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Extreme Sombor spectral radius of bicyclic graphs
Azam Babai

Abstract. Let G be a simple graph and dg(z) be the degree of the vertex = in G. The
Sombor index of graph G is denoted as SO(G) = >_, c () Vd& (@) + d(y). Yinzhen
Mei et al determine the upper and lower bounds of the Sombor index of unicyclic graphs

in [7]. In this paper we do it for bicyclic graphs.

1. Introduction

Let G be a simple graph, V(G) = {v1,...,v,} and E(G) be its vertex set
and edge set, respectively. Also let d; be the degree of the vertex v; in G.

Topological and chemical indices have received quite some attention in
graph theory already and have various applications in mathematical chem-
istry. One of the newest of these indices is Sombor index which was intro-
duced in 2021, by Ivan Gutman [3]. It is defined for a graph G as

SOG)= > Jd+d
vv; EE(G)

A lot of research was happened on the Sombor index, the reader can refer
to [1, 2, 4, 5.

Then, Wang et al [8], based on the Sombor index, introduced the Sombor
matrix, which is denoted by S = S(G) = (S;;), where

S“_{,/d%dg vivj € E(G)
1] —

0 o.w.

The eigenvalues of the Sombor matrix S(G) are denoted by 11 (G) > p2(G) . ..

1in(G).
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In [6], X. Li et al solved the conjecture about the upper and lower bounds
of the ABC spectral for unicyclic graphs. Then Y. Mei et al did the same
for Sombor spectral for unicyclic graphs [7]. In this paper, we will find the
upper and lower bounds of Sombor spectral for bicyclic graphs.

2. Preliminary

Definition 2.1. Let G be a graph of order n. It is called bicyclic if it is a
connected graph and has n + 1 edges.

Lemma 2.2. [7] Let T > 0 be an irreducible matriz. Then R < puy(T) <
Rpax where R is the average value of row sums of T and Rz is the value
of the largest row sum. Either equality holds if and only if the row sums are
equal.

Lemma 2.3. (Perron-Frobenius Theory)
Let T > 0 be an irreducible matriz with an eigenvalue 6y. Suppose t € R,
rE€R, x>0. If Tx <tx, thent > 0.

Lemma 2.4. (Cauchy-Schwarz Inequality)
Let (a1, az2,...,an) and (by,ba, ..., by) be positive real numbers. Then

n

Z a;b; <

=1

Sy

=1 =1

where the equality holds if and only if a; = kb;, 1 < i < n.

Theorem 2.5. Let f(z) = x2+x—(2n—|—1)+% where x € [3,n— 2]
andn > 7. Then f(z) < n? —4n + 13.

Proof. Since x <n — 2, so

2 1 4n+12
Flr) <a’4n—2—(n41)4 it 12

n2—|—4n+12.

— 2
=z°—(n+3)+ -

= g(x).
Now we will calculate the maximum of g(z). We have

2440+ 12 2440+ 12
J(x) =2z — % -0 = 1= (%)1/3.
X
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It is easy to see that

n®+n+30
9(3)=f
gn—2)=n*—4n+ 7+ 2<n2—4n—|—13
n_
n?+4n + 12 n?+4n + 12
g((f)m) =3(f)2/3— (n+3).

Consequently, max g(x) = n? — 4n + 13. Thus f(z) < n? — 4n + 13 for
n>T. O
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Theorem 2.6. Let G be a bicyclic graph with n vertices and uww € E(G).
dy +dy, Z2n+1, then G is one of the following graphs:

Proof. Let C' be the unique bicycle in G. We consider the following cases:

o Let u,v & V(C).
Hence, N(u) NN (v) =0 and |[N(u)NC|+ |N(v)NC| < 1. Since |C| >

4, so

there exist at least 3 vertices in C' such that they are not adjacent to u and

v, which implies that d, + d, < n — 3, which is a contradiction.

o Let u,v € V(C).

If |C| > 7, then so there exist at least one vertex in C such that it is not
adjacent to w and v, because |N(u) N C| + |[N(v) N C|] < 6. Therefore,

dy +d, <n—1, which is a contradiction.

If |C| = 6, then d,, + d,, < n, which is a contradiction.
If |C| = 5, then G = G or G = G> in the above figure.
If |C| = 4, then G = G5 or G = G4 in the above figure.

o Let ue V(C) and v € V(C).
Hence, N(u) " N(v) =0, so d, + d, < n, which is a contradiction.

3. Main Theorem

Theorem 3.1. Let G be a bicyclic graph of order n, then

1(G) > 4v/20H

Proof. We know that dy 4+ ...+ d, = 2(n + 1), since G is a bicyclic graph. By

Lemma 2.2 and Cauchy-Schwarz Inequality, we have

m@>2 Yy JErE=Y Yy e

v;v; EE(G) v;v; EE(G)
ﬂ\/d% "‘d? > dz +dj7

Therefore,
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Let G be a bicyclic graph of order n > 7. In the sequel, we try to find the
upper bound for u;(G). We consider the following two cases:
1. If for every wv € E(G), dy, + dy < 1. (See Lemma 3.2)
2. If there exists uv € E(G) such that d,, +d, > n+ 1. (See Lemmas 3.3 to 3.11)

Lemma 3.2. Let G be a bicyclic graph and |V (G)| = n. Assume that for every
wv € E(G), we have d, + d, < n, then

w1 (G) < vVn?2 —4n+8vn+ 3.

Proof. Since for every uwv € E(G), we have d,, + d, < n, so degree of every vertex
of G is less than or equal to n — 2. In the contrary, assume that there is v € V(G)
such that d, > n — 1. Since there exists one vertex as u which is join to v and
dy = 2,s0 dy, +d, > n+1, which is a contradiction. Hence, d,, < n — 2, for every
ONS V(G).

Let v;1,vj2,...,v;4;, be all adjacent vertices to the arbitrary vertex v;. We
know that >, d; = 2(n + 1), therefore

dj1+djo+ ... +dje, +di <2(n+1)— (n—d; — 1),

which implies that dj; +djo + ...+ djq, <n+ 3.
Now by definition and above discussion, we have

Yoo & +d3/d;

v;v; EE(G)

< X WdEHm-d)2Veg

ViV GE(G)

B+ (n—d)? Y \/d;

v;v; EE(G)

(SX);

By Cauchy-Schwarz inequality, we know that

> Vi< Y 4y

v;v; EE(G) v;v; EE(G) v;v; EE(G)
> of ¥ i-[ % ava
v;v; EE(G) v;v; EE(Q) v;v; EE(G)

On the other hand, since d; < n — 2, so

V&2 + (n—d;)?2 < Vn? —4n+8.
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Consequently,
—4n+8 Z d; \/E
v;iv; EE(G)
<Vn2 —4n+8vVn + 3V/d;.
Hence, by Lemma 2.3, p; (G) < v/n? — 4n + 8y/n + 3. O

Lemma 3.3. Let G = G1 \ {G5,Gg}, then
p1(G) < Vn? —dn +13v/n + 3.

Proof. We have d3 = dy = ds = 2, dg = ... = d, = 1, di,do < n— 2 and
dy +dy = n+ 1. Hence,

oo+ d2/d;

’Ul’UjEE(G)

=\/d2 + d3\/dy +/d} + d3\/d3 +1\/d3 + d3\/dy +/d3 + d2+/d5
+(d1 —4)\/d%—|—1
<\/df+d§+d§+d§+d§+di+d‘f+d§+(d1—4)(d§+1)
-\/d2+d3+d4+d5—|—d1—
= JAB + (n 41— d)? + 124 d} — Ad +dy — V0 T3

:\/d‘;’—i—d%—(2n+1)d1—|—n2+2n+9\/n+3

24249
- \/dl\/d%—kdl —(2n+1)+ %\/Wrz
1
< Vdivn? —4n+13vn + 3.

Also we have:

(5X), > ,/d? +d2\/d;

v2v; EE(G

:\/d2+d2\/ +1/d3 + d3\/ds + (d2 — 2)4/d3 + 1
S\ B (dy — 2)(d3+ 1)+ ds - dy 2

:\/d§+d§—(2n+1)d2+n2+2n+3\/n+1
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242
:\MQc@+d,f@n+1y+ﬁjlﬁiévn+1

do
< Vdaov/n? —4n 4+ 13v/n + 3.

Moreover, we have:
> B+ d/d;
)

vzv; €EE(G

Va2 + d3dy + \/d} + d3\/da
<\ B+ B+ B+ BV d
<V2Vn2 —dn+8vn+1

< VdzV/n? —4n + 13Vn ¥ 3.

(SX)3

As well as, we have

(SX)a= Y, Jdd+d3\/d;
(@)

v4v; €E

<\ B+ +E BV

=B +12Vd +2<V/(n =22 +12Vn —2+2
= V/n? —dn +16v/n < \/ds/n? — dn +13v/n + 3.

Similarly, for ¢ = 5 we have:

(SX)5 < VdsvV n? —4n + 13v/n + 3.

Also we have:

(5X)6

S BBV
vev; EE(G)
= i3+ BVl =1+ BVl < VT (n- 22V~ 2
=V/n? —4dn+5vVn—2 < v/n? —4n+13vn + 3.

Similarly, for i > 7 we have:
(SX); < vVn?—4n+13vn+ 3.

Therefore, we have SX < vn? — 4n + 13v/n + 3X and so
p1(G) < Vn? —4dn +13v/n + 3. O
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Lemma 3.4. Let G = G2 \ {Gr}, then

p1(G) < vVn? —4n+13vn + 2.

Proof. We know that d3 =dy =ds =2,ds =...=d, =1, dy,do < n—3 and
dy + do = n + 1. Therefore,

(SX)n= > \Jdi+d2/d;

v1v; EE(G)

= /& + d3\/dy + [ 2 + Bdy + \[d3 + d2\/ds + (di —3)y/d2 + 1

S\ 4 B B d 2t (dy - 3)(d 1)y +da s+ dy -3

= \/d‘i’—l—df—(Qn—l—l)dl +n2+2n+6vVn+2
242
=\hh¢ﬁ+d1—@n+1%+n4£n+6Vn+2
1
< Vdivn? —4n+13vn + 2.

Similarly to the above we have

X))o < V/dov/n?2 —4n 4+ 13vn + 2.

oo B+ 3/

v3v; EE(G)

B+ B3 dy + [ dE + d3/dy
<\ B+ B+ &+ A3+ d
<V =32+12v/n -1

< J@\/nQ n+13vVn+2

Similarly to the above we have

X4<\/d4\/n2—4n+13\/n+2.

Also we have:

@
>

P
I

For (SX)s we can see:

(SX)s= Y. Jd+d2\/d;

vsv; EE(G)

= \[dZ + d3\dy + /2 + d3\/d>
<¢ﬁ+ﬁ+@+£vm+@
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V2(n—3)2+8V/n+1

\Vdsvn? —4n +13vn + 2.

<
<

As well as we can see:

(SX)e = Z VA& + d3\/d;

vv; EB(G)
— &+ A < =3 1A=
<Vn? —dn+13vVn + 2.

Similarly for ¢ > 7 we have
(SX)i < V/n2? —4n + 13vn + 2.

Therefore, we have SX < vn2 — 4n + 13v/n + 2X and so
p1(G) < Vn? —dn +13v/n + 2. O

Lemma 3.5. Let G = G5\ {Gs}, then

p1(G) < vVn? —4n+13v/n+ 3.

Proof. We know that d3 = dy = 2, ds = ... = d, = 1, di,dy < n—2 and
dy 4+ do = n + 2. Hence,

(SX)= Y B/
)

V1V; GE(G

= \/d3 + d3\/dy + /2 + d2\/d3 + \/d2 + d3\/dy + (dy — 3)\/d3 + 1

SV BB+ B+ dE A+ (dy—3)( B+ 1)\dy + ds+ da +dy - 3

= /& +dF — (20 + 3)ds +n? +4n + 9V 13

> an+9
_ \/dl\/df—kdl —2n+3)+ %\mw
1

2 4 dn+9
< \/dl\/d% Y- (2n+1)+ %\/nm
1
<AVdivn? —4n +13vn + 3.

Similarly, we have:

(SX)Q < AVdav n? —4n + 13v/n + 3.
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Also we can see:

(SX)s= > \Jd3+d3/d;

v3v; EE(G)
= \/d} + d3Ndy + /&3 + d3\/d>
<¢ﬁ+ﬁ+@+£vm+@
V2(n—2)2 +8Vn +2

<
< Vdsvn? —4n +13vn + 3.

Similarly, we have:

X4 < V/davV/n?2 —4dn+13vn + 3.

Moreover,

(SX)s= Y \JdZ+d2\/d;

vsv; €EE(G)

=\/d2+d2\/d, = \/m\f< Vin—=22+1vVn -2
<Vn2 —dn+13Vn + 3.
Similarly, for i > 6 we have:
(SX); < V/n? —4n +13vn + 3.

Therefore, we have SX < vVn?2 —4n + 13v/n + 3X and so
p1(G) < Vn? —4n +13v/n + 3. O

Lemma 3.6. Let G = G4 \ {Go}, then

p1(G) < vVn?2 —4n+13v/n+ 3.

Proof. We know that d3 = 3,dy = 2,d5s = ... =d, =1, di,do < n—2 and
dy + do =n + 1. Hence,

(SX)n= Y Jd+d\/d;

v1v; €EE(G)

= \/d? + d3\/do + \/d? + d3\/dz + \/d? + d3/da + (dy — 3)\/d3 + 1

SVB BB+ B+ B+ E 4 (dy—3)( B+ 1)l + s+ da +dy 3

::¢ﬁ+d%f@n+nmﬂﬂﬁ+2n+ﬂdn+3
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242 11
< \/dl\/d§+d1 —@2n+1)+ %\/nm
1
< \/dil n? —4n 4+ 13v/n + 3.

Also we have:

(SX)e= Y ,/d2+d2\ﬁ

v2v; EE(G

\/d3 +d%\/d1 +1/d3 + d3\/ds + (da — 2)4/d3 + 1
<\ d 3+ BBt (dy — 2)(d3 + 1)V + s+ dy 2

242
R
2
< Vdavn? —4n + 13v/n + 3.

Moreover, we have:

(SX)s= Y, 1/d?+d2\f

v3v; EE(G

:\/d§+d§\/d1+\/d§+d§\/d2+\/d§+d§\/d4
g\/d2+d2+d§+d§+d2+d2\/d1+d2+d4
<V2(n—2)24+31vVn +3 < Vd3V/n? —4n + 13v/n + 3.

(SX)a= Y Jdd+d2\/d;

v4v; EE(G)
<G+ B+ B+ BV d
<V —22+17Vn+1
< Vda/n? —4n +13Vn + 3.

As well as

Also we can see:

(SX)s= > \Jd2+d2\/d;

vsv; EE(G)

\/d2+d2f Vin—22+1Vn -2

<vVn?—4dn+13vn+ 3.
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Similarly, for ¢ > 6 we have:

(SX); < Vn? —4n+ 13vn + 3.

Therefore, we have SX < v/n? —4n + 13v/n + 3X and so
p1(G) < Vn? —dn +13v/n + 3. O

Lemma 3.7. Let G = G5, then

p1(G) < vVn? —4n +13v/n + 3.

Proof. We know that dy =4,do =n—3,d3=dy=ds =2anddg=...=d, = 1.
Hence,
(SX)n= Y. Jd+d/d;
Ul’UjEE(G)

=\/d3 + d3\/dy + &} + d3\/ds + \/d} + d3\/dy + \/d3 + d2\/ds

S\ B+ BAE B+ B+ B+ dE BN+ s+ d

=4/n?2 —6n+85vn+3<Vdivn?—4n +13v/n + 3.

Also we have:
o B+ d/d;

v2v; EE(G)

VA2 + B\dy +\/dE + d3\/ds + \/dE + 1(n—5)

<¢£+d%ﬁ@+ﬁ+&£+ﬁxn—m¢¢+dywn—m
<V2n—=3)2416+4+((n—32+1)(n—3)vVn+1
2
:\/n—3\/(n—3)2+2(n—3)+1+03\/71—}—1
n—
< Vdavn? —4n +13vn + 3.

(SX)2

As well as

(SX)s= > \Jdi+d2/d;

v3v; EE(G)

\VdZ+d3/dy +\/d%+ d3\/do

<\ B+ @+ &+ B

=4/n?2 —6n+33vn+1<\dsvn2 —4n +13v/n + 3.
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Moreover

(8X), = Z Va3 + d2\/d;

v4v; EE(QG)
= &+ 4+ 2
S\ a2+ dy = 2V,
Similarly we can see (SX)5 < 2/492.

(5X)g = Z \/ A2+ d2\/d;
@

vev; EE
=/d? + d3+\/d2 = \/n? —6n+ 10v/n — 3
<Vn?2 —4n+13vn + 3.

Similarly, for ¢ > 7 we have:

(SX); < Vn? —4n+13vn + 3.
Consequently, we have SX < v/n2 —4n + 13v/n + 3X and so

p1(G) < Vn? —4dn +13v/n + 3. O
Lemma 3.8. Let G = Gg, then
1 (G) < V/n? +2n+2v/n + 3.
Proof. We know that dy =n—1,dy =d3=dy=ds =2anddg=...=d, = 1.
Hence,
(SX)h= Y, Jdd+d3/d;
)

V1V EE(G

=\/d? + d3\/da 4+ \/d3 + d%r\/ds + \/d3 4+ d3\/dy + /A2 + d3+\/d5
+4/d? +1(n —5)
< \/d§+d§+d§+d§+d§+di+d%+d§+(d%+1)(n—5)
\/d2—|—d3—|—d4—|—d5—|—n—5

<VAN—1)24+ 16+ ((n—1)2+1)(n—1)vVn +3

1
\/n1\/(n1)2+4(n1)+1+n_61\/n+3
<Vdi/(n—1)2+4(n—1)+5/n+3
=+/diVvn2+2n+2vVn+ 3.
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Also we have:

(SX)2= > \Jdd+d2/d;
)

v2v; EE(G
=/} + d3\/dy +\/d}+ d3/d3
< \/d§+d§+d§+d§m
<Vn2—2n+13vVn+1
< VdaV/n2 + 20+ 2v/n + 3.

Similarly, for 3 < ¢ < 5 we have:

(SX); < \V/div/n2 +2n + 2v/n + 3.

And

(SX)e= > Jd2+d2/d;
)

UGUJ'EE(G
=/di+d3\/dy =vn?—2n+2vVn—1
<AVn24+2n+2vn+ 3.

Similarly, for ¢ > 7 we have:

(SX)i < Vn?+2n+2vVn+3.

Therefore, we have SX < vn2 + 2n + 2v/n + 3X and so

p1(G) < Vn2 +2n +2y/n + 3.

Lemma 3.9. Let G = Gy, then

p1(G) < vVn?2 —n+4vn+2.

Proof. We know that dy =n—2,do =3,d3=dy=ds =2and dg =...
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Hence,

(SX)1

o+ d2/d;
(@

v1v;€E
,hﬁ+d%ﬂ£+\hﬁ+dﬁﬂ£+\hﬁ+d@ﬂg+xﬂgizm—5)
<¢ﬁ+d§+£+d}ﬂﬁ+ﬁ+@ﬁ+nm—5hmyuu+%+n—5
<V3N—22417+((n—2)2+1)(n—2)vVn+2
=m\/(n_z>2+3(n_2)+1+nl_72m
<Vdi/(n—2)24+3(n —2) +6vn + 2

— VA V/n? —n+4vn 2.

Also we have:

(SX)a= > \Jdi+d2/d;

v2v; EE(G)

= B+ BV + A3+ d3/ds + /i + d2/ds
<\ Bt d 4 gt a2+ ds

< V2 —4n+39vn+2
< \/CTQ\/n2 —n+4vVn+ 2.
As well as
(SX)s= Y Jd+d2\/d;
v3v; EE(G)
= \/d2 + d3\/dy +\/d2 + d3\/da
<\JB+ @3+ a3+ B\/dy + di = V/105.
Moreover

(SX)a= Y. Jdd+d\/d;
)

V4V EE(G

=\/di + diV/dy +\/di + d3\/d3
<¢ﬁ+ﬁ+ﬁ+@vm+@
Vn?2 —4n + 16y/n

Vdavn? —n+4vn + 2.

NN
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Also we can see:

(SX)s= > \Jd2+d2/d;

vsv; EE(G)

= /&2 + d3\dy + 2+ A3 dy
<¢ﬂ+ﬁ+@+@«a+@
vn?—4dn+21vVn+1
Vds\/n? —n+4vn + 2.

<
<

And

(SX)s= Y. Jd+d2\/d;

v50; €E(G)
= /& +d3/di =/n? —dn+5Vn 2
<Vn2—n+4vnr2.
Similarly, for ¢ > 7 we have:
(SX)i < V2 —n 4 dvn T 2.
Therefore, we have SX < vn2 —n + 4v/n + 2X and so
pi(G) <Vn2 —n+4yn+2. O
Lemma 3.10. Let G = Gg, then

u1(G) < Vn?+n+5vVn+3.
Proof. We know that dy =n—1,d,=3,d3=dy=2andd;s=...=d, =1.

Hence,
> ./d24-d2\/"

v1v; €EE(G
\M?Hﬁ¢£+\w?ﬂﬁ¢£+\M?HﬁJi+\M?+Mn—®
<\/d%+d§+d%+d§+d%+d§+(d%+1)(n—4)\/d2+d3+d4+n—4
<V3n—12417+((n—1)2+1)(n—1)vVn+3
m\/(n1)2+3(n1)+1+nl_71m
<Vdi/(n—124+3n-1)+7Vn +3

= VdiVn? +n+5vVn+ 3.

(SX)
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Also we have:

(SX)e= Y JdB+d2\/d;
(@)

V2V (S

= B+ BV 4B+ B+ [+ BV
B+ R d3 o+ B/t s+ d
= V/n? —2n 1 36vin + 3

<\/£\/n2+n+5 n + 3.

As well as

(SX)s= S JB+EVTG

v3v; EE(G)

V&3 + d3/di + [ dE+ d3/do
S\ B &+ &+ A3+ ds
=vn?2-2n+18vVn+2
<VdsV/n?+n+5Vn+ 3.

Similarly (SX)s < VdyvVn? +n+5v/n +3. And

(5X)5 = Z \/ @2+ d3\/d;

vsv; EE(G)
= /A2 +d3\/di = /n2 —2n+2Vn—1
<vn?+n+5/n+3.

Similarly, for i > 6 we have:

(SX); < Vn?2+n+5vVn+3.

Therefore, we have SX < vn2 +n + 5v/n + 3X and so

1 (G) < VnZ+n+5yn+3. O

Lemma 3.11. Let G = Gy, then

w1 (G) < Vn?2 —2n+T7vVn+3.
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Proof. We know that dy =d3s =3, do=n—2,dy=2andds=...=d, =1.
Hence,

(SX)n= > \Jdi+d/d;
(@)

vV1V; ck

=\ &3 + d3\/do + £/ d3 + d2/dy + /3 + d3\/da
<\/d§+d§+d%+d§+d§+d§\/m

= V/n? —dn+ 44vn ¥ 3

<\/a\/m n+ 3.

Similarly we have

(SX)3 < \/dsv/n? — 2n+ 7Vn + 3.

Also we have

(5X)p= 3 \JB+EVEG
)

vav; EE(G

= \[d2+ d2\/dy + \[dE + d2\/ds + \[d2 4+ 1(n — 4)
< \/d§+d%+d§+d§+(d§+1)(n74)\/d1+d3+n74
<V2n =224+ 18+ ((n—2)2+1)(n—2)vVn +2

18
:\/n—Q\/(n—2)2+2(n—2)—|—1+H\/n+2

<Vdo/(n =22 +2(n—2) + 7vn + 2
= \/@\/n2—2n+7\/n+2.

As well as

(5X), = Z NC R

v4v; EE(Q)

= B BT\ B

< \/d?l +d3+d3 +d3/dy + ds = V156.
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And

(SX)s= > Jd2+d2/d;

vsv; EE(G)
— & + BVI = VP —dn+5/n =2
<Vn2—2n+7/n 1 3.
Similarly, for ¢ > 6 we have:
(SX); < V/n2 —2n+TVn +3.

Therefore, we have SX < vn2 —2n + 7v/n + 3X and so 1 (G) < vVn2 —2n + Tv/n + 3.

O
Theorem 3.12. If G is a bicyclic graph of order n > 7, then
w1 (G) < \/mm
Proof. By Lemmas 3.2 to 3.11, it is clear. O

Corollary 3.13. Let G be a bicyclic graph of order n > 7, then

1 2
4&% < i (G) < V2 + 2n+ 2v/n + 3.
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