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Magma-valued metric spaces

Peyman Nasehpour

Abstract. In the second section, we introduce dense unital magmas and show that a
near-ring is dense if and only if it has a positive element smaller that unity. In the third
section, we discuss magma-valued metric spaces. The density property of the ordered
unital magmas and monoids helps us to generalize a couple of classical results related to
the convergence and Cauchy property of sequences. The last section is devoted to magma-
valued normed groups and some subgroups of the additive group of Cauchy sequences.

1. Introduction

In 1906, Fréchet [6] formulated the axioms of metric spaces for the first
time in his dissertation. Following Fréchet’s pioneering work, the concept
of distance function has undergone numerous generalizations leading to the
development of various mathematical fields. For example, in his 1934 work
[12], Kurepa modified the axioms of metric spaces by removing the positiv-
ity requirement allowing for the possibility that a pseudometric space could
satisfy the condition d(x, y) = 0 for x 6= y. Later in 1942, Menger intro-
duced statistical metric spaces [14] (check also [20]). The main purpose of
this paper is to introduce the concept of magma-valued metric spaces and
generalize some classical results of abstract mathematical analysis in this
context.

First we introduce some terminologies and notations, and then briefly
report what we do in the rest of the paper. It is said that (M, ∗) is a magma
if M is a nonempty set and ∗ : M ×M → M is a function [21, Definition
1.1]. Let (M, ∗) be a magma. It is said that a (binary) relation R on M is
compatible with the magma (M, ∗) if aRb implies

(a ∗ c)R(b ∗ c) and (c ∗ a)R(c ∗ b), ∀ a, b, c ∈M.
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Let us recall that a relation on a set is partial if it is reflexive, antisym-
metric, and transitive. A relation R on a set M is linear if either aRb or
bRa for all a, b ∈M . In this paper, partial relations, also known as partial
orderings, are denoted by 6. If a partial ordering 6 on a set M is linear, it
is said that 6 is a total ordering on M or (M,6) is totally ordered.

If 6 is a partial ordering on M , then (M, ∗,6) is said to be an ordered
magma if 6 is compatible with the magma (M, ∗). As usual, if 6 is a
relation on M , then by a < b it is meant that a 6 b and a 6= b. Note that
by the sentence “(M, ∗, <) is an ordered magma” (M is a magma or any
other group-like algebraic structure), we mean that < is compatible with ∗.
This already means that if a < b, then a ∗ c < b ∗ c and c ∗ a < b ∗ a, for all
a, b, c ∈M .

A magma (M, ∗) is a unital magma if there is an element 0 ∈ M such
that

m ∗ 0 = 0 ∗m = m, ∀ m ∈M.

In any ordered unital magma (M, ∗, 0,6), an element m ∈ M is non-
negative, if 0 6 m. Also, m ∈ M is positive, if 0 < m, i.e. 0 6 m
and m 6= 0.

In §2, we introduce a property called density and find some examples
for that. We define an ordered unital magma (M, ∗, 0,6) to be dense (see
Definition 2.1) if
• for any positive element ε inM , there are two positive elements β and
γ with β ∗ γ < ε.

Now, we proceed to report some results of the paper that we present in
§3 in order to justify our definition for density.

Let (M, ∗, 0,6) be an ordered unital magma. As a generalization to
monoid-valued metric spaces (see [1] and [4]), we say (X, d) is an M -metric
space (see Definition 3.1) if d : X ×X → M is a function such that for all
x, y, z ∈ X, the following properties hold:

1. d(x, y) > 0, and d(x, y) = 0 if and only if x = y.
2. d(x, y) = d(y, x).
3. d(x, z) 6 d(x, y) ∗ d(y, z).
By definition, a sequence (xn) in an M -metric space X is convergent to

x ∈ X, denoted by
lim

n→+∞
xn = x,

if for any positive element ε in M , there is a natural number N such that
n > N implies d(xn, x) < ε.
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In Proposition 3.8, we prove that if (M, ∗, 0,6) is a dense unital magma
and X is anM -metric space, then a convergent sequence has a unique limit.
Not only that but also density property is useful for generalizing a couple
of other classical results in abstract analysis. For example, with the help of
density, we prove that Cauchyness is implied by convergence as we explain
in the following:

Let M be an ordered unital magma and X an M -metric space. It is
natural to define that a sequence (xn) in X is a Cauchy sequence if for any
positive element ε in M there is a natural number N such that m,n > N
implies d(xm, xn) < ε (see Definition 3.13). Next, in Theorem 3.15, we
prove that if M is a dense unital magma and X an M -metric space, then
any convergent sequence in X is a Cauchy sequence. Also in Theorem 3.16,
we show that if M is a dense unital magma and X is an M -metric space,
then any Cauchy sequence having a convergent subsequence is convergent.

Surprisingly, the definition of density property given above is equivalent
to the definition of density property for ordered rings given in [18], and also
the definition of density in set theory given in [10]. As a matter of fact, we
prove that a totally ordered ring with 1 is dense if and only if its additive
monoid is dense. Even more, we generalize this for near-rings. Recall that
an algebraic structure (N,+, ·, 0) is a near-ring (see Definition 1.1 in [17])
if the following conditions are satisfied:

1. (N,+) is a (not necessarily abelian) group and 0 is the identity
element of the group N .

2. (N, ·) is a semigroup.
3. The right-distributive law holds, i.e.

(x+ y)z = xz + yz, ∀ x, y, z ∈ N.

Note that, by definition, a near-ring N is with 1 if (N, ·, 1) is a monoid.
It is said that (N,+, ·, 0,6) is an ordered near-ring (see Definition 9.122

in [17]) if 6 is a partial ordering on N and (N,+, ·, 0) is a near-ring such
that the following properties hold:

1. (N,+, 0,6) is an ordered group.
2. If 0 6 x and 0 6 y, then 0 6 xy, for all x, y ∈ N .

We say (N,+, ·, 0, <) - for short, (N,<) - is an ordered near-ring if
(N,6) is an ordered near-ring and 0 < x and 0 < y imply 0 < xy, for all
x, y ∈ N .

In Theorem 2.8, we prove that if 6 is a total ordering on N and (N,<)
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is an ordered near-ring with 1 6= 0, then the following statements are equiv-
alent:

1. The near-ring N is dense, i.e. the positive cone P of N has no least
element [18].

2. There is a positive element α in N smaller than 1.
3. The ordered monoid (N,+, 0,6) is a dense monoid.
4. For any positive element ε in N and a positive integer number n,

we can find n positive elements {εi}ni=1 in N satisfying the following
inequality: n∑

i=1

εi < ε.

5. The ordered set N is dense, i.e. for r < t in N there is an s in N with
r < s < t [10, Definition 4.2].

In §4, we introduce magma-valued norms in the following way (see Def-
inition 4.1):

Let (M,+, 0,6) be an ordered unital magma. A group (G,+) is, by
definition, an M -normed group if there is a function ‖ · ‖ : G→M with the
following properties:

1. ‖g‖ > 0, and ‖g‖ = 0 if and only if g = 0, for all g ∈ G.
2. ‖g − h‖ 6 ‖g‖+ ‖h‖, for all g, h ∈ G.

These norms evidently induce magma-valued metric spaces (check Propo-
sition 4.4). By considering this, in Theorem 4.6, we prove that if M is a
dense unital magma and G anM -normed group, then Zero(G) is a subgroup
of Conv(G) and

Conv(G)/Zero(G) ∼= G,

where Conv(G) is the group of all convergent sequences in G and Zero(G)
is the set of all sequences in Conv(G) convergent to 0 ∈ G.

In this paper, a binary operation of a magma M is sometimes denoted
by “+”, although “+” is not necessarily associative or commutative unless
explicitly stated. Also, if the binary operation of a monoid or a group is
denoted additively, similar to near-ring theory [17], it does not mean that
the addition is necessarily commutative unless explicitly stated. Whenever
we say an algebraic structure is ordered, we mean that its ordering is partial,
otherwise we explicitly assert that the ordering is total (linear). For the
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general theory of ordered algebraic structures see [7]. For ordered groups
consult with [8]. Some results in this paper are generalizations of their
counterparts on pages 18–24 in Ovchinnikov’s 2021 book [16].

2. Dense magmas

Definition 2.1. Let (M, ∗, 0,6) be a unital magma. We say M is a dense
unital magma if for any positive element ε in M , there are two positive
elements β and γ with β ∗ γ < ε.

Remark 2.2. Let (M, ∗, 0,6) be an ordered group-like algebraic structure
such that 0 is an identity element of M . We say M is dense if (M, ∗, 0,6)
as an ordered unital magma is dense.

Example 2.3. In the following, we give a couple of examples:

1. Let K be a subfield of the field of real numbers. Evidently, (K,+, 0,6)
is a dense unital magma because for any positive number ε ∈ K, we
have

2ε/5 + 2ε/5 < ε.

2. The additive group of integer numbers (Z,+, 0,6) is not dense.

3. Let M be the set of all functions of the form f : R→ R. Let addition
be component-wise on M and define f 6 g in M , if f(x) 6 g(x), for
all x ∈ R. Then, M is a dense unital magma because for the given
0 < f , the function g = 2f/5 satisfies 0 < g and

g + g < f.

Let us recall that if (P,6) is a poset with no least element, one may
annex an element −∞ to P and extend 6 as follows:

−∞ < x ∀ x ∈ P.

Then, −∞ is the least element of the new poset (P ∪ {−∞},6).

Proposition 2.4. Let (T,6) be a totally ordered set with no least element.
Annex the least element −∞ to T . Then, (T ∪ {−∞},max) is a dense
monoid.

Proof. It is evident that (T ∪ {−∞},max) is a commutative monoid and
its neutral element is −∞. Note that by definition, for any a ∈ T , we have
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−∞ < a. It is also easy to see that a 6 b implies max{a, c} 6 max{b, c}
for all a, b, c ∈ T ∪ {−∞}. Therefore, T ∪ {−∞} is an ordered monoid.

Since T has no least element, for the given element ε ∈ T , there is
an element β ∈ T such that β < ε. Now, if we set γ = β, we see that
max{β, γ} = β < ε. Hence, T is a dense monoid, as required.

Remark 2.5. The monoid (R∪{−∞},max) which is an example of a dense
monoid (Proposition 2.4) is extensively used in idempotent analysis. For
more, refer to [11] and [13].

Let G be an ordered group. We say G is a dense group if the monoid
(G,+, 0,6) is dense. In the following, we give an example of a dense but
non-commutative monoid:

Theorem 2.6. The set R×R equipped with the following binary operation
and the lexicographical ordering is a non-abelian totally ordered dense group:

(r1, r2) ∗ (s1, s2) = (r1 + s1, r2e
s1 + s2).

Proof. It is routine to see that (R × R, ∗, (0, 0), <) is a non-abelian totally
ordered group, where < is the lexicographical ordering on R×R (see p. 140
in [23]). Let (r, s) be a positive element of R×R, i.e. (0, 0) < (r, s). Then,
we have two cases: Either 0 < r, or 0 = r and 0 < s.

Assume that 0 < r. So, there are two positive real numbers r1 and r2
with r1 + r2 < r. Now, it is obvious that

(r1, s) ∗ (r2, s) < (r, s).

Assume that 0 = r and 0 < s. Therefore, there are two positive real
numbers s1 and s2 such that s1 + s2 < s. Observe that

(0, s1) < (0, s), (0, s2) < (0, s)

and
(0, s1) ∗ (0, s2) = (0, s1 + s2) < (0, s).

Hence, R× R is dense and the proof is complete.

Lemma 2.7. Let (M,+, 0,6) be a dense (not necessarily commutative)
monoid. Then, for each ε > 0 and n ∈ N, there are n positive elements εi
in M with n∑

i=1

εi < ε.
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Proof. The proof is by induction on n. By Definition 2.1, the cases n = 1
and n = 2 hold evidently. Now, assume that n = k holds. Therefore, for
the given ε > 0, we have

k∑
i=1

εi < ε.

Since εk is positive, we can find two positive elements β1 and εk+1 such that

β1 + εk+1 < εk.

Now, observe that

ε1 + · · ·+ εk−1 + β1 + εk+1 6
k∑

i=1

εi < ε.

This completes the proof.

Let 6 be a total ordering on R and (R,<) an ordered ring with 1. It is
easy to see that the positive cone P of R has the least element if and only
if 1 is the least element of P [18]. Heuer [18] calls an ordered ring discrete
if its positive cone has the least element; otherwise dense. Note that in
order theory, a totally ordered set (S,<) is dense if for each a, b ∈ S with
a < b there is an element c ∈ S such that a < c < b [10, Definition 4.2].
The following result supports the use of the term “dense unital magma” in
Definition 2.1:

Theorem 2.8. Let 6 be a total ordering on N . Also, let (N,<) be an
ordered near-ring with 1 6= 0. Then, the following statements are equivalent:

(1) The near-ring N is dense, i.e. the positive cone P of N has no least
element.

(2) There is a positive element α in N smaller than 1.

(3) The ordered monoid (N,+, 0,6) is a dense monoid.

(4) For any positive element ε in N and a positive integer number n,
we can find n positive elements {εi}ni=1 in N satisfying the following
inequality: n∑

i=1

εi < ε.

(5) The ordered set N is dense, i.e. for r < t in N there is an s in N
with r < s < t.
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Proof. (1)⇒ (2): Since 6 is a total ordering on the near-ring N , by Remark
9.134 in [17], 1 is a positive element of N . The set of positive elements of N
has no least element. Therefore, there must be an element between 0 and
1.

(2) ⇒ (3): Let there be an α ∈ N with 0 < α < 1. Since (N,<) is an
ordered near-ring, we have

0 < −α+ 1.

This implies that 0 < (−α + 1)α. By the right-distributive law, we have
0 < −α2 + α. On the other hand, since 0 < α, we have 0 < α2. Now, let
the positive element ε be given and set

ε1 = α2ε and ε2 = (−α2 + α)ε.

Observe that ε1 and ε2 are positive elements and in view of Proposition 1.5
in [17], we have ε1 + ε2 = αε < ε.

(3)⇒ (4): Lemma 2.7.
(4)⇒ (1): For any positive element of N , we can find a smaller positive

element in N . This means that the positive cone of N has no least element.
Up to now, we have proved that the statements (1), (2), (3), and (4) are

equivalent. Now, we show that the statement (5) is also equivalent to any
of them:

(5)⇒ (2): Since 0 < 1, we can find an α ∈ N with 0 < α < 1.
(4)⇒ (5): Let r < t. This implies that 0 < −r + t. So, by assumption,

there is a positive element ε in N with
0 < ε < −r + t.

Evidently this implies that r < r + ε < t showing that (N,<) is a dense
ordered set and the proof is complete.

Corollary 2.9. Let 6 be a total ordering on N . Also, let (N,<) be an
ordered near-ring with 1 6= 0. Assume that S is a sub-near-ring of N such
that 1 ∈ S. If S is a dense near-ring, then so is the near-ring N .

Proof. Since S is a dense near-ring, by Theorem 2.8, there is an element α
in S with 0 < α < 1. Since S ⊆ N , we have α ∈ N . Thus by Theorem 2.8,
N is also a dense near-ring and the proof is complete.

Corollary 2.10. Let (F,<) be a totally ordered field. Then, (F,+, 0,6) is
a dense monoid.

Let (G,+) be a group and 0 be its neutral element. Assume thatM0(G)
is the set of all functions f from G into G with f(0) = 0. Then, M0(G)
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equipped with component-wise addition and composition of functions is a
near-ring (see Example 1.4 in [17]). It is clear that the set of all increasing
functions I0(R) in M0(R) is a sub-near-ring of M0(R).

Proposition 2.11. Define 6 on M0(R) as follows:
f 6 g if f(x) 6 g(x), ∀ x ∈ R.

Then, (I0(R),6) is a dense ordered near-ring with 0 < I, where by I, we
mean the identity function on R.

Proof. It is easy to show that 6 is a partial ordering on I0(R) and f 6 g
implies that f + h 6 g + h, for all f , g, and h in I0(R). In order to prove
that (I0(R),6) is an ordered near-ring we need to prove that if f > 0 and
g > 0, then f ◦ g > 0. By assumption, we have g(x) > 0 for all x ∈ R.
Since f is an increasing function and passes through origin, i.e. f(0) = 0,
we have

(f ◦ g)(x) = f(g(x)) > f(0) = 0.

Now, we proceed to prove that I0(R) is dense. Observe that if 0 < f , then
there is at least one point x in R such that 0 < f(x). Set g = f/3. It is
evident that 0 < g and

g + g = 2f/3 < f.

This completes the proof.

Definition 2.12. Let (D,+, ·, 0, 1) be a division ring and 6 a partial or-
dering on D. We say (D,6) is a DeMarr division ring if the following
conditions are satisfied:

1. (D,+, 0,6) is an ordered monoid.
2. If 0 6 x and 0 6 y, then 0 6 xy, for all x, y ∈ D.
3. 0 < 1.
4. If 0 < x, then 0 < x−1, for all x ∈ D.

Theorem 2.13. Let (D,6) be a DeMarr division ring. Then, (D,+, 0,6)
is a dense monoid.

Proof. By definition, 0 < 1. Set n = n · 1 =
∑n

i=1 1. This implies that
0 < n and also, 0 < n−1, for each positive integer n. Evidently, since D is
a division ring, we obtain that

0 < m · n−1 and 0 < n−1 ·m (m,n ∈ N).

In particular, 2 · 5−1 is positive. On the other hand, since 4 · 1 < 5 · 1, by
multiplying both sides of the inequality by 5−1, we obtain that

2 · 5−1 + 2 · 5−1 = (2 + 2) · 5−1 = 4 · 5−1 < 1.
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Now, assume that 0 < x in D is given. Set y = z = (2 · 5−1)x and
observe that y and z are positive and

0 < y + z = (4 · 5−1)x < x.

Hence, (D,+, 0,6) is a dense monoid, as required.

In the following, we give an example of a DeMarr field which is not a
totally ordered field.

Example 2.14. Define 6 on the field of complex numbers C as z1 6 z2 if
z2−z1 is a non-negative real number. Then, (C,6) is a DeMarr field which
is not a totally ordered field [5, Example III].

Let (R,<) be an ordered ring with 1, P its positive cone, and M an
R-module. It is said that M is an ordered R-module ordered by N if N is
a nonempty subset of M satisfying the following properties:

• If m1,m2 ∈ N then m1 +m2 ∈ N , for all m1,m2 ∈M .

• N ∩ −N = {0}, where −N = {−x : x ∈ N}.
• If r ∈ R \ −P and m ∈ N , then rm ∈ N .

Proposition 2.15. Let (R,6) be an ordered ring, and M an ordered R-
module ordered by N . Define 6 on M by m2 6 m1 if m1−m2 ∈ N . Then,
the following statements hold:

(1) (M,6) is a partially ordered set.

(2) If x 6 y then, x+ z 6 y + z for all x, y, z ∈M .

(3) If x 6 y and 0 6 r, then rx 6 ry, for all r ∈ R and x, y ∈M .

Proof. Straightforward.

Let us recall that if R is an integral (commutative) domain and M a
unital R-module, then by definition,M is said to be a torsion-free R-module
if rm = 0 implies either r = 0 or m = 0 for all r ∈ R and m ∈ M [19, p.
134].

Theorem 2.16. Let 6 be a total ordering on R. Also, let (R,<) be
an ordered dense ring and M an ordered torsion-free R-module. Then,
(M>0,+, 0,6) is a dense monoid, where by M>0, we mean the set of non-
negative elements of M .
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Proof. Since R is a dense ring, by Theorem 2.8, there is an element α ∈ R
with 0 < α < 1. It is, then, clear that 0 < α2 < α < 1. Take m ∈ M with
0 < m. Since M is ordered and torsion-free, we obtain that

0 < α2m < αm < m.

Similarly, since 0 < α− α2 < 1, we have 0 < (α− α2)m < m. Set

m1 = α2m and m2 = (α− α2)m.

Observe that 0 < m1 < m and 0 < m2 < m and we have

m1 +m2 = α2m+ (α− α2)m = αm < m.

Hence, (M>0,+, 0,6) is a dense monoid, as required.

Example 2.17. Let C[0, 1] be the set of all continuous functions from [0, 1]
into R. Set

N = {f ∈ C[0, 1] : f(x) > 0, ∀ x ∈ [0, 1]}.

It is easy to see that C[0, 1] is an ordered R-vector space ordered by N . By
Theorem 2.16, M>0 is dense.

Example 2.18. Let R be a commutative ring with 1. Then, (Id(R),+, ·,⊆)
is an ordered semiring [9, Example 1.4], where the addition and multiplica-
tion of ideals are defined as follows:

I + J = {a+ b : a ∈ I, b ∈ J}, and

IJ =

{
n∑

i=1

aibi : ai ∈ I, bi ∈ J, i ∈ N

}
.

Note that (Id(R),+, (0),⊆) is never a dense monoid because the set of max-
imal ideals of R is always nonempty and there is no ideal properly between
a maximal ideal m of R and the ring R.

3. Magma-valued metric spaces

As a generalization of monoid-valued metric spaces [4] (see also Definition
2.10 in [15]), we introduce magma-valued metric spaces as follows:
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Definition 3.1. Let (M, ∗, 0,6) be an ordered unital magma. We say
(X, d) is an M -metric space if d : X ×X → M is a function such that for
all x, y, z ∈ X, the following properties hold:

1. d(x, y) > 0, and d(x, y) = 0 if and only if x = y.
2. d(x, y) = d(y, x).
3. d(x, z) 6 d(x, y) ∗ d(y, z).

Remark 3.2. In [1], L-metric spaces have been discussed, where L is a
complete lattice. Note that if X is an L-metric space, the triangle inequality
is as follows:

d(x, y) 6 d(x, z) ∨ d(z, y), ∀ x, y, z ∈ X.

We recall that a lattice L is complete if, by definition, any subset P of L
has infimum and supremum (see Definition 4.1 in [2]). It is obvious that if
L is complete and 0 = inf(L), then 0 is the least element of L and identity
element of ∨, so that (L,∨, 0,6) is an ordered monoid.

Proposition 3.3. Let (A,⊕,¬) be an MV-algebra. Then, (A, d) is an A-
metric space, where

d(x, y) = (x	 y)⊕ (y 	 x), ∀ x, y ∈ A.

Proof. By Definition 1.1.1, Lemma 1.1.2, and Lemma 1.1.4 in [3], (A,6) is
an ordered monoid such that 0 is its smallest element. By Proposition 1.2.5
in [3], (A, d) is an A-metric space and the proof is complete.

Proposition 3.4. Let (G,+,6) be a totally ordered (but not necessarily
abelian) group. Define | · | : G→ G by |x| = max{x,−x} and set d(x, y) =
|x− y|. Then, (G, d) is a G-metric space.

Proof. The proof is similar to the case of the absolute value function over
real numbers (see [22]) and so, omitted.

Example 3.5. An example of a non-abelian group satisfying the condition
of Proposition 3.4 is the group explained in Theorem 2.6.

Proposition 3.6. Let (M,+, 0,6) be an ordered commutative monoid and
(Xi, di) be an M -metric space for each 1 6 i 6 n. Define a function

d :
n∏

i=1

Xi ×
n∏

i=1

Xi −→M
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by
d
(
(xi)

n
i=1, (yi)

n
i=1

)
=

n∑
i=1

di(xi, yi).

Then, (
∏n

i=1Xi, d) is an M -metric space.

Proof. Straightforward.

Definition 3.7. A sequence (xn) in an M -metric space X is convergent to
x ∈ X, denoted by

lim
n→+∞

xn = x,

if for any positive element ε in M , there is a natural number N such that
n > N implies d(xn, x) < ε.

Proposition 3.8. Let (M, ∗, 0,6) be a dense unital magma. In an M -
metric space X, if a sequence is convergent in X, then its limit is unique.

Proof. Let (xn) be convergent to a and b. If a 6= b, then d(a, b) > 0. Set
ε = d(a, b). Since M is dense, we can find two positive elements β and γ
such that β∗γ < ε. For β, we find a natural number N1 such that if n > N1,
then d(xn, a) < β. For γ, we find a natural number N2 such that if n > N2,
then d(xn, b) < γ. Now, set N = max{N1, N2} and observe that

ε = d(a, b) 6 d(xn, a) ∗ d(xn, b) 6 β ∗ γ < ε,

a contradiction. Thus the limit of any sequence is unique if it exists and
the proof is complete.

Example 3.9. Let (M, ∗, 0,6) be an ordered unital magma and X an
M -metric space and assume that there is a natural number N such that
xn = c ∈ X for all n > N . Then, (xn) is convergent to c. In particular, a
constant sequence converges to its constant value.

Proposition 3.10. Let k be a natural number and (xn) a sequence in anM -
metric space X. Then, (xn) is convergent if and only if (xn+k) is convergent.

Proof. Straightforward.

Definition 3.11. Let (M, ∗, 0,6) be an ordered unital magma and X an
M -metric space. A sequence (xn) is bounded if there is an element a ∈ X
and there is a positive element ε in M such that

d(xn, a) < ε, ∀ n ∈ N.
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Proposition 3.12. Let (M, ∗, 0,6) be an ordered unital magma such that
(M,6) is a join-semilattice. In an M -metric space X, a convergent se-
quence is bounded.

Proof. Let (xn) be a convergent to a ∈ X. Fix a positive element ε of M .
Then, there is a natural number N such that n > N implies d(xn, a) < ε.
Set R = sup{d(x1, a), . . . , d(xN−1, a), ε}.
It is now clear that d(xi, a) 6 R for each i ∈ N showing that (xn) is bounded
and the proof is complete.

Definition 3.13. Let (M, ∗, 0,6) be an ordered unital magma and X an
M -metric space. A sequence (xn) in X is a Cauchy sequence if for any
positive element ε in M there is a natural number N such that m,n > N
implies d(xm, xn) < ε.

Proposition 3.14. Let (M, ∗, 0,6) be an ordered unital magma such that
(M,6) is a join-semilattice. In an M -metric space X, a Cauchy sequence
is bounded.

Proof. Fix a positive ε ∈ M . By definition, we can find a natural number
N such that m,n > N implies d(xm, xn) < ε. In particular, we have
d(xm, xN ) < ε for all m > N . Set

R = sup{d(x1, xN ), d(x2, xN ), . . . , d(xN−1, xN ), ε}.
Then, we see that d(xi, xN ) 6 R for all i ∈ N showing that (xn) is bounded
in X. This completes the proof.

Theorem 3.15. Let (M, ∗, 0,6) be a dense unital magma and X an M -
metric space. Then, any convergent sequence in X is a Cauchy sequence.

Proof. Let (xn) be convergent to a. Then, for each positive element ε ∈M ,
there is a natural number N such that n > N implies that d(xn, a) < ε. For
the positive element ε, one can find two positive elements β and γ such that
β ∗ γ < ε. On the other hand, for β and γ, one can find natural numbers
N1 and N2, respectively, such that if m > N1 and n > N2, then

d(xm, a) < β and d(xn, a) < γ.

Now, observe that
d(xm, xn) 6 d(xm, a) ∗ d(xn, a) 6 β ∗ γ < ε

whenever n > max{N1, N2}. This shows that (xn) is a Cauchy sequence
and the proof is complete.
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Theorem 3.16. Let (M, ∗, 0,6) be a dense unital magma. In an M -metric
space X, a Cauchy sequence having a convergent subsequence is convergent.

Proof. Let (xn) be a Cauchy sequence in X. Also, assume that a subse-
quence (xnk

) of (xn) is convergent to x ∈ X. Let ε be a positive element
in M . Since M is dense, we can find two positive elements β and γ with
β ∗ γ < ε. For β, there is a natural number N1 such that for m,n > N1,
we have d(xm, xn) < β. Also, for γ, there is a natural number k1 such that
k > k1 implies that d(xnk

, x) < γ. Note that since nk is a strictly increasing
sequence of positive integers, we have nk > k for each positive integer k.
Set N = max{N1, k1} and observe that for any m > N and k > N , we have

d(xm, x) 6 d(xm, xnk
) ∗ d(xnk

, x) 6 β ∗ γ < ε.

Hence, (xn) is convergent, as required.

4. M-normed groups

Definition 4.1. Let (M,+, 0,6) be an ordered unital magma. A (not
necessarily abelian) group (G,+) is anM -normed group if there is a function
‖ · ‖ : G→M with the following properties:

1. ‖g‖ > 0, and ‖g‖ = 0 if and only if g = 0, for all g ∈ G,
2. ‖g − h‖ 6 ‖g‖+ ‖h‖, for all g, h ∈ G.

Proposition 4.2. Let M be an ordered unital magma and G an M -normed
group. Then, the following statements hold:

(1) ‖ − g‖ = ‖g‖, for all g ∈ G.
(2) ‖g‖ 6 ‖g − h‖+ ‖h‖, for all g, h ∈ G.

Proof. (1): For any g ∈ G, observe that

‖ − g‖ = ‖0− g‖ 6 ‖0‖+ ‖g‖ = 0 + ‖g‖ = ‖g‖.
On the other hand, from this we obtain that

‖g‖ = ‖ − (−g)‖ 6 ‖ − g‖.
This proves the first statement.

(2): Let g and h be elements of G. In view of the first statement, observe
that

‖g‖ = ‖g − 0‖ = ‖(g − h)− (−h)‖ 6 ‖g − h‖+ ‖h‖.

This finishes the proof.
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Corollary 4.3. Let M be an ordered group and G an M -normed group.
Then,

‖g‖ − ‖h‖ 6 ‖g − h‖, ∀ g, h ∈ G.

Proof. Observe that ‖g‖ 6 ‖g − h‖ + ‖h‖. Since M is a group, by adding
−‖h‖ to the both sides of the latter inequality (from the right side), the
desired inequality is obtained.

Proposition 4.4. Let (M,+, 0,6) be an ordered unital magma and (G,+)
an M -normed group. Then, (G, d) is an M -metric space, where

d(g, h) = ‖g − h‖.

Proof. Let g, h, and k be elements of the group G. Observe that

d(g, k) = ‖g − k‖ = ‖(g − h) + (h− k)‖ 6 ‖g − h‖+ ‖h− k‖.

The proof of the other properties is straightforward. Hence, (G, d) is an
M -metric space, as required.

Proposition 4.5. Let M be an ordered monoid, (M,6) a join-semilattice,
and (xn) a sequence in an M -normed group G. Then, the following state-
ments hold:

(1) If (xn) is convergent to 0 ∈ G, then there is a positive element s in
M such that ‖xn‖ 6 s, for all n ∈ N.

(2) If M is a group and (xn) is convergent to a, then there is a positive
element t in M such that ‖xn‖ 6 t.

Proof. (1): Since (xn) converges to 0, by Proposition 3.12, there is a positive
element s ∈M such that

‖xn‖ = ‖xn − 0‖ 6 s, ∀ n ∈ N.

(2): Let (xn) be a sequence in G convergent to a ∈ G. Then, by Proposition
3.12, there is a positive element s ∈M such that

‖xn − a‖ 6 s, ∀ n ∈ N.
Since M is a group, by Corollary 4.3, we have

‖xn‖ − ‖a‖ 6 ‖xn − a‖ 6 s.

Set t = s+ ‖a‖. Then, we have ‖xn‖ 6 t. This finishes the proof.

Let (G,+) be an abelian group and Seq(G) the set of all sequences
over G. It is clear that Seq(G) with component-wise addition is an abelian
group.
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Theorem 4.6. Let (M, ∗, 0,6) be a dense unital magma and G an M -
normed abelian group. Then, the following statements hold:

(1) The set of all Cauchy sequences Cauchy(G) of G is a subgroup of
Seq(G).

(2) If (xn) and (yn) are sequences in G convergent to a and b in G, re-
spectively, then the sequence (xn + yn) is convergent to a+ b.

(3) The set of convergent sequences, denoted by Conv(G), is a subgroup
of Cauchy(G).

(4) If Zero(G) is the set of all sequences in Conv(G) which are convergent
to 0 ∈ G, then Conv(G)/Zero(G) ∼= G.

Proof. (1): Let (xn) and (yn) be Cauchy sequences. Since M is dense, for
the given positive ε in M , we can find two positive elements β and γ such
that β ∗ γ < ε. Also, we can find a natural number N such that m,n > N
implies the following:

‖xm − xn‖ < β and ‖ym − yn‖ < γ.

Now, observe that if m,n > N , we have

‖(xm + ym)− (xn + yn) 6 ‖xm − xn‖ ∗ ‖ym − yn‖ 6 β ∗ γ < ε.

This shows that (xn + yn) is a Cauchy sequence. It is obvious that the
constant sequence (0), where 0 ∈ G is the identity element of G, is Cauchy,
and if (xn) is Cauchy, then so is (−xn). Thus Cauchy(G) is a subgroup of
Seq(G).
(2): For the given positive element ε ∈M , we can find positive elements β
and γ such that β ∗ γ < ε. It is evident that one can find a natural number
N such that if n > N , then

‖xn − a‖ < β and ‖yn − b‖ < γ.

Now, observe that

‖(xn + yn)− (a+ b)‖ 6 ‖xn − a‖ ∗ ‖yn − b‖ 6 β ∗ γ < ε.

This shows that (xn + yn) is convergent to a+ b.
(3): By Theorem 3.15, each convergent sequence is a Cauchy sequence.
So, Conv(G) is a subset of Cauchy(G). By (4.6), Conv(G) is closed under
addition of sequences. On the other hand, the constant sequence (0) is in
Conv(G), and, if (xn) is convergent to a ∈ G, then (−xn) is convergent to
−a. Consequently, Conv(G) is a subgroup of Cauchy(G).
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(4): Define ϕ : Conv(G) → G by (xn) 7→ limn→+∞ xn. By (4.6), ϕ is a
group homomorphism. For any g ∈ G, set gn = g. Then, by Example 3.9,
ϕ(gn) = g showing that ϕ is an epimorphism. The kernel of ϕ is the set
of all sequences that are convergent to 0 ∈ G. Hence, by the fundamental
theorem of homomorphisms, we have

Conv(G)/Zero(G) ∼= G,

and the proof is complete.

Theorem 4.7. Let (M,+, 0,6) be a dense and a totally ordered group and
(G,+) an M -normed group. Let (xn) be a Cauchy sequence not convergent
to zero. Then, there is a positive element γ in M and a natural number N
such that n > N implies ‖xn‖ > γ.

Proof. Since (M,+, 0,6) is a totally ordered group and (xn) is not conver-
gent to zero, there is a positive element ε in M such that for each n ∈ N,
there is a natural number k such that

k > n and ‖xk‖ > ε. (4.1)

By assumptionM is dense. Therefore, by Lemma 2.7, we can find a positive
element β in M with β < ε. Since (xn) is a Cauchy sequence, we can find
a natural number N such that

‖xp − xq‖ < β ∀ p, q > N. (4.2)

Assume that n is an arbitrary positive integer with n > N . By (4.1) and
(4.2), there is a natural number k such that

‖xk‖ > ε and − ‖xk − xn‖ > −β.

Now, observe that for all n > N , we have

‖xn‖ > −‖xk − xn‖+ ‖xk‖ > −β + ε > 0.

Let γ be a positive element of M smaller than ε − β. Hence, there is a
natural number N such that n > N implies ‖xn‖ > γ, as required.
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