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Endomorphisms of abelian group isotope

semisymmetrizations

Kyle M. Lewis

Abstract. Semisymmetrization and Mendelsohnization allow quasigroup homotopies to
be reduced to homomorphisms. We demonstrate the semisymmetrization of an abelian
group isotope is isomorphic to the direct product of its Mendelsohnization and another
specific isotope if and only if its order is not divisible by 3. We also provide an example

of a quasigroup such that the idempotent replica of its semisymmetrization is trivial.

1. Introduction

Quasigroup homotopies can be preferable to homomorphisms in some con-
texts, such as incidence geometry [5]. However, they lack certain convenient
algebraic properties - for example, equational identities often fail to be pre-
served under homotopic images [1]. The semisymmetrization functor A,
described by Smith [5], as well as the similar Mendelsohnization functor
', described by Krapez and Petri¢ [2], allow homotopies between arbitrary
quasigroups to be converted into homomorphisms between semisymmetric
quasigroups. In fact, the category of quasigroups with homotopies can be
shown to embed as a subcategory of the category of semisymmetric quasi-
groups with homomorphisms.

In the specific case where a given quasigroup ) is isotopic to some
abelian group A, Smith [6] demonstrated (using slightly different notation)
that the following sequence is exact:

05A4A-5Q°=>Q" >0

where (4, 0) is the totally symmetric isotope [7] [8] of A defined by aob =
—a —bfor a,b € A. Further, Q' is isomorphic to the idempotent replica
V(Q?) of @A, the largest idempotent quotient of Q4.

2010 Mathematics Subject Classification: 05B07, 20N05
Keywords: quasigroup, semisymmetric quasigroup, semisymmetrization



280 K. M. Lewis

The main result of this paper is to prove:
0-Q" Q= A—-0

is also exact, and A is isomorphic to the largest commutative quotient of
Q*. Stronger, if and only if 3 1 |@| then Q* = Q' x A. We also show Q' is
distributive, and give an idempotent endomorphism X of Q2 fixing the Q"
subquasigroup when 31 |Q|.

More, we provide an answer in the negative for problem 5.3 of [6] regard-
ing whether QU = V(Q?) in the general case; indeed, we give an example
of a quasigroup for which V(Q?) is trivial.

2. Preliminaries
A quasigroup (Q,-,/,\) is a set @ with binary operations (-, /,\) such that

a\(a-b) =0
a-(a\b)=">
(a-b)/b=a
(a/b)-b=a

For brevity, we may denote a - b by juxtaposition ab, and ab - ¢ is to be
interpreted as (a - b) - ¢. Throughout this paper we assume all quasigroups
to be finite. A given quasigroup is

o semisymmetric if ab-a = b or equivalently a - ba = b
e idempotent if aa = a

e commutative if ab = ba

o distributive if a - bc = ab-ac and ab- ¢ = ac- be

e Mendelsohn if semisymmetric and idempotent

o totally symmetric if semisymmetric and commutative

A homotopy between quasigroups ¢ : Q1 — Q2 is a triple of functions
(¢1, b2, ¢3) such that ¢y (a)-pa(b) = ¢s3(c); if P1, P2 and ¢3 are permutations
then ¢ is an isotopy and @ is said to be an isotope of Q2 and vice versa.
If 1 = ¢ = ¢3, then ¢ is a homomorphism or an isomorphism if bijective.
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Given a quasigroup (), we can construct the semisymmetrization (QA, *)
defined on the direct cube Q3 of the underlying set of Q as:

[a,b,c] x [d, e, f] = [f/b,d\c, ae]

Q* is always a semisymmetric quasigroup. Given a homotopy ¢ : Q1 — Q2
then then

¢A : QIA — Q2A7 [av b, C] = [¢1 (a)> ¢2(b)’ ¢3(C)]

is a homomorphism [5].
Likewise, the Mendelsohnization (QF, ) is defined on the direct square
Q? of the underlying set as:

[a, 0]  [c,d] = [(ad) /b, c\(ad)]
Q' is always a Mendelsohn quasigroup and
¢" QY = Qy:ifab] = [d1(a), $2(b)]

is a homomorphism [2], [6].

In particular, if ()1 is isotopic to Q2 then Qf‘ = QZA and Q' =~ Q5. In
proofs up to isomorphism, if () is a quasigroup isotopic to abelian group A,
without loss of generality we will perform calculations in Q®, Q" in their
isomorphic copies A®, A using additive notation for the sake of conciseness
and clarity.

In [6], Smith identifies the subquasigroup of elements [a,a, —a] € Q> as
the kernel of a homomorphism p: Q* — Q' sending [a, b, c] — [a 4 ¢, b+ c].
However, he describes the exact sequence (1) in terms of Mendelsohn ex-
tensions, whereas for the purposes of this paper we describe the kernel of p
as the isotope A of A via isomorphism a € A +— [a,a, —a] € Q.

3. Results

Proposition 3.1. Up to isotopy, there exists at least one quasigroup @ of
order greater than 1 such that V(Q®) is trivial.

Proof. Suppose some surjective homomorphism h : Q& — V(QA). Every
clement a € V(Q?) is idempotent and thus a subquasigroup of order 1, so
the preimage of each a must be a normal subquasigroup of Q i.e. there
exists some partition of Q? into disjoint normal subquasigroups of order
1QI?/|V(Q?)|. Now suppose the order of @Q is prime; then if there exists an
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element of b € Q® such that the subquasigroup generated by b is of order
greater than |Q|?, then the normal closure of b must be the entirety of Q
and V(Q?) is trival [4].

Let Q be the semisymmetric quasigroup of order 5 with Cayley table:

0|1}23 |4
0j0]1|2]3]|4
1/1]0(3|4]|2
2124|013
3132 14]0]|1
4141311210

The subquasigroup of Q” generated by the element [0,1,2] is of order

greater than 25.
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[4,1,2] % [1,4,3] = [4,4,0]
[1,4,3] % [1,3,0] = [4,2,4]
[1,4,3] *[3,0,3] =[2,0,1]
[1,0,1] % [1,4,3] = [3,0,2]
[1,4,3] %[0,4,4] = [0, 3, 2]
The proof is complete. O

Lemma 3.2. Given a quasigroup Q, an element of Q2 is idempotent if
and only if it is of the form [a, b, ab] for some a,b € Q, and the idempotent
elements of Q2 form a subquasigroup iff Q is an abelian group isotope.

Proof. 1f [a,b,c] € Q* is idempotent [a,b,c| * [a,b,c] = [¢/b,a\c,ab] =
[a, b, ¢] meaning ¢/b = a,a\c = b, ab = ¢, all of which are equivalent to ab =
c. Then because [a, b, ab]  [c,d, cd] = [(ed)/b, c\(ab), ad], the idempotent
elements form a subquasigroup iff for all a,b,c,d € Q* we have ((cd)/b) -
(c\(ab)) = ad; this is equivalent to identity 8.2.122 of [1], which defines the
variety of abelian group isotopes. O

For any abelian group isotope @, define Q' to be the subquasigroup of
idempotent elements of Q4.

Lemma 3.3. Given an abelian group isotope Q, then Q' is isomorphic to

Q"

Proof. Let h: QU — Q* send [a,b] — [a— b, b, a]; clearly h is bijective onto
Q!. More,

h([a,b] % [c,d]) = h(la —b+d,a—c+d]) =[-b+c,a—c+d,a—b+d]
h([a,b]) * h([c,d]) = [a — b,b,a] *x [c — d,d,c] = [-b+c,a—c+d,a— b+ d]

so h is an isomorphism. ]
For any abelian group isotope Q, define a relation ~ on Q* where
[z, —z+y+ 2,y ~ [v,—v+w+ z,w]

Lemma 3.4. Given an abelian group isotope Q, then Q! is normal in Q®
by congruence ~.
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Proof. Define a relation < on Q® where
[a,b,a +b] x [c,d,e] < [f,g,f+ 9] *][c,d,e]
or equivalently
[-b+ea+b—ca+d <[e—g,—c+ f+g,d+ f]

that is to say for a, 8 € Q™ then a < § if & and /8 are in the same right
coset of Q7.

Ifwelet a=y,b=—z,c=—2,d=0,e=0, f =w,g = —wv it becomes
clear « < 8 = a ~ [. Conversely, letting © = —b+e,y = a+d,z =
—c—d+e,v=e—g,w=d+ f demonstrates a ~ § = a < .

Likewise, > where

la,b,c,] * [d,e,d + €] = [a,b,c]  [g, f, g + ]
or
[-b+d+e,c—dya+e]l = [-b+ f+g,c—g,a+ f]

defines the left cosets of Q7. Then letting a = y,b = —y — z,¢ = 0,d =
r—y—z,e=0,f=w—-—y,9g =v—w—zshows a > = a~ 8 and
letting x = —b+d+e,y=a+e,z2=—-a—-b+c,v=—-b+ f+gw=a+f
demonstrates a ~ = a > [.

Now

[z,y,2] % [a,—a+b+c,b=[b—y,—a+z,—a+b+c+ x]
=b-—y,—(b—y)+(—a+b+c+z)+(—c—z—y+z2),—a+b+c+z]
and

[z,y,2] *[d,c—d+ee] =]e—y,—d+z,c—d+ e+ x]
=le—y,—(e—y)+(c—d+e+a)+(-c—xz—y+2z2),c—d+e+z]
so ~ is a left congruence. More,

[a,—a+b+c, bl *[x,y,2] =[a—b—c+2z,b—xz,a+ 1]
=la—b—c+z,—(a—b—c+2)+(a+y) +(—c—z—y+2),a+y]
and

[d,—d+e+ce]*[r,y,2]=[d—e—c+2z,e —x,d + ]
=ld-e—c+z,—(d—e—c+2)+(d+y)+(—c—x—y+2),d+y]

so ~ is a right congruence. Because Q® is semisymmetric, it follows that
~ also respects left and right division, so ~ is a congruence. O



Endomorphisms of abelian group isotope 285

Proposition 3.5. Given a quasigroup Q) isotopic to abelian group A, the
quotient quasigroup QA/QI is isomorphic to A.

Proof. Let h: Q® — Asend [a,b,c] — a+b—c. Then h([a, —a+b+c,b]) = c
and h([d,—d + e + c¢,e]) = ¢ so a ~ [ implies h(a) = h(3). Likewise
h(la,b,c]) = h([d,e, f]) means a+b—c=d+e— f so [a,b,c] = [a,—a+c+
(a+b—c),c]~ld,e, fl]=[d,—d+ f+ (d+e— f), f] meaning h(c) = h(5)
implies a0 ~ .

More,

h(la,b,c] x [d,e, f]) = h([-b+ f,c—d,a+e])=—a—-b+c—d—e+ f
h([a,b,c]) o h([d,e, f]) =(a+b—c)o(d+e—f)=—a—b+c—d—e+ f

So his a homomorph_ism, and setting b = 0, ¢ = 0 shows h surjects onto A,
therefore Q% /Q! = A. O

Corollary 3.6. Given a quasigroup @Q isotopic to abelian group A, the
largest commutative quotient of Q® is isomorphic to A.

Proof. Suppose a < b is some congruence on @Q° such that Q%/ i is
commutative i.e.

[a,b,c]*[d, e, f] = [=b+ f,c=d,ate] pald, e, flx[a, b, = [—e+e, f—a,d+]

Leta=0,b=—<zc—v+w+z,c=v+y,d=x+v—z,e=y, f = —v+w+z;
then
[—(—z—v4+w+z2)+(—v+w+2),v+y) —(r+v—2),0+y]x
(v+y)—y, -0+ (—v+w+2),(x+v—2)+ (-2 —v+w+ 2)]
or [x,—x+y+z,y] X [v,—v+ w+ 2z, w] meaning a1 § = o ~ [ so any
commutative quotient of @® must be contained within A = Q% / ~.

And A is always commutative thus we already have the converse impli-
cation. ]

Proposition 3.7. Given an abelian group isotope Q, left or right multipli-
cation by some fized element o € Q™ is an automorphism of Q® if and only
if a is idempotent.

Proof. Let Ly : Q® — Q* be left multiplication by o where a = [z, v, 2].
Then

Lo([a,b,c] % [d,e, f]) = Lo([-b+ f,c—d,a + ¢])
=[z,y,z]*x[-b+ f,c—d,a+e]l=[a+e—y,b— f+2z,c—d+ 1]
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and

La([a7bﬂc])*LOé([dveaf]) = ([w,y,z] * [a,b,c])* ([IL’,y,Z] * [dveaf])
=lc—y,—a+z,b+z|*x[f —y,—d+ z,e+ x]
=latet+z—z,b—f+x+yc—d—y+7z]

Quasigroup mulitplication is bijective, thus by definition L, is an automor-
phism iff

a+e—y,b—f+z,c—d+z]=la+e+x—2,b—f+r+y,c—d—y+2

or simply

[~y z,2] =[x — 2,y + =, —y + 2]

which is equivalent to x+y = z, the condition for [z, y, z] being idempotent.
Likewise

Ro([a,b,c] x[d, e, f]) = Ra([-b+ f,c —d,a +¢])
=[-b+ fc—d,a+e]x[z,y,z]=[—c+d+z,a+e—z,—b+ f+y]

and

Ra([a,b,c])*Ra([d,e,f]) = ([a,b,c] * [:‘Caya Z]) *([dveaf] * [i’,y,Z])
=[-b+z,c—x,aty|*x[—e+z f—x,d+y]
=[-c+d+z+yatet+y—z,—b+f—x+ 7z

so R, is an automorphism iff

[z, —z,y] =[x +y,y — z,—x + 2]
which is also equivalent to = + y = z. O
Corollary 3.8. Given an abelian group isotope Q, then Qv is distributive.

Proof. This follows immediately from Lemma 3.3 and Proposition 3.7. [

Theorem 3.9. Given a quasigroup Q) isotopic to abelian group A, then
QA = Q" x A if and only if 31|Q).
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Proof. Given quasigroups Uy, Us then an element [a,b] € Uy x Us is idem-
potent if [a,b] * [a,b] = [a-a,b-b] = [a,b], so the number of idempotents in
U1 x Us is equal to the number of idempotents in U; times the number of
idempotents in Us.

An element a € A is idempotent if aoa = @ which means —a—a = a i.e.
3a = 0, that is to say a is either 0 or an element of order 3, so A contains
nonzero idempotents if |A| = |Q| is divisible by 3 [3]|. Because all elements
of Q" are idempotent, then Q" x A contains more than |Q|? idempotents
if |Q| is divisible by 3 - but by lemmas 3.2 and 3.3 Q* has exactly |Q|?
idempotents, therefore if 3 divides |Q| then @* cannot be isomorphic to
Q' x A.

Suppose 31 |Q|, and define function h: Q* — QU x A by

[a,b,c] = [[a+c,b+c],a+b— (]
Then
h(la, b, * [d, e, f]) = h([=b+ f,c — d,a +¢])
=[la—b+e+fa+tc—d+el,—a—b+c—d—e+ f]

and

h(la, b, c]) * h([d, e, f])
la+c,b+cl,a+b—clx[[d+ f,e+ fl,d+e— f]
([(a+c)=(b+c)+(etf), (ate)=(d+ f)+(e+f)], —(a+b—c)—(d+e—[)]
la—b+e+ fatc—d+el,—a—b+c—d—e+ f]

so h is a homomorphism.

Further, h([a,b,c]) = h([d, e, f]) means

a+c=d+f
b+c=c+f
a+b—c=d+e—f
therefore
(a+b—c)—(a+c)—(b+ec)=(d+e—f)—(d+f)—(e+f)
—3c=-3f
c=f

from which it straightforwardly follows that a = d, b = e and so h([a, b, c]) =
h(ld,e, f]) = [a,b,c] = [d, e, f] proving h is injective; division by 3 is always
possible because 3 1 |A|. Because Q> and Q' x A have the same cardinality,
by finiteness injectivity implies surjectivity and h is an isomorphism. O
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Given any abelian group isotope @ where 3 1 |Q|, define A : Q* — Q*
by
[a,b,¢] = [(2a —b+¢)/3,(—a+2b+¢)/3,(a+ b+ 2¢)/3]

Proposition 3.10. X is an endomorphism with image Q' such that A\(a) =
a for any a € Q.

Proof. X[a,b,c] *[d,e, f]) = ([ b+ f,c—d,a+e€])

=[((2(=b+ f) —(c=d)+(a+¢€))/3,(=(=b+ f) +2(c—d) + (a +¢))/3,
(=b+ f)+ (c—d)+2(a+e))/3]

= [(a—2b—c+d+e+2f)/3, (a+b+2c—2d+e—f) /3, (2a—b+c—d+2e+f) /3]

and

Ala, b, c]) = A(ld, e, f])
=[(2a —b+¢)/3,(—a+2b+¢c)/3,(a+b+2¢)/3] *[(2d — e + f)/3,
(—d+2e+ f)/3,(d+e+2f)/3]
=[—(—a+2b+¢)/3+ (d+e+2f)/3,(a+b+2¢)/3— (2d— e+ f)/3,
(2a —b+c)/3+ (—d +2e+ f)/3]
=[(a—2b—c+d+e+2f)/3,(a+b+2c—2d+e— f)/3,
(20 —b+c—d+2e+ f)/3]

therefore A is an endomorphism.
Further,
(2a—b+c)/3+ (—a+2b+c)/3=(a+b+2c)/3

so h([a,b,c]) € Q' and given [a,b,a + b] € Q'

M[a,b,a+ b))
=[(2a—b+(a+0b))/3,(—a+2b+ (a+b))/3,(a+b+2(a+b))/3]
=la,b,a+b)]. ]
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