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Experimental results on the number of perfect
matchings in graphs of Latin rectangles

Fariha Iftikhar and Gábor P. Nagy

Abstract. Latin rectangles, perfect matchings, and 1-factorizations of regular bipar-
tite graphs are closely related through combinatorial constructions. We give a survey of
classical results concerning the existence and enumeration of perfect matchings in bipar-
tite graphs, including König’s and Hall’s theorems, as well as lower bounds provided by
van der Waerden, Voorhoeve, and Schrijver. We discuss the connection between Latin
rectangles and k-factorizations of regular bipartite graphs, highlighting that every k × n

Latin rectangle corresponds to a k-regular bipartite graph with 2n vertices. In 1986,
Bollobás and McKay presented the asymptotic estimate for the expected number of per-
fect matchings in random k-regular bipartite graphs. Motivated by this probabilistic
result, we performed numerical experiments on the average number of perfect matchings
in random 3-regular bipartite graphs arising from Latin rectangles. Our computational
results, based on calculating matrix permanents for subsets of Latin squares, show strong
agreement with the Bollobás-McKay asymptotic formula.

1. Introduction

This paper explores the connection between Latin squares, Latin rectangles,
and perfect matchings of bipartite graphs, with a primary focus on bicubic
graphs, which are bipartite graphs where each vertex in one vertex set is
connected to three vertices in the other set. Classical results by König,
Hall, and van der Waerden laid the foundation for this field, while mod-
ern advancements have provided sharper lower bounds on the number of
perfect matchings. The result by Schrijver established a tight lower bound
on the number of perfect matchings in k-regular bipartite graphs. Further-
more, probabilistic approaches have improved these deterministic results.
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In addition, Bollobás and McKay provided asymptotic estimates for the ex-
pected number of perfect matchings in random k-regular bipartite graphs,
demonstrating that these graphs typically have a large number of perfect
matchings.

A k-factorization of a regular bipartite graph corresponds to a k × n
Latin rectangle, and algorithms to find perfect matchings play a central
role in their generation. For any k × n Latin rectangle, one can associate a
k-regular bipartite graph on 2n vertices in a unique way.

In this article, we begin by outlining key definitions and classical results
related to Latin rectangles and perfect matching in bipartite graphs. In
Section 2, we formalize the connection between k-regular bipartite graphs
through 1-factorizations, providing illustrative examples. Section 3 surveys
foundational and modern lower bounds on the number of perfect matchings,
including those by van der Waerden, Voorhoeve, and Schrijver. In Section
4, we shift our focus to probabilistic methods, highlighting the asymptotic
results of Bollobás and McKay. We conclude this section with our numer-
ical experiments on the average number of perfect matchings in random
3-regular bipartite graphs, which support the theoretical estimates.

2. Preliminaries

A Latin square of size n is an n×n array filled with n symbols, where each
symbol is used exactly once in every row and column. A Latin rectangle is
a k× n array with n symbols where k 6 n, any symbol occurs exactly once
in each row and at most once in each column. Two Latin rectangles are
isotopic (or similar) if one can be obtained from the other by permuting
the rows, columns, and symbols. (See [17].)

A graph is an ordered pair G = (V,E), where V is the set of vertices
and E is the set of edges. In our study, we use G as a simple graph: a
graph with no multiple edges and no loops. The degree of a vertex v ∈ G
of a graph G is the number of edges incident to v. The graph G = (V,E)
is called regular if each vertex v of G has the same degree. A regular graph
G with degree 3 is also called a cubic graph.

A graph G = (U1 ∪ U2, E) is a bipartite graph if its set of vertices can
be partitioned into two disjoint subsets U1 and U2 so that each edge of the
graph has one end in U1 and the other end in U2. A bipartite cubic graph
is called bicubic graph. Let (U1 ∪ U2, E) be a bipartite graph with parts
U1, U2, ` = |U1|, r = |U2|. Its bi-adjacency matrix B is a `× r (0, 1)-matrix
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where bij = 1 if and only if (ui, u′j) ∈ E. Notice that B depends on the
labeling of the vertices of G; changing the labeling means a permutation of
the rows and columns of B.

A k-factor of a graph G, where k is a positive integer, is a set of edges of
G such that each vertex ofG is incident with exactly k of them. A 1-factor of
a graph G is known as a perfect matching of the graph. According to König’s
theorem, the set of edges of a k-regular bipartite graph can be partitioned
into k disjoint perfect matchings. This partition is a 1-factorization of a
k-regular bipartite graph.

The permanent of an n× n matrix A = (aij) is defined as

Per(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i)

A matrix is a (0, 1)-matrix if all its entries are from {0, 1} ⊆ R. The
permanent of a (0, 1) matrix is related to the number of perfect matchings
of a bipartite graph.

Theorem 2.1. Let G = (U1 ∪ U2, E) be a bipartite graph, |U1| = |U2|, and
B its bi-adjacency matrix. The number of perfect matchings of G is Per(B).

The relationship between Latin rectangles and perfect matchings is a
fascinating topic of combinatorics and graph theory. Algorithms designed
to find perfect matchings in bipartite graphs can be used to construct Latin
rectangles and vice versa. Roughly speaking, by interpreting Latin squares
in terms of edge-colored bipartite graphs, Latin rectangles, and ordered
1-factorizations of regular bipartite graphs turn out to be the same thing.

We refine this loose formulation for greater precision. Let A = (aij)
be a k × n Latin rectangle with entries 1, . . . , n. Let S = {s1, . . . , sn},
C = {c1, . . . , cn} be disjoint sets; we can think of them as the set of symbols
and the set of columns of A. For m ∈ {1, . . . , k}, define

Em = {{si, cj} | amj = i, that is, row m and column j has symbol i in A}.

Write E = ∪km=1Em, and G = (S ∪ C,E). Then G is a k-regular bipartite
graph, and E = (E1, . . . , Em) is an ordered 1-factorization of G.

Conversely, let F be a 1-factorization of a k-regular bipartite graph G =
(U1∪U2, E). First, we have to label the elements, U1, U2 with 1, . . . , n, and
the 1-factors in F with 1, . . . , k: U1 = {u11, . . . , u1n}, U2 = {u21, . . . , u2n},
F = {F1, . . . , Fk}. Then, we write aij = m if and only if the vertices
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u1j , u2m are adjacent and {u1j , u2m} ∈ Fi. The matrix A = (aij) is a k× n
Latin rectangle.

Change in the labeling of U1, U2 or F corresponds to permuting the
columns, symbols, and rows of A. Hence, different Latin rectangles as-
sociated with G are isotopic, and isotopic Latin rectangles correspond to
isomorphic 1-factorizations.

For example, the 3× 7 Latin rectangle

A =

6 2 1 5 3 7 4
3 6 2 4 1 5 7
1 4 5 7 2 6 3

 (1)

corresponds to the edge-colored bipartite cubic graph G given in Figure 1.
The colors of the edges form the factors of the 1-factorization.
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symb2
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symb6

symb7

Figure 1: 3-regular bipartite graph constructed from a 3×7 Latin rectangle

The bi-adjacency matrix of G is
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B =



1 0 1 0 0 1 0
0 1 0 1 0 1 0
1 1 0 0 1 0 0
0 0 0 1 1 0 1
1 1 1 0 0 0 0
0 0 0 0 1 1 1
0 0 1 1 0 0 1


. (2)

The entry 1 shows that there is an edge between the vertices ci and sj ,
where 1 6 i, j 6 7, and the entry 0 tells us that there is no edge between
the vertices ci and sj , where 1 6 i, j 6 7. As we can see in the matrix B,
each row and column sums up to 3. Generally, B is an n× n (0, 1)-matrix
so that each row and column sum equals k.

3. The minimum number of perfect matchings

In the early 20th century König’s theorem [8] established the relation be-
tween the maximum cardinality of a matching in a bipartite graph and the
minimum cardinality of a vertex cover. This result paved the way for the de-
velopment of algorithms to find perfect matchings. In the mid-20th century,
Philip Hall [5] proved Hall’s Marriage Theorem, which provides a necessary
and sufficient condition for the existence of perfect matchings in bipartite
graphs, fundamentally linking combinatorics and set theory. These results
are constructive; their augmenting paths lead to a practical algorithm to
find a perfect matching in bipartite graphs. In general, the Hungarian Al-
gorithm ([9, 12]) determines a minimum-weight perfect matching in the
edge-weighted complete bipartite graph.

In this section, we are interested in the number of perfect matchings in
regular bipartite graphs. For any k, n, let B(n, n; k-reg) be the set of all k-
regular bipartite graphs with n vertices in each part upto isomorphism and
let p(k, n) = minX(G), where G ∈ B(n, n; k-reg) and X(G) be the num-
ber of perfect matchings in any k-regular bipartite graph with 2n vertices.
Trivially, p(1, n) = 1.

In a 2-regular bipartite graph, each connected component is an even
cycle. If a 2-regular graph G has r connected components (or even cycles),
then the number of perfect matchings of G is 2r. Hence, p(2, n) = 2.
The graphs with exactly two perfect matchings are the cycle graphs on 2n
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vertices. For the 2×n Latin rectangle A, the associated 2-regular bipartite
graph has exactly two perfect matchings if and only if αβ−1 is a cyclic
permutation on n points, where α, β are the permutations given by the
rows of A.

Doubly stochastic matrices are square matrices of nonnegative real num-
bers where each row and column sums to 1. If B is the bi-adjacency matrix
of a k-regular bipartite graph G, then 1

kB is doubly stochastic. Hence, by
Theorem 2.1, the value p(k, n) is related to the permanent of doubly stochas-
tic matrices. The Dutch mathematician B. L. van der Waerden proposed
the following conjecture in 1926.

Conjecture 1 (van der Waerden 1926 [15]). The permanent of any doubly
stochastic n× n matrix should be at least n!/(nn).

Notice that with the all-one n×n matrix J , we have Per( 1nJ) = n!/(nn),
hence the lower bound is sharp. As for any bi-adjacency matrix B, 1

kB is
doubly stochastic, van der Waerden’s conjecture would imply

p(k, n) >
n!kn

nn
≈
√
2πn · (n/e)n · kn

nn
=
√
2πn

(
k

e

)n
. (3)

In 1981, Falikman [4] proved van der Waerden’s conjecture, and Ego-
rychev [2] refined his result in the same year. Several years earlier, in 1968,
Erdős and Rényi [3] extended this line of inquiry by conjecturing bounds
for the permanent of matrices with prescribed row and column sums.

Conjecture 2 (Erdős and Rényi 1968 [3]). For every ε > 0, there exists
an n× n nonnegative integer matrix with all row and column sums equal to
k, such that the permanent of the matrix is at least (1 + ε)n for sufficiently
large n.

In 1979, Voorhoeve [16] resolved the case where k = 3. Voorhoeve’s
findings demonstrated that in the Erdős-Rényi conjecture, ε can be as small
as 1/3.

Theorem 3.2 (Voorhoeve 1979 [16]). A 3-regular bipartite graph with 2n
vertices possesses a minimum of (4/3)n perfect matchings.

The method used by Voorhoeve for the proof of case k = 3 is considered
elementary and is explained in the book by Lovász and Plummer [10]. With
considerable effort, this idea was generalized for any value of k by Schrijver
[13] in 1998.
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Theorem 3.3 (Schrijver 1998 [13]). The lower bound for the perfect match-
ings of a k-regular bipartite graph with 2n vertices is

((k − 1)k−1/kk−2)n

For large k (and n), we have

(k − 1)k−1

kk−2
=

((
1− 1

k

)k) k−1
k

· k ≈ k

e
.

Hence, for large k, Schrijver’s and van der Waerden’s lower bounds differ
only in the factor

√
2πn. The best bound known on the 1-factorizations of

a k-regular bipartite graph follows Schrijver’s theorem.

Corollary 3.4 (Schrijver 1998 [13]). The number of ordered 1-factorizations
of a k-regular bipartite graph is at least(

(k!)2

kk

)n
This expression is also a lower bound for the number of k× n Latin rectan-
gles.

Proof. As we know, each Latin rectangle A can be associated with a k-
regular bipartite graph, and the rows of A determine the 1-factorizations
of the graph. The problem of counting the number of Latin rectangles of a
given order is equivalent to counting the number of ordered 1-factorizations
in the Kn,n graph.

Let G be a k-regular bipartite graph on 2n vertices. We can choose a
perfect matching F1 in at least p(k, n) ways. A disjoint perfect matching
F2 can be chosen from G− F1 in at least p(k − 1, n) ways, etc. Hence, the
number of ordered 1-factorizations is at least

k∏
`=1

p(`, n) >
k∏
`=2

(
(`− 1)`−1

``−2

)n
.

By straightforward calculation,
k∏
`=2

(`− 1)`−1

``−2
= 1 · 2

2

31
· 3

3

42
· 4

4

53
· · · (k − 1)k−1

kk−2

= 1 · 2
2

1
· 3

2

1
· 4

2

1
· · · (k − 1)2

kk−2

=
(k!)2

kk
.
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4. Average and exact number of perfect matchings

In addition to the deterministic lower bounds for the number of perfect
matchings in k-regular bipartite graphs, probabilistic methods have also
been used to study the average behavior of such graphs. In a remarkable
result, Bollobás and McKay [1] provided an asymptotic estimate for the ex-
pected number of perfect matchings in a random k-regular bipartite graph
with 2n vertices. Their result shows that, for sufficiently large n, the ex-
pected number of perfect matchings grows exponentially with n for a fixed
degree of regularity k > 3. This estimate complements the earlier determin-
istic bounds and highlights the abundance of perfect matchings in random
regular bipartite graphs.

Theorem 4.5 (Bollobás and McKay 1986 [1]). Let k = k(n) be an integer
satisfying 3 6 k 6 (log n)1/3, and let B(n, n; k-reg) denote the probability
space consisting of all k-regular bipartite graphs with n vertices in each part.
For a graph G in this space, let X(G) denote the number of perfect matchings
in G. Then the expected number of perfect matchings in G is

E[X] = (1 + o(n−3/4)) · e−1/2 ·
(
2π(k − 1)n

k

)1/2

·
(
(k − 1)k−1

kk−2

)n
For k = 3, this result means that for sufficiently large n, the average

number of perfect matchings is approximately√
4πn

3e

(
4

3

)n
. (4)

If k = 3, then the condition on n is n > 227 ≈ 1.34× 108.
For some specific Latin rectangles, we know the exact value of the num-

ber of perfect matchings in the associated bipartite graph.

Theorem 4.6 (Minc 1964 [11]). Let n > 3 be an integer, and define the
3× n circulant Latin rectangle

A =

1 2 · · · n
2 3 · · · 1
3 4 · · · 2

 .
Then, the number of perfect matchings of the associated bicubic graph G is

X(G) =

(
1 +
√
5

2

)n
+

(
1−
√
5

2

)n
+ 2.
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We conclude this section with a straightforward observation on discon-
nected bicubic graphs. Recall that the disjoint union (also called graph
sum) of bipartite graphs Gi = (Ci ∪ Si, Ei), i = 1, 2, is

G1 ⊕G2 = (C1 ∪ C2 ∪ S1 ∪ S2, E1 ∪ E2),

with parts C1∪C2 and S1∪S2. Clearly, we haveX(G1⊕G2) = X(G1)X(G2)
for the number of perfect matchings.

Proposition 4.7. Let A be a 3 × n Latin rectangle, and let α1, α2, α3 be
the permutations corresponding to the rows of A. Assume that for i, j ∈
{1, 2, 3}, the permutations αiα−1j are commuting involutions. Then the as-
sociated bicubic graph G has 3n/2 perfect matchings.

Proof. Let A′ be the 3×n Latin rectangle obtained from A by applying α−11

to the columns. Then the rows of A′ are 1, α2α
−1
1 , α3α

−1
1 , and the bicubic

graphs B,B′ of A and A′ are isomorphic. Moreover, B′ is the disjoint union
of bicubic graphs D1, . . . , Dn/4 on 8 points. Such a graph Di is K4,4 minus
a perfect matching, which means that it has X(Di) = 9 perfect matchings.
We obtain X(B′) = 9n/4.

We remark that 1+
√
5

2 ≈ 1.618 and
√
3 ≈ 1.732, hence the number of

perfect matchings in Minc’s Theorem 4.6 and Proposition 4.7 is significantly
higher than that for random 3-regular bipartite graphs (4).

5. Experimental results on the average number
of perfect matchings

To complement the theoretical result stated in Theorem 4.5, we conducted
numerical experiments to investigate the average number of perfect match-
ings in random 3-regular bipartite graphs. Since, as in Theorem 2.1, the
number of perfect matchings in a bipartite graph equals the permanent of
its biadjacency matrix, we approached this by computing the permanents of
the corresponding matrices. For the permanent, we used a straightforward
recursive algorithm, which works for sparse matrices. For small values of
n, we double-checked the results against the permanent functions in Sage-
Math [14]. This approach was computationally efficient due to sparsity and
the manageable size of 3× n matrices. For random Latin squares of orders
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(a) Random triples (b) All triples

Figure 2: The average number of perfect matchings for triples of rows in
random Latin squares

ranging from 10 to 40, we made a C++ implementation of the Jacobson-
Matthews method [7], adapted from the Go language program [6] by Paul
Hankin.

In the first experiment, for each order n ∈ {10, . . . , 40}, we generated
100 random Latin squares. For each square, we constructed the n×n (0,1)-
matrix A associated to the first three rows, and computed its permanent.
Figure 2a displays our experimental results.

In the second experiment, for five random Latin squares of order 20 to
40, we performed exhaustive analysis by calculating the permanent of every
possible combination of three rows. The resulting data were aggregated by
computing mean permanent values for each set of experiments. A graphical
visualization, Figure 2b, was prepared to illustrate the growth trends and
distribution patterns across different orders and trial sizes. In both plots,
the dotted line shows the theoretical values of the Bollobás-McKay estimate.

Finally, we were interested in the o(n−3/4) term of the Bollobás-McKay
formula. For our date, we computed the z(n) = ymeasured(n)/yestimated(n)−1

n−3/4 .
As shown in Figure 3, the values of z(n) seem to increase in this range.

Conclusion

Our investigation integrates the classical combinatorial theory with exper-
imental analysis, confirming that the average number of perfect matchings
in various classes of 3-regular bipartite graphs grows rapidly with the graph
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Figure 3: The quotient ymeasured(n)/yestimated(n)−1
n−3/4

size. Even for small values of n, the experimental results show strong agree-
ment with the asymptotic estimate given by the Bollobás-McKay formula.
Moreover, special constructions such as cyclic permutations or commuting
involutions demonstrate how specific structural properties can lead to sig-
nificantly higher than average matching counts. These observations open
up further directions on extremal configurations and the development of
efficient enumeration methods for perfect matchings.
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