroup. An ideal I of S is said to be

prime if for any ideals A,B of S, AB ⊆ I implies A ⊆ I or B ⊆ I. An ideal
I of S is said to be completely prime if for any elements a, b of S, ab ∈ I
implies a ∈ I or b ∈ I. An ideal I of S is said to be semiprime if for any
ideal A of S, A2 ⊆ I implies A ⊆ I. An ideal I of S is said to be completely
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semiprime if for any element a of S and for any positive integer n, an ∈ I
implies a ∈ I [12].

An element e of an ordered semigroup (S, ·,6) is called an ordered idem-
potent if e 6 e2. We call an ordered semigroup S idempotent ordered semi-
group if every element of S is an ordered idempotent [8].

An element a of an ordered semigroup (S, ·,6) is said to be left regular
(resp., right regular, regular, intra-regular) if there exist x, y in S such that
a 6 xa2 (resp., a 6 a2x, a 6 axa, a 6 xa2y) [12].

The zero element of an ordered semigroup (S, ·,6), defined by Birkhoff,
is an element 0 of S such that 0 6 x and 0x = 0 = x0 for all x ∈ S. The
set of all positive integers denoted by N.

An element a of an ordered semigroup (S, ·,6) having a zero 0 is called
nilpotent if there exists n ∈ N such that an = 0. An ordered semigroup
(S, ·,6) having a zero 0 is called nil if every element of S is nilpotent, that
is, for every a ∈ S, there exists n ∈ N such that an = 0 [7].

Let (S, ·,6S), (T, ∗,6T ) be an ordered semigroups, f : S → T a map-
ping from S into T . The mapping f is called isotone if x, y ∈ S, x 6S y
implies f(x) 6T f(y) and reverse isotone if x, y ∈ S, f(x) 6T f(y) im-
plies x 6S y. The mapping f is called a homomorphism if it is isotone
and satisfies f(xy) = f(x) ∗ f(y) for all x, y ∈ S. The mapping f is called
a isomorphism if it is reverse isotone onto homomorphism. The ordered
semigroups S and T are called isomorphic, in symbols S ∼= T if there exists
an isomorphism between them.

An ordered semigroup V is called an ideal extension(or just an extension)
of an ordered semigroup S by an ordered semigroup Q, if Q has a zero 0,
S ∩ (Q \ {0}) = ∅, and there exists an ideal K of V such that K ∼= S and
V/K ∼= Q [7].

Let (S, ·,6) be an ordered semigroup and K an ideal of S. S/K is called
the Rees quotient ordered semigroup of S, where 0 is an arbitrary element
of K. It is observed that K ∩ [(S/K) \ {0}] = ∅, K ∼= K and S/K ∼= S/K
under the identity mapping and so S is an ideal extension of K by S/K.

2. Main results

We begin this section with the following definition.

Definition 2.1. An ordered semigroup (S, ·,6) is called right (resp., left)
archimedean if for every a, b ∈ S, there exists n ∈ N such that an ∈ (bS]
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(resp., an ∈ (Sb]). An ordered semigroup (S, ·,6) is called archimedean if
for every a, b ∈ S, there exists n ∈ N such that an ∈ (SbS].

Definition 2.2. An ordered semigroup (S, ·,6) is called weakly commuta-
tive if for every a, b ∈ S, there exists n ∈ N such that (ab)n ∈ (bSa].

Lemma 2.3. Let (S, ·,6) be a weakly commutative ordered semigroup. The
following statements are equivalent:

(1) S is a left archimedean;
(2) S is a right archimedean;
(3) S is an archimedean.

Proof. The implications (1)⇒ (3) and (2)⇒ (3) are obvious.
(1) ⇒ (2). Let a, b ∈ S. Then there exists n ∈ N such that an 6 xb

for some x ∈ S. Since S is a weakly commutative, (xb)m ∈ (bSx] for
some m ∈ N. We have anm 6 (xb)m ∈ (bSx] ⊆ (bS]. Thus S is a right
archimedean.

Similarly, we have (3)⇒ (1).

Theorem 2.4. Let (S, ·,6) be an ordered semigroup. Then S is a weakly
commutative and S has no proper completely semiprime ideals if and only
if S is a left and right archimedean.

Proof. Let S be a weakly commutative and S has no proper completely
semiprime ideals. Let x ∈ S. Suppose that S \N(x) 6= ∅. Since N(x) is a
subsemigroup of S, we have S \ N(x) is proper completely prime ideal by
Lemma 3.7 in [11]. It follows that S \N(x) is proper completely semiprime
ideal. This is a contradiction. Thus S \N(x) = ∅ and so S = N(x). This
implies that S is a left and right archimedean by remark in [6]. Conversely, if
S is a left and right archimedean, then obviously S is a weakly commutative.
Let A be any completely semiprime ideal of S, a ∈ A and b ∈ S. Then there
exists n ∈ N such that bn ∈ (Sa] ⊆ A. This implies b ∈ A and so S = A.

Lemma 2.5. Let (S, ·,6) be an ordered semigroup and K an ideal of S.
If K is an archimedean weakly commutative subsemigroup of S and S/K is
nil, then S is a weakly commutative.

Proof. Let a, b ∈ S. Since S/K is nil, then there exists h, k, t ∈ N such
that ah, bk, (ab)t ∈ K. Since K is an archimedean weakly commutative
subsemigroup, (ab)nt ∈ (bkK] and (ab)mt ∈ (Kah] for some n,m ∈ N by
Lemma 2.3. We have (ab)nt+mt ∈ (bkK](Kah] ⊆ (bKa] ⊆ (bSa]. Thus S is
a weakly commutative.
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Theorem 2.6. Let (S, ·,6) be an ordered semigroup. If S is an archimedean
weakly commutative containing ordered idempotent, then S is an ideal ex-
tension of an archimedean weakly commutative subsemigroup K containing
ordered idempotent by a nil ordered semigroup S/K. Conversely, if S is an
ideal extension of an archimedean weakly commutative subsemigroup K by a
nil ordered semigroup S/K, then S is an archimedean weakly commutative.

Proof. Assume that S is an archimedean weakly commutative and e an
ordered idempotent element. We set K = (SeS]. Then K is an ideal of
S and e ∈ K. Let a, b ∈ K. Since S is an archimedean, then there exists
n ∈ N such that e 6 en ∈ (SbS]. We have a3 ∈ K(SeS]K ⊆ (KeK] ⊆
(K(SbS]K] ⊆ (KbK]. Thus K is an archimedean subsemigroup. Since S
is an archimedean weakly commutative, then there exists n,m ∈ N such
that (ab)n ∈ (b2S] ⊆ (bK] and (ab)m ∈ (Sa2] ⊆ (Ka] by Lemma 2.3. We
have (ab)n+m ∈ (bK](Ka] ⊆ (bKa]. Thus K is a weakly commutative
subsemigroup. Let x ∈ S/K. Since S is an archimedean, then there exists
n ∈ N such that xn ∈ (SeS] = K. Thus S/K is a nil ordered semigroup.
Conversely, assume that S is an ideal extension of an archimedean weakly
commutative subsemigroup K by a nil ordered semigroup S/K. We have
S is a weakly commutative by Lemma 2.5. Let a, b ∈ S. Since S/K is nil,
then there exists h, k ∈ N such that ah, bk ∈ K. Since K is an archimedean
subsemigroup, anh ∈ (KbkK] ⊆ (KbK] ⊆ (SbS] for some n ∈ N. Thus S is
an archimedean.

Corollary 2.7. An ordered semigroup S is an archimedean weakly commu-
tative containing ordered idempotent if and only if S is an ideal extension of
an archimedean weakly commutative subsemigroup containing ordered idem-
potent by a nil ordered semigroup.

Lemma 2.8. Let (S, ·,6) be an archimedean weakly commutative ordered
semigroup without ordered idempotent. Then for every a ∈ S, a 6∈ (aS](a 6∈
(Sa]).

Proof. Let a ∈ S. If a ∈ (aS]. Then a 6 ax for some x ∈ S. Since S is
an archimedean weakly commutative, we have xn ∈ (Sa] for some n ∈ N
by Lemma 2.3. This implies a 6 axn ∈ (aSa] and so a is a regular. It
follows that S has an ordered idempotent. This is a contradiction. Thus
a 6∈ (aS].

Definition 2.9. An ordered semigroup (S, ·,6) is called a power joined if
for every a, b ∈ S, there exists n,m ∈ N such that an = bm.
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Example 2.10. Let S = {a, b}, 6= {(a, a), (b, b), (a, b)} and xy = b for
all x, y ∈ S. It is clear that S is a power joined ordered semigroup.

Obviously, a power joined ordered semigroup is an archimedean weakly
commutative.

Remark 2.11. An ordered semigroup S is a power joined if and only if for
any two subsemigroups A,B of S, A ∩B 6= ∅.

We immediately have the following:

Lemma 2.12. Let (S, ·,6) be an ordered semigroup. The following state-
ments are equivalent:

(1) S is a power joined;
(2) every ideal of S is a power joined subsemigroup;
(3) every left(right) ideal of S is a power joined subsemigroup;
(4) every quasi-ideal of S is a power joined subsemigroup;
(5) every bi-ideal of S is a power joined subsemigroup.

Definition 2.13. An ordered semigroup (S, ·,6) is called Q-ordered semi-
group if for every proper ideal of S is a power joined subsemigroup.

Definition 2.14. An ordered semigroup (S, ·,6) is called Qr-ordered semi-
group (resp., Ql-ordered semigroup) if for every proper right(resp., left) ideal
of S is a power joined subsemigroup.

Clearly Qr(Ql)-ordered semigroup is Q-ordered semigroup. The con-
verse is not true.

Example 2.15. Let (S, ·,6) be an ordered semigroup such that the mul-
tiplication and the order relation are defined by: xy = x for y = c, and
xy = a for others, and 6 = {(a, a), (a, b), (a, c), (b, b), (c, c)}.

The ideals of S are: {a}, {a, b} and S. Obviously, S is a Q-ordered
semigroup. But the right ideal {a, c} of S is not power joined subsemigroup
and so S is not Qr-ordered semigroup.

Theorem 2.16. Let (S, ·,6) be an ordered semigroup. Then S is an
archimedean weakly commutative Qr(Ql)-ordered semigroup if and only if
one of the following conditions satisfied:

(1) S is a power joined;
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(2) S is an ideal extension of a power joined archimedean weakly commu-
tative subsemigroup K containing ordered idempotent by a nil ordered
semigroup S/K.

Proof. Assume that S is an archimedean weakly commutative Qr-ordered
semigroup. Suppose that S does not contain an ordered idempotent ele-
ment. Let a, b ∈ S. We have a 6∈ (aS] by Lemma 2.8. Thus (aS] is a proper
right ideal of S. Since S is Qr-ordered semigroup, (aS] is a power joined
subsemigroup. Since S is an archimedean weakly commutative, there exists
n ∈ N such that bn ∈ (aS] and obviously there exists m ∈ N such that
am ∈ (aS]. Then there exists s, t ∈ N such that ams = bnt. Thus S is a
power joined. If S has an ordered idempotent, then S is an ideal exten-
sion of a power joined archimedean weakly commutative subsemigroup K
containing ordered idempotent by a nil ordered semigroup S/K by The-
orem 2.6. Conversely, it is clear, if S is a power joined. Assume that S
is an ideal extension of a power joined archimedean weakly commutative
subsemigroup K containing ordered idempotent by a nil ordered semigroup
S/K. We have S is an archimedean weakly commutative by Theorem 2.6.
Let A be a proper right ideal of S and a, b ∈ A. Since S/K is nil, there
exists n,m ∈ N such that an, bm ∈ K. Since K is a power joined subsemi-
group, we have ans = bmt for some s, t ∈ N. Thus A is a power joined
subsemigroup and so S is a Qr-ordered semigroup.

Definition 2.17. An ordered semigroup (S, ·,6) is called Qq-ordered semi-
group (resp., Qb-ordered semigroup) if for every proper quasi-(resp., bi-)ideal
of S is a power joined subsemigroup.

The classes of all power joined ordered semigroups, will denoted by P,
the classes of all Qq-ordered semigroups, will denoted by Qq, the classes of
all Qb-ordered semigroups, will denoted by Qb, the classes of all Qr-ordered
semigroups, will denoted by Qr, the classes of all Ql-ordered semigroups,
will denoted by Ql and the classes of all Q-ordered semigroups, will denoted
by Q.

We have the following lemma:

Lemma 2.18. P ⊂ Qb ⊂ Qq ⊂ Ql ∪Qr ⊂ Q.

The following theorem can be obtained from Theorem 2.16 its dual
theorem and Lemma 2.18.
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Theorem 2.19. Let (S, ·,6) be an archimedean weakly commutative or-
dered semigroup without ordered idempotent. The following statements are
equivalent:

(1) S is a power joined;
(2) S is Qb-ordered semigroup;
(3) S is Qq-ordered semigroup;
(4) S is Qr-ordered semigroup;
(5) S is Ql-ordered semigroup.
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