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On the commutativity of prime MA-semirings

using generalized reverse derivations

Runu Paul, Rajlaxmi Mukherjee and Jayasri Sircar

Abstract. Motivated by the work done by Ashraf et al. [5] and Quadri et al. [17] this
paper aims to investigate some significant features of generalised reverse derivations that

ensure the commutativity of a prime MA-semiring.

1. Introduction

Let R be aring and Z(fR) be the center of R. A mapping ¢ : R — R is called
a derivation if it satisfies the following properties: (i) 0(z+y) = d(x)+0(y);
(73) d(zy) = 0(x)y + xd(y) for all x,y € R. Posner [16] proposed the con-
cept of derivation and set up the connection between the commutativity of
a ring and derivation. In the same year, I. N. Herstein [9] suggested the idea
of reverse derivation. Since then, authors have introduced various types of
derivations such as Jordan derivation, generalized derivation, and general-
ized reverse derivation and studied them (see [1],[7],[9], [11],[12], [18], [20]
where further references can be found).

Ashraf and Rehmann [4] proved that if a derivation ¢ on a prime ring
R satisfies either of the properties é(zy) + xy € Z(R) or §(zy) — zy €
Z(fR) for all z,y € Z where Z is a non-zero ideal of fR, then 2R must be
commutative. After that, Ashraf et al. [5] extended this concept through
generalized derivation. Ashraf et al. [5] and Quadri et al. [17] proved that
if a generalized derivation F' satisfies any of the following properties:

(1) F(zy) +zy € Z(R),

(ii) F'(xvy) —zy € Z(R),
(ii7) F(zy) + yx € Z(R),
(iv) F(xy) —yxr € Z(R),
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(v) F(z)F(y) + 2y € Z(R),
(vi) F(z)F(y) —zy € Z(R),
(vii) F(x)F(y) + yz € Z(R),
(viii) F(a)F(y) — yo € Z(R),
(iz) Flay) = [v,y], (2)F(ay) = oy
for all z,y € Z where 7 is a non-zero ideal of fR, then SR must be commuta-
tive.

F
F

As the theory of semirings not only generalises the theory of rings, but
also has significant applications in optimization theory, graph theory, formal
language theoretical computer science, and other areas of applied mathe-
matics (see [8]), over the past ten years, many authors have extended the
study of derivation in rings to the setting of semirings by exploring the
interplay between the commutativity of a semiring & and specific types
of derivations in §. Here it is noteworthy that the commutativity of a
semiring plays an important role in the field of research, e.g. the semiring
(Rmaz, B, ®), where Ryge = RU{—00}, a®b=maz{a,b} a®b=a+Db,
proves to be very effective when applied to the idempotent analysis and
becomes a staple tool in hundreds of optimization publications [15]. This
makes the study of commutativity of semirings interesting and relevant as
well. Recently, Yaqoub et al. [3] extended the notion of generalized reverse
derivation as an additive mapping F' from a semiring S to itself satisfying
F(zy) = F(y)r + yd(z) for all z,y € S, where § is a reverse derivation of
S and demonstrates how the features of this generalized reverse derivation
influenced the commutativity of prime and semiprime additively inverse
semirings.

Taking impetus from the work done by Ashraf et al. in 2007, and Quadri
et al. in 2003, the aim of this paper is to investigate some significant features
of generalized reverse derivations (other than those studied by Yaqoub [3])
which compel the commutativity of a prime MA-semiring.

2. Preliminaries

A semiring is defined as a non-empty set S equipped with two binary oper-
ations, addition and multiplication, such that both the additive and multi-
plicative reducts form semigroups, and multiplication distributes over addi-
tion from either side [14]. (S, +,.) is said to be a semiring with zero if it has
an absorbing zero, i.e. a0 =0=0a and a+0=04+a =0 for all @ € § and
S is said to be commutative if multiplicative reduct (S,.) is commutative.

320



Generalized reverse derivations in prime MA-semirings 321

For each element z in a semiring S, if there exists an element z’ such that
xr=x+2 +xand 2’ = 2/ + 2 + 2’ then S is called an additively reqular
semiring. If 2/ is unique then S is called an additively inverse semiring.
According ([14], [2]), for each z,y belong to an additively inverse semiring
S we have x = (2'), (x +y) =y + 2, (zy) =2’y = 2/, v.y = 2/.9/ and
the following identity holds for all a,b € S:

a+b=0 implies a=1"V. (1)

H. J. Bandelt and M. Petrich [6] showed that a semiring S whose additive
reduct (S, +) is a regular semigroup can be expressed as a subdirect product
of distributive lattice and a ring if and only if (S,+) is commutative and
the following conditions hold: (Ay) y(z + 2’') = 2’ + x for all z,y € S;
(A2) y(x +2') = (x+2)y for all x,y € S; (A3) x + (z + 2')y = « for all
z,y €S; (Ay) if x € Sand y+x =y for some y € S, then x +z = z. If an
additively inverse semiring & which is additively commutative and contains
zero is said to be an MA-semiring (cf. [13]) if it satisfies the condition (As)
mentioned above, i.e. a+ad’ € Z(8S) for all a € S. A subsemiring / ideal T
of an MA-semiring S is called an MA-subsemiring / MA-ideal if for each
a€T,d €T (cf [13]). An MA-semiring S is a prime MA-semiring if
aSb = 0 then implies that either ¢ = 0 or b = 0. An MA-semiring S is
called a 2-torsion free MA-semiring if 2a = 0 implies that a = 0 where
a€S.

The commutator of elements z,y in an MA-semiring S is defined as
[z,y] = zy + y'z, and the anti commutator is defined as z oy = zy + yz.
In an MA-semiring S, [z,y] = 0 implies that zy = yx for all z,y € S.

We now recall the following results from [13], [2] and [19] for their use in the
sequel.

Known facts 2.1

e ([13]|, Theorem 3.2) If S is an MA-semiring, then for all z,y,z € S,
the following identities are valid:

(@) [z, y] = [z, y] = [, y] = [y, 2],

(@) [2",y] = [z, y] [z,yz] = [z, ylz, [vy,2] =2y, z].
(i0) [wy, 2] = 2y, 2] + [z, 2]y

(v) [2,y2] = ylz, 2] + [z, ]z

* (

[2], Lemma 3.1) If§ : S — S is an additive mapping on an additively
inverse semiring S then §(x') = 6(z)" for all x € S.
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o ([19], Lemma 4) Let S be a 2-torsion-free prime MA-semiring. If
a € S such that [a,[a,s]] =0 for all s € S, then [a,S] = 0.

e (3], Lemma 2.1) In an MA-semiring S, [z,y] = 0 implies that xy = yx
forallz,y € S.

We refer the readers to [3] for the definitions of a derivation and a reverse
derivation on a semiring.

3. Main results

In this section, we study how some significant features of generalized re-
verse derivations influence the commutativity of a prime MA-semiring. To
accomplish this, we prove the following Lemmas.

Lemma 3.1. Let S be an MA-semiring. If§ is a non-zero reverse derivation
then 6(Z'(8S)) c Z'(S) C Z(S) where Z'(S) = {a € S : [a,b] = 0 for all
beSh.

Proof. Let a € Z'(S). Then [a,s] = 0 for all s € S. Thus, 6([a, s])=0 for
all s € S. We have d(as + s'a) = 6(s)a + sd(a) + 0(a)s’ + ad(s’) = 0 for all
s € S. Using result 2.1, we get d(s)a + sd(a) + 6(a)s’ + a(d(s))" = 0 for all
s € 8. This implies [0(s),a]+[s,d(a)] = 0 for all s € S. Hence, [s,d(a)] =0
for all s € S. Therefore 6(a) € Z'(S) and hence §(Z'(S)) is contained in
the center Z(S). O

Observation 3.2. Before going further, we mention here that in any ring
R, existence of an element a in Z(R) implies a € Z'(R) where Z'(R) = {a €
R :[a,b] =0 for all b € R}. But this may not hold in a 2-torsion free prime
MA-semiring, even if the semiring is commutative, which is evident from
the following example. This makes the study of derivation in the setting of
MA-semiring far more difficult.

Example 3.3. Let S = (Rpaz, P, ®) where Ryq, = RU{—00}, and oper-
ation in given by a ® b = maz{a,b}, a ® b = a + b. Then § is a 2-torsion
free commutative prime MA-semiring in which § = Z(S) but Z’'(S) = {0}.

Lemma 3.4. If [a,b] = 0 for all a,b € Z, where T is a non-zero MA-ideal
of a prime MA-semiring S, then S is commutative.
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Proof. Substituting bs in place of b, we get b[a,s] = 0 for all a,b € Z, for
all s € S. This shows that Z[a,s] = 0 for all a € Z, for all s € S. Since S
is prime and Z # 0, the last implies [a,s] = 0 for all a € Z, for all s € S.
Again replacing a by au, afu, s] + [a, sju = 0 and using the last equation,
we get afu,s] =0 for all a € Z, for all u,s € S, i.e. Z[u,s] = 0. Again as T
is non-zero and S is prime, we obtain [u, s] = 0 for all u,s € S. Hence, S is
commutative. [

We immediately deduce the following Corollary.

Corollary 3.5. Ifbla,b] = 0 for alla,b € Z, where T is a non-zero MA-ideal
of a prime MA-semiring S, then S is commutative.

Corollary 3.6. If ala,b] = 0 for all a,b € Z, where I is a non-zero MA-
ideal of a prime MA-semiring S, then S is commutative.

Lemma 3.7. Let S be a 2-torsion free prime MA-semiring and Z be a non-
zero MA-ideal of S. If a,[a,b]] =0 for all a,b € S, then T is commutative.

Proof. 1t is easy to observe that fact 2.1 holds for a non-zero MA-ideal of S,
too, i.e. if a € Z such that [a, [a,b]] = 0 for all b € Z, then [a,Z] = 0. Hence,
[a,b] =0 for all a,b € Z. Using Lemma 3.4, we get S is commutative. ]

Now we try to extend Lemma 3 of [16] in the setting of a 2-torsion free
prime MA-semiring considering reverse derivation instead of derivation.

Theorem 3.8. For each a € S, if [a,6(a)] = 0, where ¢ is a non-zero
reverse derivation of a 2-torsion free prime MA-semiring S which is not a
ring, then S is commutative.

Proof. By linearization of [a,d(a)] = 0, we get [a,d(b)] + [b,d(a)] = 0 for all
a,b € S. Substituting b by ag and ga, we respectively obtain the following
two equations

[a,0(g)la + [a, g]d(a) + alg, 6(a)] = O (2)
d(a)la, g + ala, 6(g)] + [g,6(a)]a = 0 (3)

for all a, g € S. First, we take inverse both side of Equation (3) then adding
equations (2), (3), we get

[[a, 91, 6(a)] + [[a, 6(g)], a] + [a, [9,6(a)]] = O (4)

Again replacing a by a + [a, g] in the given hypothesis, we get

[la, 91, 6(a)] + [a, [6(9), al] + [a, [9,6(a)]] = O (5)
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for all a,g € S. Combining the last two equations, we get [[a,d(g)],a] +
[a,[0(g),a]] =0forall a,g € S. Thus, we have [[a,(g)],a]+ [a, [6(g),a]]’ =
[, 6(0)],a) + [15(9), al, o] = [a, 6()]a+ o'[a, 5(9)] + [6(9), ala + @[5(g), a] =
ad(g)a+d(g)a’a+ad'ad(g)+a'0(g)a’+6(g)aa+a'd(g)a+a’d(g)a+a'a’d(g) =0
for all a,g € S. Since (a + a') € Z(S), we obtain 6(g)[a,a] + [a,ald(g) +
d(g)]a,al+0(g)[a,a] =0 for all a,g € S. Since [a,a] € Z(S), 46(g)[a,a] =0
for all a,g € S. Since S is 2-torsion free, §(g)[a,a] = 0 for all a,g € S.
Thus, [6(g)[a,a],y] = 0 for all a,g,y € S. Suppose [a,a] =0 for all a € S
ie. aS(a+a’) =0. As S is prime, for each non-zero a in S, a +a’ = 0.
Hence from the definition MA-semiring we conclude that § is a ring. Thus
we arrive at a contradiction. So, there exists a non-zero a in S for which
[a,a] # 0. Since S is prime MA-semiring and [a, a] is non-zero,

[5(g),y] =0 (6)

for all y,g € S. Again replacing g by vy, we get [d(y)v + yd(v),y] =
5[, yl + [06(y), ylv + y[6(v),y] = 0(y)[v,y] = 0 for all v,y € S. Again
replacing v by vw, we obtain §(y)v[w,y] = 0 for all y,v,w € S. Since
S is prime MA-semiring, for each y € S, either §(y) = 0 or [y,w] = 0
for all w € §. If y = 0 then obviously y € Z(S). Suppose y # 0 but
6(y) = 0. Now, &([y, s]) = d(ys + s'y) = d(s)y + sd(y) + d(y)s" + yd(s') =
5(s)y + s6(y) + 6(y)s’ + y(3(s)) = 8(s)y + s6(y) + d(y)s’ + y'(s) for all
s € 8. Since 6(y) = 0, §([y,s]) = d(s)y + y'd(s) = [d(s),y] for all s € S.
Using Equation (6), we get

o(ly,s]) =0 (7)

for all s € S. Again replacing s by s[y, v], we get ([y, sly,v]]) = 0 for all
s,v € 8. Thus, d(sly, [y,v]] + [y, s][y,v]) = 6([y, [y, v]])s + [y, [y, v]]é(s) +
[y, vy, s] + [y, v]0([y,s]) = 0 for all v,s € S. Using Equation (7), we
get [y, [y,v]]o(s) = 0 for all v,s € S. Again replacing s by sr, we get
9l o1)6(r)s + 3(5)) = [y [y, o6()s + [y, [y, o]lré(s) = 0 for all v, 5,7 €
S. Using the last relation, we obtain [y, [y, v]]rd(s) = 0 i.e. [y, [y, v]]Sd(s) =
0 for all v,s € S. Since § is non-zero derivation, there exists a non-zero
element s; such that d(s;) # 0. Then [y, [y, v]]Sd(s1) = 0 for all v € S.
Since S is prime MA-semiring, [y, [y,v]] = 0 for all v € S. Using result 2.1,
we get [y,v] = 0 for all v € S. Hence, y € Z'(S) € Z(S). If y # 0 and
d(y) # 0, then y € Z(S) clearly. So, all cases we get y € Z(S). Hence S is
commutative. O
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Remark 3.9. In Proposition 3.2 [3], the authors considered a generalized
reverse derivation (D, d) on a prime MA-semiring S and found that for any
element a € S, if 6(a) # 0 and [D(u),a] = 0 for all u € S, then a lies in the
center of S. On the other hand, in the above theorem we have established
that for any element a in a 2-torsion free prime MA-semiring S (which is
not a ring), if [a,d(a)] = 0 (where ¢ is a non-zero reverse derivation) then
each element of S lies in its centre, without putting the constraint é(a) # 0.
Consequently, it is evident that the above theorem does not come out as a
corollary of Proposition 3.2 [3].

Corollary 3.10. Let 6(# 0) be a reverse derivation on a 2-torsion free
prime MA-semiring S. For each a € I, if [a,0(a)] = 0, where T is a
non-zero MA-ideal of S but not a sub-ring of S, then S is commutative.

Proof. Using a similar approach as shown in the above Theorem, and in
view of the fact that in §(I) also becomes non-zero here, we obtain the
result. O

Now we try to extend Theorems 2.1, 2.3, 2.5 and 2.6 of [5] in the set-
ting of 2-torsion free prime MA-semiring considering generalized reverse
derivation instead of generalized derivation.

Theorem 3.11. Let S be a prime MA-semiring and T be a non-zero MA-
ideal of §. Suppose S admits a non-zero generalized reverse derivation F
which is related with a non-zero reverse derivation 8, such that 6(Z'(S)) #
{0}. If S meets one of the following criteria:
(i) [F(ab)+d'b,s] = [F(ab) +ab',s] =0,

(11) [F(ab) + Va,s| = [F(ab) + bd’, s] = 0,

(i1i) [F(a)F(b) +d'b,s] = [F(a)F(b) +ab/,s] =0,

(iv) [F(a)F(b) +ba,s] =[F(a)F(b) + bd’,s] =0,
for all a,b € T and for all s € S, then S is commutative.
Proof. Since 6(Z'(S)) is non-zero, there exists a non-zero element v in Z'(S)
such that §(u) # 0. So, it follows that §(u) € Z'(S) from Lemma 3.1. Since
Z'(8) C Z(S), 6(u) € Z(S).

First, assume that [F(ab) 4+ a’b,s] = 0 for all a,b € Z, for all s € S.

Then we get
[F(b)a+ bd(a) +a'b,s] =0 (8)

for all a,b € Z, for all s € S. Substituting ub in place of b, we obtain

[F(b)ua + bd(u)a + ubd(a) + a’ub, s] = 0 (9)
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for all a,b € Z, for all s € §. Since S is additively commutative, we have
[u(F(b)a+bd(a)+a'b)+bd(u)a,s] = u[F(ab)+a'b, s]+ [bd(u)a, s] = 0 (10)

for all a,b € Z, for all s € S. By hypothesis, we get [bd(u)a,s] = 0 for
all s € S, for all a,b € I. Since §(u) € Z'(S), we get §(u)ba,s] = 0 and
hence, 6(u)S[ba,s] = 0 for all a,b € Z, for all s € S. Since S is a prime
MA-semiring and 6(u) # 0, the equation implies that [ba,s] = 0 for all
a,b € Z, s €S. In particular, putting s = b it follows that b[a,b] = 0 for
all a,b € Z. Hence, the required result follows from Corollary 3.5.

In a manner very similar to this, we can show that S becomes commu-
tative if (i) holds.

Now suppose [F(a)F(b) + a'b, s] = 0 for all a,b € Z, for all s € S. In a
similar way as in the previous proof (cf. equations (9) to (10)), we obtain
[F'(a)b,s]é(u) = 0 for all a,b € Z, and for all s € S. Again replacing b by
F(a)b, we get the following

0= F(a)[F(a)b,s]d(u) + [F(a), s]F(a)bd(u) = [F(a),s|F(a)bé(u) (11)

for all a,b € Z and for all s € S. So, from (11) [F(a), s|F(a)bSé(u) = 0 for
alla,b € Z and forall s € S. As §(u) #0, [F(a),s]F(a)b =0foralla,be
and for all s € §. Since Z is a non-zero ideal, let us choose a non-zero
element b; € 7 then [F(a),s]F(a)Sby = 0 for all @ € Z and for all s € S.
Since S is a prime MA-semiring, we have [F'(a), s]F(a) = 0 for all a, € Z,
for all s € S. Again replacing s by st, it follows that [F'(a), s]tF(a) = 0 for
alla € Z, for all s,t € S. So, [F(a),s|SF(a) =0foralla €Z, forall s €S.
As S is a prime MA-semiring, for any a € Z and s € S, either [F(a),s] =0
or F(a) = 0. Suppose F(a) = 0 then clearly F'(a) = [F(a),s] = 0 for all
s € §. Again suppose F'(a) # 0 then also [F'(a),s] =0 for all s € S. Hence,
[F'(a),s] =0 for all @ € 7 and for all s € S. Then using hypothesis, we get
[F(a)F(b)+a'b,s] = F(a)[F(b),s]+[F(a),s]F(b)+[a’b,s] =0 foralls € S
and for all a,b € Z. Hence, [a'b,s] =0 for all a,b € Z, for all s € S. As a
result, for all a,b € Z, [ab,s] = 0 for all s € S. In particular, putting s = a
follows that afa,b] = 0 for all a,b € Z, Thus, S is commutative according
to Corollary 3.6.

Similarly, we can demonstrate that S becomes commutative if the con-
dition (iv) holds. O

We immediately derive the following Corollary.
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Corollary 3.12. Let S be a prime MA-semiring and Z be its non-zero MA-
ideal. Suppose S admits a non-zero generalized reverse derivation F that
connected to a non-zero reverse derivation 0 such that 6(Z'(S)) # {0}. If
S meets any of the following criterion:

(i) [F((ab) +ab, s] =0,

(i3)  [F(ab) + ba,s] =0,
(i7i) [F(a)F(b) +ab,s] =0,
(iv) [F(a)F(b)+ba,s]=0

for all a,b € Z, for all s € S, then S is commutative.

Now, in the next theorem, we observe what happens if we remove the
condition that §(Z'(S)) # {0} from the 2-torsion free prime MA-semiring
under consideration.

Theorem 3.13. Let T be a non-zero MA-ideal of a 2-torsion free prime
MA-semiring S which is not a sub-ring. S admits a non-zero generalized
reverse derivation F associated with a non-zero reverse derivation §. If S
satisfies any of the following conditions
(i) F(ab) +a'b=0,

(i7) F(ab) +Va =0,

(i4i) F(a)F(b)+a'b=0,

(iv) F(a)F(b) +ba=0

for all a,b € I, then S is commutative.

Proof. (i) First suppose that F(ab) + a’b = 0 for all a,b € Z. Substituting
bz in place of b, we obtain

F(bz)a +bzé(a) +a'bz =0 (12)
for all a,b,z € Z. Using the given hypothesis and by (1), it follows that
bza + bzd(a) + a'bz = [bz,a] + bz6(a) =0 (13)
for all a,b, z € Z. In particular, putting a = b it follows that
b[z,b] + bzd6(b) =0 (14)

for all a,b, z € Z. Again replacing z by zb, we get b[z, b]b + bzbd(b) = 0 for
all b,z € Z. Multiplying the Equation (14) from the right by b and using
(1), we obtain

bz[b, 8(b)] = 0 (15)
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for all b,z € Z. So, bSz[b,6(b)] = 0 for all b € Z. Thus, the primeness
of § implies that for each b € Z, either b = 0 or z[b,d(b)] = 0. Suppose
b=0. Then z[b,6(b)] =0 for all z € Z. Thus, z[b,d(b)] =0 for all z,b € T.
Since Z is a non-zero MA-ideal, let us choose a non-zero element z;. Then
z1[b,8(b)] = 0 for all b € Z. Since S is a prime MA-semiring, we have
[b,d(b)] = 0 for all b € Z. Using Corollary 3.10, we get the required result.

(i) Now suppose that F(ab) + b'a = 0 for all a,b € Z. Using a similar
approach as shown in the proof of (i) (¢f. formulation of Equation (12) and
(13)), we obtain

zba + b'za + bz6(a) =0 (16)

for all a,b, z € Z. Again replacing b by br, we get zbra+b'rza+brzd(a) =0
for all a,b, z,7 € Z. Again replacing z by rz in Equation (16), we obtain
rzba + b'rza + brzé(a) = 0 for all a,z,b,r € Z. Combining the last two
equations, we have [zb,r]a = 0 for all z,b,7,a € Z. Since Z is non-zero
MA-ideal, let us choose a non-zero element a;. Then [zb,7]Sa; = 0 for
all z,b,r € Z. Since S is prime MA-semiring, we have [zb,r] = 0 for all
z,b,r € Z. In particular putting z = r, we get r[b,r] = 0 for all r,b € Z.
Then using Corollary 3.5, we get S is commutative.

(i7i) By our assumption, we get F(a)F(b) 4+ a’b =0 for all a,b € Z. Replac-
ing b by zb and using the given hypothesis, we obtain

alb, z] + F(a)bd(z) =0 (17)

for all a,b,z € Z. Replacing b by bz, it follows a[b, z]z + F(a)bzd(z) = 0
for all a,b,z € Z. In the equation (17) by multiplying on the right side
by z and by (1), we arrive at F(a)b[d(2),z] = 0 for all a,b,z € Z. So,
F(a)Sb[o(z), 2] =0 for all a,b, z € Z. Suppose F(a) =0 for all a € Z. Then
from hypothesis, we get a’b =0 1i.e. ab =0 for all a,b € Z. Hence, aSb =0
for all a,b € Z. This is impossible in view of the fact Z is non-zero and &
is a prime MA-semiring. So, there exists a non-zero element a; € Z such
that F'(a;) # 0. Then F(a1)Sb[d(z),z] = 0 for all b,z € Z. Since S is a
prime MA-semiring, b[0(2), 2] =0 for all b,z € Z. As T is non-zero and S is
a prime MA-semiring, [§(z), z] = 0 for all z € Z. Using Corollary 3.10, we
get S is commutative.

(iv) By given hypothesis F'(a)F(b) + b'a = 0 for all a,b € Z. Substitute sb
in place of b, we get

[ba, s| + F(a)bd(s) =0 (18)
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forall a,b, s € 7. Again replacing b with sb, we obtain s[ba, s|+F(a)sbd(s) =
0 for all a,b, s € Z. Multiplying by a in Equation (18) from the left side and
using (1), we arrive at [F'(a), s]bd(s) = 0. This implies [F'(a), s]bSd(s) = 0
for all a,b,s € Z. Let t € Z. Then by primeness of S, we get either
[F'(a),t]b =0 or §(t) = 0. If £ = 0 then obviously [F'(a),t]b = §(t) = 0 for
all a,b € Z. Suppose t # 0 but 6(t) = 0. Then from Equation (18), we
get [ba,t] = 0 for all a,b € Z. Replace a by ar, we get baS|[r,t] = 0 for
all a,b,r € Z. By primeness of S either we get ba = 0 or [r,t] = 0 for all
a,b,r € Z. Since Z is non-zero, ab = 0 is not possible for all a,b € Z. Let us
choose a1, by € Z such that bja; # 0. Then bya1S[r,t] =0 for all r € Z. By
primeness of S, we get [r,t] = 0 for all r € Z. Suppose t # 0 and §(¢t) # 0.
Then [F'(a),t]b =0 ie. [F(a),t|Sb =0 for all a,b € Z. Since Z is non-zero
and S is prime, we have [F(a),t] = 0 for all a € Z. Replacing a by xa, we
get

[F(za),t] = [F(a)z,t] + [ad(z),t] =0 (19)
for all a, x € Z. In particular, for x = ¢, we obtain [ad(t),t] = 0 for all a, € T.
Again replacing a by wa, we get [w,t]ad(t) = 0 for all a,w € Z. Since
0(t) # 0 and S is a prime MA-semiring, we get [w,t]a = 0 i.e. [w,t|Sa =0
for all w,a € Z. Since 7 is non-zero and S is prime, we obtain [w,t] = 0
for all w € Z. For any choice t € Z, we get [r,t] = 0 for all r € Z. Using
Lemma 3.4, we get S is commutative. O

Theorem 3.14. Let S be a prime MA-semiring. Suppose F' is a non-zero
generalized reverse derivation associated with a non-zero reverse derivation
0 such that F(ab) + [a,b] =0 or F(ab) +aob=0 for all a,b € T where T
1s a non-zero MA-ideal which is not a subring. Then S is commutative.

Proof. We assume that F'(ab) + [a,b] = 0 for all a,b € Z. Replacing b by
bz yields that F(bz)a + bzd(a) + abz + bza’ = 0 for all a,b,z € Z. Using
hypothesis and by (1), it follows

2bza’ + zba + abz + bzé(a) =0 (20)
for all a,b, z € Z. Substituting ab instead of b, we obtain
2abza’ + zaba + aabz + abzd(a) = 0 (21)

for all a,b,z € Z. Multiplying by a from the left side of Equation (20), it
gives 2ab'za + azba + aabz + abzd(a) = 0 for all a,b, z € Z. Combining the
last two relations, we get [z,alba = 0 i.e. [z,a]bSa = 0 for all a,b,z € 7.
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Suppose a # 0. Then primeness of S gives [z,alb = 0 for all b, z € Z. Thus,
[z,a]b =0 for all a,b, z € Z, whence [z,a]Sb; = 0 for all a,z € Z and some
non-zero element b; of Z. Again using primeness of S, we get [z,a] = 0 for
all a,z € Z. Hence, § is commutative using Lemma 3.4.
From given hypothesis, we obtain F'(ab) 4+ aob =0 for all a,b € Z. Using a
similar approach as shown in the first part of the proof (cf. formulation of
Equation (20)), we get bza’ + zba’ + abz + bza + bzd(a) for all a,b,z € Z.
This implies

abz + zba' + bzd(a) =0 (22)

for all a,b, z € Z. Again replacing z by rz, we get abrz+rzba’ +brzd(a) =0
for all a,b,z,7 € Z. Again replacing b by br in Equation (22), we get
abrz + zbra’ 4+ brzé(a) = 0 for all a,b,z,r € Z. Combining the last two
equations, we get [r,zbla’ = 0 for all a,b,z,7 € Z. Since Z is non-zero
MA-ideal, [r, 2b]|Sa; = 0 for all 7, b, z € Z and for some non-zero a; € Z. By
primeness of S, we get [r, zb] = 0 for all r,b,z € Z. In particular, putting
z =1 we get r[r,b] = 0 for all »,b € Z. Using Corollary 3.6, we get S is
commutative. ]

We derive the following theorems using a similar approach as illustrated
in the preceding Theorem.

Theorem 3.15. Let S be a prime MA-semiring and T be a non-zero MA-
ideal of S. Suppose S admits a non-zero generalized reverse derivation F
associated with a non-zero reverse derivation § such that 6(Z'(S)) # {0}.
If S satisfies either [F(ab) + [a,b],s] = 0 or [F(ab) + aob,s] = 0 for all
a,b€eZ, for alls €S, then S is commutative.

Proof. By replacing b by ub we can easily obtain that [bd(u)a, s] = 0 for all
a,b € T, for all s € S and u € Z'(S). Hence by proceeding in a similar
manner as shown in the proof of Theorem 3.11 (i) we obtain the result. [

Theorem 3.16. Let S be a 2-torsion free prime MA-semiring and T be a
non-zero MA-ideal which is not a subring of S. If S admits a non-zero gen-
eralized reverse deriwation F' associated with a non-zero reverse derivation
d such that Fla,b] + [a,b] =0 or F(aob)+aob=0 for all a,b € Z, then
S is commutative.

Proof. For any a,b € Z, we have F([a,b]) + [a,b] = 0. Substituting ab in
place of b, we get F(ala,b]) + afa,b] = 0 for all a,b € Z. Utilizing the
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hypothesis, this leads to the relation
[a, [a,b]] + [a,b]d(a) =0 (23)
for all a,b € Z. Replacing b by ba, it gives
[a, [a,b]]a + [a,blad(a) = 0 (24)

for all a,b € Z. Multiplying in Equation (23) by a from the right side , we
get
0, [a, )+ [a, B6(a)a = 0 (25)

forall a,b € Z. Comparing Equations (24) and (25), we obtain [a, b][a, d(a)] =
0 for all a,b € Z. Substituting 6(a)b in place of b, we get [a, d(a)]b[a,d(a)] =
0 for all a,b € Z. Thus, we get [a,d(a)]Sbla,d(a)] = 0 for all a,b € T.
Since Z is a non-zero MA-ideal, let us choose a non-zero element by. Then
[a,d(a)]Sbi[a,d(a)] =0 for all a € Z. By primeness of S, we get [a,d(a)] =0
for all @ € Z. Using Corollary 3.10, we get S is commutative.

For any a,b € Z we have F(aob) 4+ aob= 0. By definition of generalized
reverse derivation

F(b)a+ bd(a) + F(a)b+ ad(b) +ab+ba =0 (26)
for all a,b € Z. Replacing b with ab, we get
F(b)aa+bd(a)a+ abd(a) + F(a)ab+ ad(b)a+ abd(a) + aab+ aba = 0 (27)

for all a, b € Z. Multiplying form right side by a in Equation (26), comparing
the above equation, we get

2abé(a) + F(a)[a,b] + b'aa + aab =0 (28)

for all a,b € Z. Replacing b by ba, we get 2abad(a) + F(a)la,bla + b'aaa +
aab = 0 for all a,b € Z. Multiplying in Equation (28) by a from the right
side, we get 2abd(a)a + F(a)|a,bla + b'aaa + aaba = 0 for all a,b € Z.
Combining the last two equations, we get 2abla,d(a)] = 0 for all a,b € 7.
Since S is a 2-torsion free prime MA-semiring, aba, d(a)] = 0 for all a, b € Z,
which is similar as the Equation (15) of the Theorem 3.13 (7). Now arguing
similarly, we conclude that § is commutative. O
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Theorem 3.17. Let S be a 2-torsion free prime MA-semiring and I be
a non-zero MA-ideal of S. Suppose S admits a non-zero generalized re-
verse derivation F' associated with a non-zero reverse derivation d such that

5(Z'(8)) # {0}. If S satisfies any of the following conditions

(z) [F[a7 b] + [a7 b]78] =0,
(ii) [F(aob)+aob,s]=0

forall a,b €I, for all s € S, then S is commutative.

Proof. As, 6(Z'(S)) is non-zero, there exists an element v € Z'(S) such that
d(u) # 0. Therefore, from Lemma 3.1, it follows that §(u) € Z'(S) C Z(S).
First, we assume that [F[a, b] + [a,b],s] = 0 for all a,b € Z and for all s € S.
Replacing b by ub, we get d(u)[[a, b], s] = 0 for all a,b € Z and for all s € S.
Hence, 6(u)[[a,b],b] = 0 for all a,b € Z. Since d(u) # 0 and S is a prime
MA-semiring, we get [[a,b],b] = 0 for all a,b € Z. Using Lemma 3.7, we get
S is commutative.

Suppose that [F'(aob)+aob,s] =0 for all a,b € Z and s € S. Replacing
b by ub, we get u[F(aob)+aob,s|+ [bd(u)a+ abd(u),s] =0 for all a,b € Z
and for all s € S. Using the hypothesis, we get [bd(u)a+abd(u), s] = 0 for all
a,b € Z and for all s € S. Since §(u) € Z(S), we obtain [aob, s]d(u) = 0 for
all a,b € Z and for all s € S. Again replacing s by ts we get [aob, s]td(u) = 0
for all a,b € 7 and for all s,t € S. As §(u) # 0 and S is a prime MA-
semiring, we have [aob,s] =0 for all a,b € 7 for all s € S. Again replacing
b by ba, we get [a o (ba),s] = 0 for all a,b € Z and for all s € S. Hence,
(aob)[a,s] =0 for all a,b € Z and for all s € S. Again replacing s by rs, we
get (aob)rfa,s] =0 for all a,b € 7 and for all r, s € S. Again replacing b by
be, we get (aobe)r(a,s] = (b(aoc)+ [a,b]c)r[a,s] =0 for all a,b,c € T and
for all r,s € §. Thus, [a,b]cr[a,s] =0 for all a,b,c € Z and for all r,;s € S.
In particular, putting s = b, we obtain [a, blcr[a,b] = 0 for all a,b,c € Z and
for all r € S. Let ¢; be a non-zero element of Z. Then [a, b|c1S]a, b] = 0 for
all a,b € Z. By primeness of S, we obtain [a,b] = 0 for all a,b € Z. Using
Lemma 3.4, we get S is commutative. O
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